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• Social networks models and measures 

• Symptoms of social influence: diffusion and convergence 

• Macro level effects of micro level actions: cascades, fake majorities and 
pluralistic ignorance
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A network is connected iff it 
has one single component
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 gij  is now the probability 
that an edge exists between i and j
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SI SIS SIR SIRS

S(suceptible)

I(Infected)

R(Removed)
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• degree - how connected a node is

• closeness - how easily a node can reach other nodes

• betweenness - how important a node is in terms of connecting other nodes

• neighbours’ characteristics - how important, central, or influential a node’s 
neighbours are
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Fi(A), which is the prior probability that individual i 
assigns to the event that the value of θ will lie in A

• Let pij be the weight that agent i assigns to agent j.  
• We assume that pij ≥0 and pi1 +…+ pik =1
• Each agent revises her own probability distribution from 

Fi to Fi1 using

Fi1 =
kX

j=1

pijFi
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• Represent all weights as a matrix P 

• Represent all initial distributions as a matrix F
• An update becomes F(1)=PF
• Note that F(n)=PF(n-1) =…=PnF
• Distributions converge iff there exists F* such that

lim
n!1

Fin = F ⇤ for i = 1, .., k
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• A state i is said to be transient if, given that we start in state i, there is a non-
zero probability that we will never return to i. 

• State i is recurrent (or persistent) if it is not transient. 
• A state i has period m if any return to state i must occur in multiples of m time 

steps. 
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• A set of states that communicate are called a communicating class.
• A communicating class is closed if for all i in it and j not in it, we have pij=0.
• An open communicating class is one that is not closed. 
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• Theorem (Doob 1953): If there exists a positive integer n s.t. every 
element in at least one column of the matrix Pn is positive, then a 
consensus is reached. 

• An analogous result: If all the recurrent states of the Markov chain 
communicate with each other and are aperiodic, then a consensus 
is reached. 

• If a consensus is reached, then it is unique!

• Because matrix P is a k x k stochastic matrix, it can be regarded 
as the one step transition probability  matrix  of a Markov chain 
with k states and stationary transition probabilities

• => standard theorems of theory of Markov chains hold
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only symptoms of influence… but no models of social influence 


