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While we all are affected, or will be, by algorithms, some of us are more
vulnerable than others to biased data and unfair Al. Is a focus on unbiased
data and fair Al the solution? Is there a universal understanding of fairness?
Are there sources of neutral data or can we make existing data sets
unbiased? If we answer ‘yes’ on these questions, does it mean that Al can
be neutral? In this lecture we will engage with the understanding that
technology is not neutral and explore what this means for working towards

unbiased data and fair Al.



[The] concept of imagined objectivity emphasizes
the role that cultural assumptions and personal
preconceptions play in upholding this false belief:
one imagines (wrongly) that datasets and algorithms
are less partial and less discriminatory than people

and thus more “objective.”

(Ruha Benjamin in D’Ignazio & Klein, 2020)
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Aggregation bias

Gender Overall Accuracy on all Subjects in Pilot Parlaiments
Classifier Benchmark (2017)
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Taken at face value, gender classification accuracies ranging from 87.9% to 93.7% on the PPB
dataset, suggest that these classifiers can be used for all populations represented by the
benchmark. A company might justify the market readiness of a classifier by presenting
performance results in aggregate (Buolamwini & Gebru, 2018).



Intersectional bias u
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Yet a gender and phenotypic breakdown of the results shows that performance differs
substantially for distinct sub-groups. Classification is 8.1% - 20.6% worse on female than
male subjects and 11.8% - 19.2% worse on darker than lighter subjects (Buolamwini &
Gebry, 2018).



Intersectionality

Kimberlé Crenshaw, law professor at Columbia and UCLA
coined the term intersectionality 30 years ago to describe
the way people’s social identities can overlap:

“It's basically a lens, a prism, for seeing the way in which
various forms of inequality often operate together and
exacerbate each other. We tend to talk about race
inequality as separate from inequality based on gender,
class, sexuality or immigrant status. What's often missing
is how some people are subject to all of these, and the
experience is not just the sum of its parts.”

https://time.com/5786710/kimberle-crenshaw-intersectionality/



Intersectionality
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The intersectional error analysis that targets gender classification performance on
darker female, lighter female, darker male, and lighter male subgroups provides more
answers. Darker females have the highest error rates for all gender classifiers ranging
from 20.8% - 34.7% (Buolamwini & Gebru, 2018).



Intersectionality
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“In fact, as we tested women with darker and darker skin, the chances of
being correctly gendered came close to a coin toss”. Bulamwiniin Gender
Shades (https://youtu.be/TWWsWiw-BVo)



Unfair or flawed Al
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Biased Data
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(Suresh, 2019; Suresh & Guttag, 2021)



Biased Data

¢ Historical bias arises when there is a misalignment between world as it
is and the values or objectives to be encoded and propagated in a model.
It is a normative concern with the state of the world, and exists even
given perfect sampling and feature selection.

* Representation bias arises while defining and sampling a development
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data_

population. It occurs when the development population under-
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the testing or external benchmark populations do not equally represent benchmarks

the various parts of the final population. Evaluation bias can also arise
from the use of performance metrics that are not granular or
comprehensive enough.

o Aggregation bias arises when flawed assumptions about the population
affect model definition. In many applications, the population of interest
is heterogeneous and a single model is unlikely to suit all subgroups.

(Suresh, 2019; Suresh & Guttag, 2021)
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Socio-technical typology of bias
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Lopez, Paola (2021). Bias does not equal bias: A socio-technical typology of bias in data-based algorithmic systems



o Technical bias: Any kind of technical or conceptual mis-
measurement and misconception

o Socio-technical bias: A discrepancy between what is to be
represented and what is being represented, and this discrepancy
is a direct result of structural inequalities.

o Societal bias: Arise when structural inequalities are reflected in
the respective data, albeit correctly.

Socio-technical
bias

Is this deviation a

direct result of a

structural inequality**
in society?

Societal bias
* Reality, of course, being a highly contested term

** As defined by referring to protected features in legal anti-discrimination regulations

Does the
data/datafication
deviate
systematically from
the phenomenon in
reality*?

Technical bias

Hili

FIGURE 1: Bias scheme

Lopez, 2021



Technical bias

o Any kind of technical or conceptual mis-measurement and
misconception
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Technical bias

o Any kind of technical or conceptual mis-measurement and
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Socio-technical bias

o Adiscrepancy between what is to be represented and what is
being represented, and this discrepancy is a direct result of

structural inequalities.
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Raseprofilering skjer ogsa i Norge. Vi
trenger en kvitteringsordning.

Ida Evitade Leon Leder i Black History Month Norway
Kai Andre Sunde Organisasjonen mort offentlig diskriminering (OMOD)

‘ : Na kan norsk politi soke direkte
% — i FBIs database
\ Programvaren Palantir gjor at politiet na kan soke direkte i databasen til

amerikanske og europeiske politimyndigheter.

Norske politiansatte har opprettet brukere hos
. . denomstridte bildeappen Clearview

Appen Clearview Al gjenkjenner ansikter basert pa bilder fra sosiale medier.
| Politidirektoratet avviser at den brukes av norsk politi, men sier enkelte
polititienestemenn har opprettet brukere for a fa informasjon om teknologien.



Socio-technical bias
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Societal bias

o Societal bias: When structural inequalities are reflected in the
respective data, albeit correctly.

Variable Nominal values

Gender Male/Female

Age group 0-29/30-49/50+

Citizenship Austria/EU except Austria/Non-EU

Highest level of education Grade school/apprenticeship, vocational
school/high- or secondary school, university

Health impairment Yes/No

Obligations of care (only women) Yes/No

Occupational group Production sector/service sector

Regional labor market Five categories for employment prospects in

assigned AMS job center
Prior occupational career Characterization of variable listed in Table 2

Lopez, 2021



Can biases be fixed?

NEWS | 24 October 2019 | Update 26 October 2019

Millions of black people affected by
racial bias in health-care algorithms

Study reveals rampant racism in decision-making software used by US hospitals — and
highlights ways to correct it.

Heidi Ledford

An algorithmic system built on a
perfect datafication can reinforce
inequalities — depending on its
context of use.

o Healthcare

o Preventive policing

o Austrian Social Services

Black people with complex medical needs were less likely than equally ill white people to be

referred to programmes that provide more personalized care. Credit: Ed Kashi/VIl/Redux/eyevine
(Lopez, 2021)



Societal bias

o Societal bias: When structural inequalities are reflected in the
respective data, albeit correctly.

Variable Nominal values
—Cender Maletbomele

Age group 0-29/30-49/50+

Citizenship Austria/EU except Austria/Non-EU

Highest level of education Grade school/apprenticeship, vocational
school/high- or secondary school, university

Health impairment Yes/No

Obligations of care (only women) Yes/No

Occupational group Production sector/service sector

Regional labor market Five categories for employment prospects in
assigned AMS job center

Prior occupational career Characterization of variable listed in Table 2

Lopez, 2021



S e B 54 S

D’Ignazio & Klein, 2020



Concepts That Secure Power

Because they locate the source of the
problem in individuals or technical

systems

Ethics

Bias

Fairness
Accountability
Transparency

Understanding algorithms

"Addressing bias in a dataset is a tiny
technological Band-Aid for a much larger
problem. Even the values mentioned here,
which seek to address instances of bias in
data-driven systems, are themselves non-
neutral, as they locate the source of the bias in
individual people and specific design
decisions. So how might we develop a practice
that results in data-driven systems that
challenge power at its source?

(D’lgnazio & Klein, 2020)

Society Technology



From data ethics to data justice

Table 2.1: From data ethics to data justice

Concepts That Secure Power Concepts That Challenge Power

Because they locate the source of the [Because they acknowledge structyral

problem in individuals or technical guwvrdﬂﬁrmﬂ'ﬁﬁnd'wuﬁrmvjrd

systems dismantling them

Ethics Justice

Bias Oppression

Fairness Equity

Accountability Co-liberation

Transparency Reflexivity

Understanding algorithms Understanding history, culture, and
context

D’Ignazio & Klein, 2020 e



o Bias—Oppression

While bias remains a serious problem, it should not be viewed as something
that can be fixed after the fact. Instead, we must look to understand and
design systems that address the source of the bias: structural oppression.
Starting from the assumption that oppression is the problem, not bias, leads
to fundamentally different decisions about what to work on, who to work with,
and when to stand up and say that a problem cannot and should not be solved
by data and technology.

o Fairness — Equity

Working toward a world in which everyone is treated equitably, not equally,
means taking into account these present power differentials and distributing
(or redistributing) resources accordingly. Equity is much harder to model
computationally than equality—as it needs to take time, history, and
differential power into account—but it is not impossible.

D’Ignazio & Klein, 2020




Sociotechnical perspective

Sociotechnical
perspective

Technology

o Un/biased data
o Un/fair Al




Examine power: Data feminism begins by analyzing in the world

Challenge power: Data feminism commits to challenging unequal power structures and

Rethink binaries and hierarchies: Data feminism teaches us to value multiple forms of
knowledge, including the knowledge that comes from

Elevate emotion and embodiment: Data feminism requires us to challenge the
, along with other systems of counting and classification that perpetuate oppression

Embrace pluralism: Data feminism insists that the most complete knowledge comes from
, with priority given to local, Indigenous, and
experimental ways of knowing

Consider context: Data feminism asserts that .They are
the products of unequal social relations, and this context is essential for conducting
accurate, ethical analysis

Make labor visible: The work of data science, like all the work in the world, is the work of
many hands. Data feminism makes this so that it can be recognized and
valued

D’Ignazio & Klein, 2020



Thank you!
Good luck with your

research projects!

majava@ifi.vio.no
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