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Introduction

1.1 Background

Artificial intelligence is concerned with the task of enalglimachines to solve complex prob-
lems by,e.qg, learning, behaving intelligently, reasoning, decisinaking. In the seventies

of the last century, when artificial intelligence was at igginnings, these cognitive processes
were seen, studied and modeled separately. Later on,g@swtrious artificial intelligence
disciplines accumulated and computer technology rapidisaaced. As a consequence, the
paradigm of thantelligent agentbecame an appealing approach to study and recreate the
human mental activities.

An agent is an autonomous entity that embodies several togprocesses, defined as “any-
thing that can be viewed as perceiving its environment thincsensors and acting upon that
environment through actuators” (Russell and Norvig, 2qd@34). An intelligent agent is
defined as “a computer system that is capable of independgohan behalf of its user or
owner” (Wooldridgz, 2009, pg. 5). By definition an agent iat#s with its environment and
other agents. The appeal of the agent paradigm lies predis#ie possible computational
power that emerges from the interaction among agents. Thetstes formed by intelligent
agents are calleghultiagent systemg he interest in multiagent systems particularly took off
with the advent of social software when the role of a compsitéited from the computer
being a self contained machine for executing software, astp®al computer”, to being a
“net-book”, a global communication tool and an access noddisseminating information,
conducting commerce and efficient leaking of embarrassénggmal information to potential
employers.

The interactions within a multiagent system include coapen and coordination. To be
able to coordinate and cooperate, intelligent agents reeeghth collective consents, namely
binding group decisions, over issues such as beliefs,rectod desires. One type of col-
lective consent imn agreementAn agreement is a mutual and enforceable understanding
among agents. The processes and mechanisms implicatedcining agreements among
agents have recently become a subject of research and ianfatym technology-oriented
perspectives (Ossowski, 2008).

The interactions among people and how they reach collectimeents are studied within the
scope of economic theory, by social choice theory. In ecaooandecision is a choice of
option(s) from a given set of options. The set of options s aometimes called a set of
alternatives. Social choice theory includes voting theprgference aggregation and judg-
ment aggregation. These theories are all concerned witbla@ng and studying methods
for making collective decisions.
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Preference aggregation (Arrow et al., 2002, Part 1) stutieproblems of forming a group
opinion for a set of options. Each agent specifies which optioe most prefers, which
he prefers less and so on, building a subjective prefereraer @ver the set of options.
A preference aggregation rule fuses these subjective @idty a preference order that is
representative for the group.

Voting theory (Arrow et al., 2002, Chapter 4), (Nurmi, 20%@)dies the problems of making
a group choice from a set of candidates. Each agent casts fovatr against one, some or all
of the candidates. The structure of the vote depends on theguaontext. The simplest vote

structure is the one-person-one-vote, when each ageribiseal to choose one candidate
from the candidate set. The most elaborate vote structuagadsal preference order, as in
preference aggregation. Voting occurs in many formal cdetsuch as: political elections,

electing best entries in contests and determining the winnesport competitions like figure

skating. Voting also occurs in informal contexts, such amips of people deciding where to
go for dinner, how to name their robotstc A voting rule selects a winner from the set of
candidates based on the individual votes.

Judgment aggregation (List and Puppe, 2009) studies tHagmns of making group deci-
sions regarding the truth-value of several issues corsideoncurrently. For one set of is-
sues, all combinations of truth-value assignments are ifmved. Judgment aggregation
problems occur in committee and jury decision-making casteAs in voting theory, the
contexts of judgment aggregation problems range fromedgtiormal to entirely informal.
An example of a formal context is a collegiate court whichdsiding whether a given case is
within the jurisdiction of a given court, whether the presehevidence for the case are suffi-
cient for a trial, and whether a trial should be scheduledia tan be scheduled if and only
if the evidence is sufficient and a court has jurisdiction.example of an informal judgment
aggregation context is a group of friends deciding on whetihvgo to a certain restaurant,
whether the restaurant in question has vegetarian dishéganenu and whether the prices
are affordable. The group can only go to the restaurantsftihé group’s opinion that there
are vegetarian dishes and that the prices are affordable.

Each agent forms a judgment regarding the truth state of isaak. Usually a judgment is
a binary value denoting whether an issue is true or falsesped or rejected. A judgment
aggregation rule aggregates these truth-value assigenrgotan allowed combination of
truth-value assignments, one for each considered issue.

The Figure 1.1 is an abstract simplified illustration of prehce aggregation (left hand-side
funnel), voting (center funnel) and judgment aggregatigyh¢ hand-side funnel), and allows
us to make a comparison between the three. In each of thd sbhoiae problems presented
on Figure 1.1, there are three agents: Top, Middle and Boftidrair individual preferences,
votes and judgments are represented in the correspondileg. ofhe group decisions are
represented in the exit of the funnel. In the case of prefar@ggregation the set of options
are a star, a circle and a square. In voting, the star, the@ra the square are candidates.
In this picture we give the most complicated vote constrtia, full preference order. In
the case of judgment aggregation, the star, the square arairtfe are the issues on which
judgments are cast. Each agent assigns a value true (yeslser(ho) to each issue. The
relations between the star, the circle and he square ardlsaicifian agent accept either the
star or the circle, then he has to accept the square as well.

Preference aggregation, voting and judgment aggregafiappear to be simple. However,
these procedures, and related theories, are for many i€daofrom simple. The variety of
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* O H
no no no
yes no yes
no yes yes

*>0>H

*>@>H * *>0>H

no vyes yes

Figure 1.1: Different social choice problems: preferenggragation (left), voting (middle)
and judgment aggregation (right).

contexts in which these social choice rules are used isragiselarge and so is the variety of
requirements that the group decision should satisfy wigipeet to the individual opinions,
votes or judgments correspondingly. There are many diftgueocedures that can be used
for the same problem each leading to a different group datidihere also are many combi-
nations of requirements that no procedure can satisfy samebusly. There are problems for
which some procedures can be applied more efficiently thaerst

Economic theory is no stranger to computer science whemiesdo applying methodology
from one to the other. While social choice rules generatectely binding group decisions,
another discipline in economy, decision-making, consdiee problem of making individual
decisions. Chapters 16 and 17 in (Russell and Norvig, 20@}rate that decision theory
is a staple methodology used in artificial intelligence.Ha last five years, the exchange of
ideas and methodologies between economics and compuwtacsds flowing both ways, as
witnessed by the very fruitful field aflgorithmic game theorfRoughgarden, 2010).

Importing concepts from social choice theory into compgitamd applying computational

analysis in social choice is studied bymputational social choicfChevaleyre et al., 2007).

The first direction of using methods from computing to studghpems in social choice

theory is well explored. The most typical problem studied@mputational social choice

is the complexity-theoretic analysis of voting protocolssuch as (Bartholdi et al.,

1989; Hemaspaandra et al., 1997; Conitzer and Sandhol@bz80Nalsh, 2008). Other typ-

ical problems include allocation of resources (Maudet.C2@hapter 3), (Chevaleyre et al.,
2005); formal specification and verification of social prdeees using mathematical logic,
such as/ (Bouveret and Leing, 2005), (Maudet, 2010, Chaptero®)pact representation of
elicited input using logic, such as (Bienvenu et al., 201 the computer aided search for
properties of social choice rules, such as (Tang and LinCR00

The second direction of importing concepts from social cbdad computer science is also
outlined as a core consideration of computational socialogh This direction is consider-
ably less explored. One would expect that some of the firstatsddr obtaining collective
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consents in multiagent systems would be inspired by, or mepdrom, social choice theory.
This is not what happens.

Why is there a gap where there should be work that exploressdef social choice for col-
lective reasoning problems in multiagent systems? Aresthemultiagent systems problems
that can benefit from social choice methods? We give a few pkamto illustrate that this is
not the case.

Argumentation based negotiation methods (Beer et al.,)l@@%een as essential in enabling
agents to reach agreements that respect the constrairgséehpy norms and organizations
(Ossowski, 2008). However negotiation is insufficient teercall collective reasoning prob-
lems. The most notable difference between negotiation ggdegation is in the number
of information exchanges between the agents before grougeod is obtained. Negotiation
procedures presume a potentially unspecified number ofaeges. Aggregation requires
that the agents submit their preferences, choices or judtgneorrespondingly, only once to
an agent or service which aggregates them.

There are contexts in which the agents cannot or will not cdntemumerous exchanges
of opinions. Agent teams that operate in uncertain envimms) such as robots conducting
rescue missions, cannot afford the time to negotiate abtat ¥0 do since their options

can change while they are still negotiating on which optmihoose. A hierarchical group

is a group in which there is one agent who responsible for ntpgroup decisions. This

agent often needs to consider the opinions of other groupbreesrto reach that decision.
In hierarchical groups, aggregation is sometimes a bepigoach than negotiation since the
agents that do not make the decision can be unwilling togipstie in negotiation.

A special case of a hierarchical group is an agent that neeatsquire information about the
environment, by considering the opinions on other agentmsier a robot that does not
have a microphone. It needs to determine whether an alarmiis @ building and whether

the alarm being on implies the need to vacate the premiséer@®it other robots may report
different information on these two counts, or even haveedifit opinions on whether the
building has to be vacated. Our robot can aggregate thevexteiformation to determine

what to do and what to believe.

The improvement of information and communication techgial systems (ICT systems)
depends on the evaluation of the users. The users providedek that is used to modify
certain system’s features, such as for example resiliendelapendability. The feedback of
the user can be different regarding the same feature. Theaefengineers need to analyze
the user data and determine which features to modify and ichadirection to modify them.
The user feedback is a valuable commodity. A lot of effort baen spent on the technical
support of eliciting opinionsi.e., voting. Technical means are used to resolve issues such
as guarantee of privacy, eliminating possibilities forrcé@n and security. However, once
the information is obtained, engineers cannot expect tieusers will negotiate it among
each other and agree on which features they like to see iragrovhe users together with
the producers form a hierarchical group. It is difficult taride a collective consent from
a multiple feedback without a formal and automatized meth8dch methods are needed
even when a standardized input on a set of qualifiers is uselittothe information because
certain features depend on others.

Prediction markets, also known as “event futures” and ‘fimfation markets” are markets in
which agents trade contracts with payoff that depend on owkrfuture events. The goal
of designing prediction markets is to make accurate fotecahis is done by aligning the
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experts’ incentives with the elicitation of informationdiby aggregating their opinions. The
agents that make predictions are myopic, have fixed belbefatahe value of a contract, and
are risk neutral. They have a fixed, finite budget and pa#teipxactly once, by acting in the
market and then exiting, see for instar.ce (Othman and SémgR610). When his prediction
is confirmed, an agent is rewarded with increased weightopreidiction, and punished with
reduced weight when his predictions are wrong. At each $tefiarecast of the agents on a
set of market prices needs to be aggregated. This procesgusigial and tied to real world
events. The agents are presumed to be selfish, so negotsatiohan option.

In negotiation, the produced consent depends not only ornnfleemation the individual
agents have but also on the negotiation skill of particutgnas. When the group is het-
erogeneous, the input from “weaker” agents will be margreal. Consensus groups are
groups in which there is no one agent responsible for makiaglecision. An example of a
decision-making in a consensual group is the establisHiggoup mental attitudes, such as
beliefs and intentions. In multiagent systems, it is uguaken that a group has an attitude if
every member of the group individually has the same attjtbdehis is not the only way to
model collective attitudes (Dunin-Keplicz and Verbrug2@10, Chapter 3). How collective
attitudes are formed is studied in social epistemology.ig@pistemology offers an alter-
native definition of collective attitudes: a group has aituate if the group members agree
to have that attitude, see for instance (Gilbert, 2009) s Thcalled thenon-summative ap-
proachto collective attitudes and it is more flexible in allowinggps to act together, as they
do not need to be equally minded to have joint attitudes.

The aim of this thesis is to explore the possibilities of gssocial choice procedures as
method for reaching collectively binding decisions in magent systems.

1.2 Research Question

The research question pursued in this thesis is the follgwin

How can judgment aggregation operators be designed anctestifor use in
multi-agent systems?

The social choice rule used to combine individual opinimages or judgments correspond-
ingly, can be seen as a type of a norm. The social choice ruéstiblished before the
opinions, judgments or votes, are elicited. This is neagssace one can design a rule that
produces a desired outcome from an individual input. Faaimse, in presidential elections,
a parliament or other authority before the elections setsule according to which the presi-
dentis elected. A rule is chosen to best serve the purposies obntext in which itis applied.
This is why the challenge in using social choice to obtairugroonsents automatically is in
the selection of adequate rules for multiagent contexts.

We enumerated three social choice disciplines developidgtudying methods for generat-
ing collectively binding decisions: voting, preferencgeggation and judgment aggregation.
Why focus on judgment aggregation? Voting and preferengeeagtion are very similar,

they both aggregate agents’ preferences over a set of gptibting rules produce an option

that is the most preferredg., a winner or alternatively a set of winners, while preferenc
aggregation rules produce a collective preference orderthe set of options. The problem
of aggregating judgments only started attracting conalalerattention in the last ten years,
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Figure 1.2: Bringing social choice theory with multi-agegstems closer.

since (List and Pettit, 2002; List and Puppe, 2004) showatjjtligment aggregation is gen-

eral in the sense that it subsumes voting theory and preferaggregation (List and Polak,

2010). The novelty and the generality of judgment aggregas the reason we have chosen
it among the aggregation theories of social choice.

The thesis research question is tackled by considering guk-problems:

1. Designing judgment aggregation rules.
2. Classifying judgment aggregation rules by propertiey satisfy.

3. Pairing aggregation contexts with adequate rules.

Figure 1.2 illustrates symbolically the roles that these-ptoblems have in answering the
research question. We design operators for aggregatiggijadts and we use them in group
decision problems that occur in multiagent systems. Thpent@s of the operators and the
properties of the group decision problems are used to paingih the other.

Voting has been formally studied since the seminal works afd@ and Condorcet in the
eighteenth century. Judgment aggregation is resent whapaed to voting. The problem
of aggregating judgments was observed by (Kornhauser amel 'SH86), but it has its pre-
cursors in the works of (Gilbaud, 1966; Wilson, 1975) endiiRstein and Fishburn, 1986),
see (List and Polak, 2010) for a detailed historical oveméad comparison. The interest
in voting theory is caused by the need to conduct democrtatiens. Therefore, it was of

interest to develop dozens of specific voting rules over #ery. The interest in judgment
aggregation was sparked when it was shown that it applieotdems that are different than
the ones studied in voting theory. The majority of the worludgment aggregation is de-
voted to studying impossibility results in the style of therwin preference aggregation by
Arrow, see (Arrow, 19€3) and (List and Puppe, 2009). A smathber of specific rules for

aggregating judgments have been proposed, however thidement of specific aggregation
rules is still widely unexplored.

It is different whether a social choice method, for instanating, is applied in a democratic
election or for the purpose of reaching automated consér difference is in the frequency
of the process and the impact it has on the agents that useisertt produced by it. The
voting in elections occurs infrequently, but the impacthaf tesults is enduring. In general,
people only vote for issues that are critical. In computeicand multiagent contexts the
situation is reversed. The need for consent is frequenthiauimpact of the consent is low.
If a group observes it is doing something wrong, it can reev&ticiting information from an

artificial agent is much more feasible than organizing matielections. This is why desirable
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properties for rules used in human social choice contertsat necessarily desirable for the
rules used in multiagent systems. For instance, the inaenfian agent to manipulate the
aggregation process to obtain a desirable outcome is asig ia elections. However, when
the impact of the consent is low, then it can be expected Hetricentives to manipulate
are also low. There are many properties of rules studied iimgdheory that ensure that
the consent is desirable with respect to the individual infgome of these properties are
also desirable for judgment aggregation rules and need ttefieed in terms of judgment
aggregation rules. This is the core of the second sub-pmable

To recommend a judgment aggregation rule for a multiagesteays problem one needs to
pair the properties of the rule with the characteristichefiroblem. There are many contexts
that can be specified. One general approach is to look inttyieeof group that needs to use
the decision-making procedure. In the broadest sense ofdebse the collectively binding
decisions apply to, we can distinguish between two typesafps: a hierarchical group and
a consensual group. In hierarchical groups there is onet tig@inis responsible for making
the decision for the group by considering the opinions ofglep members. In consensual
groups, no one responsible agent exists. The group de@rienges or is proposed by any of
the agents. In the case of hierarchical groups, the dedisiompply only to the agent who is
responsible to make it, only to the agents who contribut@pieions, or to all agents within
some institution. In consensual groups, all the decisiokersaare the decision “targets”. We
consider consent reaching contexts in hierarchical andermual groups and we give one
example of group decision-making procedures based on jadgaggregation for each of
these contexts.

Within the scope of this theses, we consider only the casenwheagents involved do not
behave strategically, in both the hierarchical and consareontext. Therefore here we do
not define nor study vulnerability to manipulation of thedttuced rules or consent reaching
models. Both the examples we give involve groups that cadpén pursuing a group goal.
This implies that the groups, in addition to reaching cdil@ty binding decisions, also need
to form joint plans and to communicate with each other. We dbconsider specifics of
planning and inter-agent communication. We assume thaethetivities are possible and
do not hamper the judgment aggregation based consent nggmiticedures we propose. We
also do not consider group learning, although we acknovdédgelevance, particularly in-
group adaptation, which we do consider. In the context ofanéhical groups, the agents
are bound to acknowledge, conform and act according to tapgilecisions by the context
in which the decision is made. For instance, all members afistitution are bound by the
decisions of the president of the institution. In the cohtéconsensual groups, the fact that
the group decision is binding needs to be additionally esged. This is the reason why we
also design and study group commitment strategies in oumpba

Let us elaborate each of the sub-problems, and how go ablvingthem, in more detail.

1.2.1 Designing judgment aggregation rules

In this section we consider the problem of designing judgraggregation rules. A judgment
aggregation problem is specified by agendaand a set of agents. An agenda is a set of
logically related issues, usually referred topspositions It is common to represent the
agenda issues and the relations that hold between them frogitional logic. Each agent
expresses an acceptance or rejection regarding indivighoglositions in the agenda. The
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expressed acceptance or rejection of an issue is caljledgment

An intuitive approach to aggregating the judgments is tos@er how many agents support
each truth-value for each of the issues and adhere to thefitile majority. We consider the

concept of majority and the different ways it can be used tstroict judgment aggregation
rules.

The concept of majority in judgment aggregation

Example 1.2.1. Consider four agentéRed Blue GreenOrangeg and an agenda of four is-
sues: a, b, c and d. The relations are such that d can be acdé@paed only if a and either

b or c are accepted, namefg ~ (b v ¢)) « d. Table 1.1 represents a possible judgment ag-
gregation problem. The- entry denotes an accepted proposition and-thentry, a rejected
one. The collection of all judgments received from the agisntalleda profile which is the
white panel in Table 1.1.

AgentgAgenda

abcd

Red -+t -
Blue +-- -
Green |++ - +
Orange |+ - - -

Table 1.1: An example of a judgment aggregation problem.

Itis common to require completeness, namely that each &ifbier expresses an acceptance
or rejection for each issue. Each agent is constrained byldbéeal relations, in the sense
that the combination of issues he accepts or rejects musfys#tese constraints.

Each of the judgment sets of the agents in Table 1.1 confartigtiogic relations between
the issues. For instance, Red rejects a and also rejects itk atcepting both b and c. If Red
were to accept d in addition to accepting b and c, while réjerh, his judgment set would
have been inconsistent.

The first problem is to determine how to define majority in jodgnt aggregation. Sets of
judgments are particular types of information. On one haisétds a unit of information
since it represents the opinions of one agent on one agendathedother hand, the set
contains judgments that can be considered to be units afzton.

Let us consider the judgment set as an atomic information unithis case, if there is a
judgment set that is supported by more agents than any atbgnijent set, then this is a
majoritarian judgment set. Let us ca#it-majoritarianthe set of judgment that is selected, as
a whole set, by the largest number of agents, with respebetpitofile. Consider Table 1.1
as an example. Blue and Orange both accept the same setthéhdets of Red and Green
are different from the Blue-Orange one and from each othens€quently the Blue-Orange
set is the set-majoritarian set. The set-majoritarianijueigt set does not always exist.

Let us consider the judgments to be an atomic unit of infoimnmatIn this case, if there is
a judgment set in which each judgment is supported by a strégority of agents, then this
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set can be considered a majoritarian judgment set. Let usssak-majoritariarthe set of
judgments that is determined by counting the majority judgta on each issue. In which
order should this issue-by-issue aggregation be done?idasrgable 1.1 as an example. If
applied to all issues at once the result of this exercise mcarptance od, a rejection ofc
andd and no decision oh. If b is accepted then the collective set violates the constrairts

a majority does not exist. If is rejected then the set is consistent with the issue relgtio
but there is no reason fdrto be rejected? The problem is more general: due to the logic
relations among the issues, for every rule that aggreghéepitigments issue-by-issue can
produce, there exists some profile for which the rule prodagedgment set that violates the
constraints.

Some agendas can be conceptually partitioned to a set oiggend a set of conclusions.
A conclusion is typically an issue whose acceptance can Haa#el from the acceptances
and rejections of the premises. For example, let us intetipeeagenda issues as follows:

a avictim is trapped in a location that is difficult to access
b the victim is conscious
¢ the victim is in a face-up position

d save the victim using a rescue harness

The issues, b andc are premises. In this case they are the necessary and suficraitions
under which certain actiothwill be taken. Apremise-based proceduigthe aggregation rule
that calculates the majority for each premise and deduceghwhthe conclusion is accepted
or rejected based on the issue relations.

The premise-based procedure is an appealing alternatithe tssue-by-issue aggregation,
however there are some problems with using it. The probletim the premise-based proce-
dure is that:

a) not every agenda can be conceptually partitioned inemjses and conclusions, and

b) even if the partitioning is possible, the conclusion i$ deducible from the premises in
every set of judgment sets.

Consider the profile in Table 1.1. Using the premise-basgdeggtion rule we obtain that
is accepted and rejected. We get no decision fbrand cannot deduce the decision for the
conclusiond.

Using majority and minimization to design rules

When a consensual group needs to reach decisions, theseodeahould reflect the “will
of the majority” for them to be acceptable to the group. Thees one would like to have
rules that select the issue-majoritarian or the set-ntajiain judgment. The problem is that
neither the set-majoritarian nor the issue-majoritareets exist for every profile, but every
set-majoritarian judgment set is an issue-majoritarialgjuent set and the reverse does not
hold. We can have the second-best thing: a rule that selezissue-majoritarian judgment
set whenever such a set is consistent with the constraints.

The appeal of the majoritarian sets is that, when selectedlxtive consent, theyinimize
the discrepancy between the collective consent and theeelioformation. It is this minimal
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discrepancy that is desirable for consensual groups ande&vit to design judgment aggrega-
tion rules. We calmajority-consistenany profile for which an issue-majoritarian judgment
set exists. What if we change the profile in some minimal wathabit becomes majority-
consistent and then select its issue-majoritarian judgreetnas the collective judgment set
for the original profile? There are many ways to minimallyeala profile. For example,
this can be done by removing judgments on an issue, indivjddgments, judgments that
belonging to some agent(s), by repeating judgments etcrelt¢en be, as many rules as
there are minimal alterations to a profile that can be defihetleach of these rules will by
construction always select the issue-majoritarian setwvgueh a set exists for the starting,
unaltered, profile.

There is a third way to use majority, we can treat the judgreets as units that are qualified
by the individual judgments they consist of. This allowsasi€éfine a measure of similarity,
or distance between two judgment sets that is finer grained than [eqlifiérent]. The
majority concept here corresponds to most similar. Whasdbmean that a judgment is
most similar to a profile of judgments?

The similarity between sets can be quantified based on théauamd the type of judgments
on which the two sets differ. For instance, the sets of RedRlud differ on three judg-
ments, and so do the sets of Red and Green. However Red and @ffee on different
three judgments. Red and Blue give the same judgment for isia¢ conclusion under the
interpretation we gave. Hence, the set of Red can be coesigrore similar to the set of
Blue than to the set of Green. Given the context of the aggimgproblem many similarity
measures can be specified.

Numeric distances can be aggregated by using an arithmggiegation function. The col-
lective consent is the set that is closest to all the indi@ifludgment sets. The interpretation
of how close is a judgment set to a profile of judgments is se¢hbyarithmetic aggregation
function. Table 1.2 illustrates an aggregation of distangsing the sum as an arithmetic
aggregator and the number of different judgments as a sitgilaeasure between two judg-
ment sets.

a b c¢ d [|RedBlue Green Orangé’
- - - - 2 1 3 1 7
- -+ - 1 2 4 2 9
-+ - - 1 2 2 2 7
-+ o+ - 0 3 3 3 9
+ - - - 3 0 2 0 5
+ - + + |3 2 2 2 9
+ + - + |3 2 0 2 7
+ + + + |2 3 1 3 9

Table 1.2: Quantifying the similarities between judgmestssand aggregating them using
the arithmetic aggregator sum.

We consider not only the distance from each of the contribsgéds to the profile, but also the
distances from any judgment set that satisfies the issu@ieddo the profile. In the left hand-
side of Table 1.2, all the acceptable judgment sets, forgleada and constraints in Example
1.2.1, are enlisted. The numbers under each agent’s naeraythber indicates on how many
judgments that agent’s judgment set differs from the judgnset in the corresponding row.
It can be observed from the calculations in the figure, in thitherst right hand-side column,
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the set that is closest to all the agents sets is the one lootad by Blue and Orange.

This approach of aggregating the distances between judgsets) and selecting the set that
is at a minimal aggregated distance from the profile, haadyrbeen used to design judgment
aggregation rules by (Pigozzi, 2006). Distance-basedmeg aggregation rules, unlike the
rules based on minimization, do not always select the issajritarian judgment set when

such exists. However, they are interesting rules to con&idédierarchical groups.

In consensual groups it makes sense to consider that alisagefgments are of equal weight

and importance. If Red, Blue, Green and Orange are membersofisensual group then

we need to aggregate their judgments in such a way that eatttewf has equal bearing

on the produced consent. In hierarchical groups, the abpahtfgregates the judgments is
interested in using the best judgments. What does “bestjedts” means? If the agents in

the group have different areas and levels of expertise,ithemf advantage to the group to

aggregate by considering adequate different weights féerdnt judgments. Lets interpret

the agenda issues as follows:

a software upgrades are affordable
b software does not perform according to expectations
¢ user satisfaction is low

d recommend modification of the software

If agent Red is an expertin finance, then it is better for tloeigito capitalize on his expertise
and assign a high weight for his judgmentanin the presence of weights, the aggregation
rule should prioritize higher weights on a judgment and hetrtumber of agents that support
it. Furthermore, in the presence of experts, the requirénien all agents express either
acceptance or rejection for each agenda issue is rendemumgéess. If an agent is not an
expert regarding a particular issue, it is unfeasible toeekpnd potentially undesirable to
request his judgment on this issue. Hence, the agent tha¢gatgs the judgments needs to
consider judgment weights, but also rules that can handleniplete individual judgment
sets.

Weighted rules that aggregate incomplete judgment sets hat’been proposed in judg-
ment aggregation theory. However, we can extend the disthased judgment aggregation
rules to obtain such rules. Distance-based aggregaties arlginate from the theory of be-
lief merging; see for instance the works of (Revesz, 19951i&zny and Pino-Pérez, 1999;
Konieczny et al., 2004; Condotta et al., 2008). Within Hetrerging, belief bases are ag-
gregated. In this area of research weights associated githts are considered, as well as
multiple values for the truth-value of the beliefs. We buildither on this work in belief
merging to construct weighted distance-based rules.

1.2.2 Pairing aggregation contexts with adequate rules

Outside of the domain of law, see (Nash, 2008ry little is known about contexts in which
judgment aggregation is, or can be, applied. The contextoon$ensual and hierarchical

1Different Nash from the game theory one!
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Figure 1.3: Comparing the structure of the rules considarate literature and those we
propose in the thesis.

groups are very large and can be further categorized. Edzltamutext produces its own
desirable properties that a judgment rule applied in it &heatisfy.

Within voting contexts, a voting rule is selected based anploperties it satisfies. For
instance, the plurality rule, in which each agent choosescandidate and the candidate with
the most votes wins, is used when the number of agents is nangérlthen the number of
candidates and when the agents cannot be expected to sperd trhe constructing a more
complex vote such a total preference order.

Many properties have been proposed for voting rules. Theggepties are both of structural
and relational nature. Structural properties describatteguate rule based on the structure
of the votes, or the desired structure of the winner. Questamnsidered are such as, do we
need strictly one winner or is it acceptable that more thanaamdidate is selected as winner.
The relational properties describe the desirable relatlmtween the profile of individual
votes and the winner. For instance, selecting as winnerahdidate that is preferred by a
majority of agents when compared with any other candidaeétational property called the
Condorcet winner property

In judgment aggregation theory some structural and relatiproperties are proposed and
studied, but not nearly as many as in voting theory. In ordédyet able to pair aggregation
contexts with aggregation rules we need to study the ruledesign from the aspect of these
properties. We also need to enlarge the set of judgment gaiipe rule properties.

The rules we propose are of different structure than the opasidered in the judgment
aggregation literature when defining relational and stmattproperties. Exceptions are the
distance-based rules of (Pigozzi, 2006), for which prapstiave not been extensively stud-
ied. Figure 1.3 illustrates the difference between thecstings of our rules and those in the
literature. The rules for which the properties are definedpartial functions that associate
to each profile, of complete judgment sets, one completemgaig set. The rules we define
are functions that associate to each profile, a selectiongsiply incomplete judgment sets.

Since the output from the judgment aggregation rule is no¢ssarily a unique judgment set,
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the relational rules, in general, cannot be directly apii@our rules. Therefore we need to
construct new corresponding definitions of these propertie

To enlarge the set of interesting judgment aggregationprdeerties, primarily of the rela-
tional kind, we consider known properties in voting theowy iihspiration. We also define
properties only of interest in judgment aggregation, refatl properties that consider the
relations between the agenda issues, the profile and thetesbleollective judgment set(s).

1.2.3 Applying judgment aggregation rules in MAS

We consider the two general categories of aggregation x@ased on the types of groups
that need to make collectively binding decisions. For edthese groups we give an example
in which judgment aggregation can be used.

A hierarchical group example

For the example of a hierarchical group consent reachinpleno we look for problems
in which negotiation cannot be used. We consider a hiereateam that needs to solve
problems in a changing environment.

A decision theoretic approach requires that the group &Btpossible options, calculates
the expected utilities for each and chooses the option t#hsthe maximal expected utility.
When agents are under severe resource restrictions thdymesly on some “approximate”
method to make group decisions. However, just as agents tdoane the time to negotiate
on what the state of the world is, they also do not have the tinamlist and consider all the
possible options.

Groups of people, such as teams of firefighters or soldieratitefields, do manage to reach
consents in uncertain environments despite the resoumstraints. We begin by asking
if these human decision-making methods can be extendeetarbhical teams of artificial
agents. We studied how human teams make decisions, withutipege of finding a simple
model that can be used as a base. Our search yieldeddbgnition-primed decisio(RPD)
model (Klein et al., 2010).

The RPD model describes how a commander of a firefighting tesoides what to do when
faced with a familiar problem. This commander does not amrsihe opinions of the rest
of the firefighters when making decisions. According to théDRRodel, the commander
matches the problem with a typical solution and verifieséf gblution is applicable by con-
sidering if a particular set of cues are present and/orfgatisFor instance, when faced with
a burning house a commander first considers the option offds team extinguish the fire.
This option is adequate if the building is empty of peoplestfiue) and there are surrounding
buildings that are in danger of catching fire themselvesofsgcue). Since the commander
is on site of the burning building he can decide for himseth# cues are present or not. The
commander considers the typical solutions one by one uafinds an adequate solution.

We consider a team in which the commander is not on the siteerthe problemis; there are
artificial agents there. For such a team we lift the RPD maalaltecognition-primed group
decision model (RPgD). The commander determines whicleigyhical solution and which
combination of cues verify its adequacy, but it is the afifiagents that judge if the cues are
present or not. The commander uses judgment aggregatioake anfinal decision whether
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the solution is adequate and for which reasons, or cuesssi#tision taken. For the RPgD
model we also consider how the group consents on the cuesaasel to reconsider group
decisions in light of new information.

A consensual group example

As an example of using judgment aggregation for reachinge&otin a consensual group, we
consider the problem of group intentions. A commonly aceggtaradigm is that an agent
intends to do something if he chooses it as his goal and is dttethio bringing it about
(Cohen and Levesaue, 1990). But what does it mean for a goompeind something?

Although the problem of what group intentions are, and hogytban be represented and
generated, has been studied since the nineties. Howeggnaposed solutions are all based
on the same underlying social epistemic theory, that a ghat@pds to do something if and
only if all the agents in the group intend individually to ts&me thing and are committed to
doing it. This is the so callesummative viewn what a group attitude is.

The summative group intentions are easy to establish. Hexvellowing a group to act only
when all the agents in the group are of the same mind state pdseitation on the group’s
construction and its scope of abilities. It is unfeasibk gngroup with a lot of members that
are heterogeneous, for instance some being robots and stiféware agents, would be able
to align its intentions.

An alternative to the summative view is the so calteh-summative viewf group attitudes.
According to this view, a group intends to do something if andly if the members of the
groupagreeto do that thing and are jointly committed to doing it. We doust a model
of group intentions based on the non-summative view. Wegseja procedure for reaching
group intentions that relies on a judgment aggregation fadlgeaching agreements. The
group agrees on what goals to pursue, but also on the reamowkith to pursue that goal.
We use these reasons to construct strategies for joint comani, but also strategies for
revising the intentions of the group.

1.3 Interdisciplinarity and methodology

Answering the research question of the thesis calls fortndrsciplinary study among com-

putational social choice, judgment aggregation and ngétia systems. Both computational
social choice and judgment aggregation are new discipimelsno textbook or established
approach of study exists for either. They, and the field oftiagént systems, are interdis-
ciplinary areas of research in their own right. As a restié &rea of study conducted for
this thesis spans over social choice theory, social ep@tagy, experimental psychology and
decision making theory in addition to the computer sciemeasiof agent cooperation, agent
reasoning, agent modeling and complexity theory.

The sub-problems of designing rules, studying their prigeeand using them in multiagent
systems problems, were not answered sequentially, bugrrattparallel, starting with the
search for problems of reaching collectively binding diecis in multiagent systems.

Our method for tackling the problem of applying judgment i@ggtion was to search for
both consensual and hierarchical group contexts in whidgrient aggregation is a better
approach than negotiation.
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Negotiation as an agreement reaching technology is diffioudpply in contexts where the
agent environment is changing and where the agents arehheawistrained with respect
to the time they have to reach consents. Such contexts aatlyuswodeled using a Partially
Observable Markov Decision Process (POMDP) (Monahan, 1 $8&&vever modeling group
decision-making as a POMDP often cannot be solved effigieridlecision-making is the
process of choosing one option from a set of possible optidmational agent chooses the
option that maximizes his expected utility. Simon (195&saribed that a resource bound
rational agent should not do decision-making at all, simste the alternative options and
calculating the expected utilities is costly. Instead, gerd shouldatisfice namely he should
choose the first option he finds that satisfies a list of sufficeiteria. Satisficing is an
appealing approach for groups of agents, however Simonogszba concept applied to a
single agent and not a model for a group.

Human teams of agents such as firefighters, army personalaitlis emergency rescue
teams face uncertain environments and time-constraingdides. These are also groups in
which each agent can be expected to be more reliable on seoesishan on others. For
instance, a firefighter inside a burning house may be abledergé better if there are victims
that need to be rescued than a firefighter that is outside theehdn these teams there is a
hierarchical chain of command. The methodology we adopt Isdk for decision-making
models, constructed by means of experimental psycholbgy,describe the reasoning of
firefighters and various other emergency rescue teams. Tgratise models should be ap-
plicable, or modifiable for application to artificial agents

Judgment aggregation is an adequate method for consemsugbgwhen they need to reach
consents on several, logically related, issues concuyreAnh example of a set of related

issues is the one consisting of an agent’s intention anddiisfb that support and justify his

intention. According to (Cohen and Levesque, 1.990), an tgjiertention is the goal he had

chosen to pursue and is committed to pursuing. An agentieelud a goal is constrained by

his beliefs and knowledge of the world. Groups also need terdene their intentions based
on what they as a group hold to be true about the world. Belgdals and intentions are

calledmental attitudes

How collective attitudes are formed and modeled is studyezbicial epistemology (Goldman,
1987). The above approach to determining the attitudes f@pgs often referred to aaim-
mative(Meijers, 2002). An alternative is modeling the collectatétudes such as intentions
in thenon-summativeense (Gilbert, 2009). According to this approach, a gragepartic-
ular intention if the agentagreethat this is what their intention is. List (2005) proposestth
judgment aggregation is used as a formal approach to thgrddirout institutions in social
epistemology. Our methodology is to propose a non-summatiodel based on judgment
aggregation that generates collective intentions froevasit individual beliefs and goals.

We need to develop two categories of rules, one for conseaswhone for hierarchical
groups. As we observed in the examples of the previous sectitherence to majority, and
in general all group decisions that minimize the discreganmith the individual opinions,
are the desirable properties for consensual groups. Imgdtieory many rules have been
proposed based on the concept of minimization: Kemeny, Badgranked pairs, etc., see
(Brams and Fishburr., 2004) for an overview. We also usemigztion to develop judgment
aggregation rules that are majority adherent.

In hierarchical groups, one agent that aggregates the irputthe rest of the group members
makes the group decision. This agent does not need to beroedceith having the group
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decision adherent to the majority. Instead he needs to eseattious strengths and compe-
tences of the group members, by considering some indivjddgments as very relevant and
others possibly as useless. The rules suitable for a hiecalgroup need to be more general
then those for the consensual groups, in the sense thatrtlleseshould aggregate the indi-
vidual judgments by considering weights assigned to thgruehts. This category of rules
is aimed for the context of uncertain environments. Therefm addition to the structural
and relational properties, we also need to analyze the aitpitheoretic properties of these
rules.

1.4 Whatis new and what is old

There exists no unique, standard framework of judgmenteggdion. In general, one can
distinguish between the logic-based frameworks that wet@duced by (List and Pettit,
2002) and generalized by (Dietrich, 2007), and abstractgambaaic frameworks introduced
by (Wilson, 1975) and extended by (Rubinstein and Fishbi®86). Given a logic-based
framework, one can construct a corresponding abstracefrark. However, for one abstract
framework, there are many logic-based frameworks that eacobstructec! (List and Poak,
2010).

The main differences among frameworks are based on how #redagssues, the relations
among them and the judgments are defined. Some authors, suétaay and van Hees,
2006; Dietrich, 20C7; Dietrich and List, 2007b; Dietrichdaddongin, 2010; Endriss et al.,
2010a), define the agenda issues as not necessarily ataimmiglés of some logic, with the
relations among the agenda issues incorporated in thesiiseimselves. An example of such
agenda, using propositional logic and the atqmg,r} is {p, p — g,r — p}. Other authors,
such as (Pigozzi, 2006; Miller, 2008), restrict themseteestomic agendas and additionally
specify a set of constraints that capture the logic relatimmong the issues. An example
of such an agenda is the “doctrinal paradox” originatingrfriiornhauser and Sager, 1993;
Chapman, 1998). An instance of the “doctrinal paradox” imgenda: there was a contract
(p), assuming there was a contract there is a breach of co(jaand the defendant s liable
for a breach of contract). The constraintigp A q) < Q.

Authors like (Dietrich, 2007; Dietrich and Mongin, 201.0; diiss et al., 2010a) require that
the agenda is closed under negation, namely thétig an issue in the agenda, then so is
—¢. These frameworks define a judgment to be a non-empty subttet op, —¢ } set. Au-
thors such as (Pauly and van Fees, 2006; Pigozzi, 2006;Mifld Osherson, 2009) define a
judgment to be a truth valuation of an agenda element. Pawlwan Hee:s (2006) consider
multi-valued truth assignments while (Pigozzi, 2006; Bfiland Osherson, 2009) consider
strictly binary values. Frameworks exist that impose fertbonstraints on the agenda set,
such as for instance that it is closed under deduction. Tpessibly are contexts in which
one framework version is better than another, but these hatvieeen studied or specified in
the literature.

We define a general framework for judgment aggregation irclvktie agenda can contain
non-atomic issues, but also additional constrains oveishiges can be specified. In this
framework, for binary and three-valued judgments, we caress the judgment sets in a
dual fashion: as sets of propositions and as sequencestoftrlues. We use the logic-based
framework of (Dietrich and List, 2007h; Dietrich and Mong2010; Endriss et al., 2010a)
for defining the rules based on minimization, but for the sud@med for hierarchical groups
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we need the general framework.

The few judgment aggregation rules have been proposed litehaure, most of which were

not compared among each other. Comparing two-judgmentggtion rules means deter-
mining the relation between the judgments sets producedibly eule. Depending on the
structural properties of the collective judgment sets poedl, we can define different rela-
tions between rules. By comparing rules we primarily arer@sgted in establishing whether
two given rules select the same collective judgments oruaty sets for all profiles. We are
also interested in which rule selects more judgments oty sets for the same profile.

The first collection of judgment aggregation rules, as welttee relations that hold among
them and existing rules, were developed as a joint effort Wérdme Lang, Gabriella Pigozzi
and Leendert van der Torre. Part of this work was publishetiénjoint paper (Lang et al.,
2011). The fullwork is a manuscript in preparation for a jualrsubmission. The complexity-
theoretic analysis of the second category of rules was & édiiart with Wojciech Jamroga.
This analysis, together with the rules themselves, and alysis of the relationship between
these rules and known judgment aggregation rules, wassghadlias (Slavkovik and Jamroga,
2011). An extended version of this paper, including soméefdroperties of the rules, was
submitted to AAMAS 2012. Other published work related testbategory of rules and the
properties they satisfy, is the joint paper with Gabrieligad2zi and Leendert van der Torre
(Pigozzi et al., 2009).

This thesis is one of the first efforts to develop and impletsenial choice rules specifically
for use in multiagent systems. The difficulty in threadings tlirection of computational
social choice lies first in the lack of unified formalisms imgiment aggregation. Judgment
aggregation properties are defined for a particular coostruof judgment aggregation rules
that does not allow for many rules to be specified, see Figie The reputation of social
choice theory is that of the theory of impossibility. As igisiful and important as the im-
possibility results are, they do not render the use of sarhalce rules neither trivial nor
impossible.

Algorithmic approaches to applying social choice rulesrare, even in work of computa-
tional social choice. Two examples of models for reachirgugrconsent based on judgment
aggregation have been developed here, which show how gangent based on judgment
aggregation can be implemented. The first example we presartonsent-reaching model
for hierarchical groups. It models reaching consent in tlageenvironments. This model
was constructed by lifting a known cognitive model from adisidual agent to a team level.
This work is an extension of a paper that was published jpimith Guido Boella, Gabriella
Pigozzi, and Leendert van der Torre (Boella et al., 2011b).

The second example we present is a consent reaching modelfeensual groups. It models
reaching collective intentions in the non-summative dapéstemic sense. This modelis de-
veloped based on the concepts proposed in (Gilbert, 198%, 2007, 2009). The existence
of models such as this has been foreseen in (Dunin-Keplidx/arbrugge, 2010, Section
3.9). The model of collective intentions has been publish&the joint article with Guido
Boella, Gabriella Pigozzi, and Leendert van der Torre, (B al., 2011a).

Additional work published work related to this thesis, bot mcluded since it falls outside
of the outlined scope of the thesis, is (Pigozzi et al., 2(M)3arossi et &l., 2009).
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1.5 Thesis layout

The thesis is structured as follows. In Chapter 2 the rulsgdan minimization are pre-

sented, as well as the relationships between these rulegbamdles that already exist in the
judgment aggregation literature. This chapter includet extends the Sections one, two,
three, four, five and seven of (Lang et al., 2011).

In Chapter 3 we present the family of weighted rules for tgrpadgments based on dis-
tances as well as specific examples of family members. Mdsteske rules are based on the
semantic belief merging operators presented in (Konieeray., 2004), but some new rules
are introduced as well. The novelty from the belief merginlgs is in the introduction of
weights for the judgments. We also give a complexity-theoenalysis of the rule class as a
whole. Portions of this chapter were publishec in (Slavkarid Jamroga, 2011).

In Chapter 4 we introduce and study properties for judgmeggtegation rules. This chapter
includes the Section six ¢f (Lang et al., 2011).

Chapters 5 and 6 present the examples of models for hiecatcimnd consensual groups
correspondingly. Chaptar 6 predominantly consists of [Ba al., 2011a), while Chapter 5
is a considerably extended version of (Boella et al., 2011b)

In Chapte- 7 we give an overview of related work.

Chapter 3 contains a summary of the thesis and an overviewsolts. This chapter also
includes related work on implementation of judgment aggtiem on robots and a set of
directions for future work.
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Developing judgment aggregation
rules based on minimization

Abstract. Collectively binding decisions by consensual groups, fisstvin-
ners of democratic elections, need to adhere to the will®fhjority, or at least
minimize the discrepancy with the opinions held by a majooit the agents.
Many voting rules are based on minimization or maximizapanciples. Like-
wise, in the field of logic-based knowledge representatimhr@asoning, many
belief change or inconsistency handling operators makeofigainimization.
The aim of this chapter is to develop and study rules for jueigitaggrega-
tion based on minimization. We distinguish four familiesrafes. The rules
of the first family first compute the issue-majoritarian jutEnt set and then re-
store consistency to this set, when it is inconsistent,gusome minimal profile
change principle. The rules of the second family proceedsmdlar way but
take into account the strength of the majority on each is3hese of the third
family consist in restoring the consistency of the majoidta judgment by re-
moving or changing some individual judgments in a minimayw&inally, those
of the fourth family are based on some predefined distanceesst judgment
sets, and look for a consistent collective judgment miningzhe overall dis-
tance to the individual judgment sets. For each family weopse a few typical
rules. While most of these rules are new, a few ones corresforules that
have been defined in the literature. We study the inclusitatioaships between
these rules to show that they are distinct rules.

2.1 Introduction

In voting theory and in computational social choice, a ldogdy of work focuses on spe-
cific voting rules: how their winner sets compare to each mtieir social choice-theoretic
properties; the computational and communication compleiwinner determination; the
theoretical and experimental study of manipulability andteol; the amount of information
necessary to determine the outcomie; The focus on specific rules, or families of judgment
aggregation rules has been the topic of few papers. We gieeemiew of these rules.

e The premise-basegrocedure has been introduced in (Kornhauser and Saget) 199
under the name “issue-by-issue voting and studied in (IBre&ind Mongin, 2010;
Mongin, 2008). For this procedure, the agenda is assumed patiitioned into two

21



22 Chapter 2 Developing judgment aggregation rules based on mimization

subsetspremisesandconclusions The premises are logically independent. The indi-
viduals vote on the premises and the majority on each premissed to find the col-
lective outcome for that premise. From these collective@uies on the premises, the
collective conclusions are derived using either the ldg&lationships among, or some
external constraints regarding the agenda issues. Ontikelwdnd, in theonclusion-
based proceduteindividuals decide privately on the premises and expressigy
only their judgments on the conclusions.

e The more generadequentialprocedures (List, 20044a; Dietrich and L_ist, 2007k; Li,
2010) proceed this way: the elements of the agenda are @vadidequentially, fol-
lowing a fixed linear order over the agenda (correspondimgrfstance to temporal
precedence or to priority) and earlier decisions consteder ones. Collective consis-
tency is guaranteed by definition. Of course, in the genarsa cthe result depends on
the choice of the ordere. it is path-dependenPremise-based procedures are specific
instances of sequential procedures.

e Quota-basedules (Dietrich and List, 2007 0; Dietrich, 2010) are a clafsiles where
each proposition of the agenda is associated with a quotbthenproposition is ac-
cepted only if the proportion of individuals accepting itisove the quota. For exam-
ple, uniform rules take the same quota for all elements ofatjenda. The majority
rule is a special case of quota-based rules. In Dietrich asid(P007b) sequential
guota rules are also considered.

e Distance-basedules (Miller and Osherson, 2009; Pigozzi, 2006) assumedsgiined
distance between judgment sets and/or profiles and choas#lestive outcome the
consistent judgment sets which are closest (for some noficioseness) to the indi-
vidual judgments.

Even if a few families of judgment aggregation rules havenbg®posed and studied, still
the focus on the research is more on the search for impagsithieorems and axiomatic
characterizations of families of rules, which contrastgwoting theory, where voting rules
are defined and studiqubr se

In voting theory, quite a number of rules are based on somémization (or maximiza-
tion) process: for instancéemeny Dodgson Slater, ranked pairs maximinetc. (We
shall not recall the definition of all these voting rules; tleader can refer, for instance,
to (Brams and Fishburn., 2004) for a survey.) Minimizatismiso a common way of defin-
ing reasoning rules (such as belief revision operatorgnsistency handling procedures, or
nonmonotonic inference rules) in the community of logicdd knowledge representation
and reasoning: typically, one deals with inconsistencydnking for maximal consistent
subsets of an inconsistent knowledge base. Belief revisitam amounts to incorporating
a piece of information to a knowledge base while minimizing information loss from the
initial knowledge base. Similar minimization processesaimwork in reasoning about action,
belief update and belief merging.

In contrast, with the exception of distance-based rulesjmikation has rarely been consid-
ered for judgment aggregation. Our rules maximize the pouif a profile we wish to keep.
The way such maximization is defined depends on the speciéic Thus, the maximization
operated by our aggregation rules is equivalent to minimgitie portion of a profile we wish
to remove. In other words, we call our rules “based on minatidn”, but we could as well
say that our rules are based on maximization. Most of thesnuke introduce here are new,
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while a few of them correspond, up to some minor details, ttgjuoent aggregation rules
already proposed in the literature.

From the definitions of two rules, it is sometimes difficultietermine if those rules select the
same collective judgments for each profile, if the collesfjiwdgments selected by one rule
are always also selected by the other. Therefore, when piroga rule, we need to establish
theinclusion relationghat hold between the new rule and each of the rules alreagoped.
Not only is this analysis necessary to prove that the rulengalefininig is really new, but it
helps in selecting rules for a decision-making problem. Qles are such that they can select
several collective judgment sets for one profile. There amescontexts in which more is
better, and other contexts, particularly in multiagentayss require that a unique, or as little
as possible, judgment sets are selected.

This chapter is structured as follows. In Section 2.1.1 weduce the necessary definitions.
In Sectior 2.2 we present the four families of judgment agatien rules, give examples of

specific rules in each family and relate these new specifsitol similar rules in voting theory

and/or knowledge representation and reasoning. In Se2timwe analyze the inclusion

relationships between each pair of introduced rules. Ii@e2.4 we make our conclusions
and some directions for future work.

2.1.1 General definitions

Let Lprop be a propositional language built on a finite set of propwmsél symbolslq. Cn
denotes logical closur€n(S) = {a €L | S}= a}.

Definition 1 (Agendas, judgment sets, profiles)

e anagendas a finite setd = {¢1, —1,...,dm, —~Pm} Of formulae ofL prop, consisting
of pairs of propositiongp;, —¢;, where——¢; = ¢; and ———¢; = —¢;. A does not
contain tautologies nor contradictions. Tipee-agendal associated withA is A =
{¢1,...,0m}. Asubagendaf A is a subset of an agendathat also contains pairs of
propositionsp, —¢, where¢ € A.

e ajudgment setl overA is a subset ofl. A judgment set J isompleteif for every
pair {¢,—¢} < A, J contains eithetp or —¢. A judgment set J isonsistentf it is a
satisfiable set in terms of classical propositional IogimeTsetA(ﬁ) is the set of all
consistent non-empty judgment sets that can be constroetdd. The setd(A) is
the set of alcompleteand consistent judgment sets that can be constructeddver

e an nvoter profileover A is a collection P= (J1,...,Jdn) where eachJis a consistent
and complete judgment set.

We now define judgment aggregation rules. We V\ﬁtehortly forA(ﬁ) and® shortly for

®(A) to improve readability.

Definition 2 (Judgment aggregation rules)

e Adeterministic judgment aggregation rigea function I]ﬁ : ®" — ®. Namely, r]:ﬁ

associates with every profile £ {J;,...,Jy) a consistent and complete judgment set
f =(P).
nA
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e anirresolute judgment aggregation ruler judgment aggregation correspondeyise
a function If]ﬁ : ®"— P(A), associating with every profile P a nonempty set of con-

sistent, possibly incomplete, judgment s%tﬁEP).

Often in the judgment aggregation literature, a judgmemiregation rule is defined as a
function whose co-domain is the full séd,1}™, wherem is the agenda cardinality. The
requirement that the rule produces only consistent judgreets is additionally specified

as a property, calledonsistencyof the judgment aggregation function. Here we opted for
the definition that specifie® as a domain, as consistency is not a property that we can
compromise on while applying judgment aggregation in ragkint systems. This point will

be further clarified in Chapters 5 and 6.

Most of the time, when referring to judgment aggregatioaswle will keemp andA implicit
when they are clear from the contekg.,, fnﬁ (resp. Fn ﬁ) will be simply denoted as

(respectivelyF). Also, by a slight abuse of ianguageFif: (,...,dn), then we will write
f(J1,...,Jn) andF (Jy,...,Jn) instead off ((Jy,...,dny) andF ({J1,...,Jn)).

As in voting theory, a rule can be obtained from a correspnodesing a tie-breaking mech-
anism, such as a priority over judgment sets, or over agdntshis chapter we focus on
irresolute rules, unless we state the contrary.

There are two different views of aggregation rules: eithersee the output as a mere collec-
tion of consistent judgment sets, or we see it as a closeddbtjieory.

Definition 3 (Logical theoryTe (P)). Given ajudgment aggregation rule F, and a profile P,
we define the logical theory-TP) = (\{Cn(J) | Je F(P)}.

Definition 4 (Rule equivalence) Let F and F be two aggregation rules. F and’Fre
theory equivalentdenoted F=1 F’ if for every profile P we haverTP) = Tg/(P). F and F
are equal denoted F= F’, if for every profile P we have that(P) = F(P’).

Definition 5 (Rule inclusion) Let F and F be two aggregation rules. F iat least as dis-
criminantas F if for every profile P we havecT(P) < Tz (P). F and F areincomparablef
there exist two profiles P and Q such that(®) & Te/(P) and & (Q) & T/ (Q).

A formulaa is in Te(P) if and only if it can be inferred from every judgment sethriP).
Note thatTr (P) being the intersection of consistent closed logical tremiis itself a consis-
tent closed theory. Intuitivel\s is at least as discriminant & if, for every profileP, all
judgments included in every set(P) are necessarily included in every §&P).

Definition 6 (Majoritarian aggregation)Let ¢ € A. The issue-majority aggregation rule m
is a functionm ®" x {¢,—¢}"— {¢,—¢, T} defined as:

{ o iff #(ilp c 3} > 2
m(P¢) = { —¢ iff#{i[—~¢ €I} >3

& ift#{i|p € 3} = #i[—9 € I}
M(P) is a judgment set defined as(®) = {m(P,¢) | ¢ € A}.

M(P) is theissue-majoritarian judgment sassociated witt. Note thatV(P) is not neces-
sarily an element o, nor of A.

In the remainder of this chapter we call the B§P) the majoritarian set.
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Definition 7 (Majority-preservation) A profile P ismajority-consistenif M (P) e A. Ajudg-
ment aggregation rule F isnajority-preservingf, for every majority-consistent profile P,
F(P) = M(P).

If nis odd therM(P) is necessarily a complete judgment set.

Example 2.1.1. Consider the pre-agendé = {pAr,pAs,q,p A q,t} and a profile P of 17
voters, presented in Takle 2.1.

Voter§{ par, pas q paqQ t}
Jix6 + + + + +
J x4 + + - -4+
Jax 7 - -+ - -
M(P) + + + - +

Table 2.1: The profile P

We obtain MP) = {pAr,pas,g,—(pAQ),t}. M(P) is an inconsistent judgment set, there-
fore P is not majority-consistent.

We end this Section by defining distances between judgmenasd between a judgment set
and a profile. A distance between judgment sets ovéris a functiond : ® x ® — N° such
that for allJ,J’,J" € ®:

(@) d(J,J)=0ifand only ifJ =J',
(b) d(3,J) =d(J,J),and
(c) d(3,3") <d(3,J)+d(J,J").
A distance function between profiles is defined similarlynafly, theHamming distancée-

tween judgment sets and between profiles (Miller and Oshe2G09; Endriss et al., 2010b)
is defined as follows.

Definition 8 (Hamming distance between complete judgmentdgjs Given two complete
judgment sets J and Jover the same set of agents and the same agenda), the Hamming
distance ¢ between J and’Js defined by

dn (3,3) = [I\J'[+ [9"\J]
Now, the distance between two profiles is the sum of the Hammlistances between their
individual judgment sets.

Definition 9 (Hamming distance between profilBg;). Given two profiles P= (J;,..
and Q= (J;,...,J,), the Hamming distance between P and Q is defined by

. a‘]n>

H(P.Q) :Zn] (3,3)

Instead of the sum, another algebraic aggregation funttioan be used as well, such as for
instancemin, maxor N, under the condition&) — (c) are observed bip.
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2.2 Four families of aggregation rules

In this section we present four different families of minaafion-based judgment aggregation
rules.

2.2.1 Rules based on the majoritarian judgment set

Definition 10 (Rule based on the majoritarian judgment set)

A rule R isbased on the majoritarian judgment gahere exists a function g mapping every
judgment set (consistent or not) to a nonempty set of cemsigtdgment sets, such that for

every profile P, RP) = g(M(P)).

This family can be viewed as the judgment aggregation copateof voting rules that are
based on the pairwise majority graph, also known as tournaswutions. Being based
on the majoritarian judgment set means that knowing the mtaj@an judgment set of a
profile is enough to determine the outcome of the rule. Edgmtby, two profilesP and
Q whose majoritarian judgment coincid®(P) = M(Q)) will lead to the same outcome
(R(P) =R(Q)). We naturally expect these rules to be majority-preserwirhich is equivalent
to saying that the restriction gfto consistent judgment sets is the identityd i consistent,
theng(J) = {J}; such a condition can be seen as the counterpart, for judgmagnegation,
of Condorcet-consistency.

WhenM(P) is not consistent, we look for a minimal way of restoring detesicy by remov-
ing some elements from the agenda. Given a judgmerd, se¢ define the set afonsistent
sub judgment sets of dlenoted byCongJ), asg(J) = {J = J | J € ®}. Defining a rule
consists in defining a minimalism criteria for the set of fotas removed frond. There are
two obvious choices, consisting in choosing consistentjgdgment sets oM (P) that are
maximal for, respectively, set inclusion or cardinalityhish corresponds to the following
choices fom:

e g(J) =maxCongJ),<);
* g(J) = maxCongJ), .|

Equivalently, these rules consist in looking for a minimabset of formulas il to remove
such that the profile becomes majority-consistent. We gif@rmal definition that corre-
sponds to this alternative characterization.

In the following we use the abbreviatiomaxcardfor of maximal cardinality

Definition 11 (Maximal sub-agendaruRvsa). Given a profile P={Jy,...,Jy) on an agenda
A, A the preagenda associated with and a sub-preagend¥] < A, the restriction of P to
Y is PY ={JjnY,1< j <n). Let MSAP) be the set of all maximal sub preagendiésof A
(with respect to set inclusion) such that'As majority-consistent. Theaximal sub-agenda
judgment aggregation ruleygamaps P to Risa(P) = {M(PYY) | [Y] e MSAP)}.

Example 2.2.1. Consider the same agenda and profile as in Example 2.1.1. Ydendbat
{par, pnrs q

Rusa(P) = { {pAT, pAs —(paq),t},
{q7 ﬁ(p/\q% t}
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Instead of looking for maximal majority-consistent suteadas with respect to inclusion we
may instead look for maxcard majority-consistent sub-dgenwhich leads to the following
judgment aggregation rule.

Definition 12 (Maxcard sub-agenda ruRyvcsp). Let MCSAP) the set of all maxcard sub-
preagenda$Y] of A such that P¥ is majority-consistent. Thmaxcard sub-agengadgment
aggregation rule Ricsamaps P to Ricsa(P) = {M(P*Y) | [Y] € MCSAP)}.

Example 2.2.2.Consider again the agenda and profile from Example 2.1.1 sUbepreagenda
Y which gives a majority-consistent'Pand is maximal is obtained for either¥ {p ar,p A
s,g,t}orY={par,paspaq,t}. We obtain

_[{parprs a. 1},
RMCSA(P) _{{p/\r7 PAS, ﬁ(p/\q)v t}}

TheRycsarule corresponds, up to some minor details and for a spetifice of a distance
function, namely the Hamming distandg, to the ENDPOINT judgment aggregation rule
defined in (Miller and Osherson, 2009). According to #xeDPOINT rule, the collective

judgment sets foP are the consistent and complete judgment sets that are amienahi

distanced from M(P).

We show that the ruleRysa andRycsaare based on the majoritarian judgment set.
Proposition 2.2.3. Let CongM(P)) be the set of all consistent subsets qiyl

e Rysa(P) = maxXCongM(P)),<).
® Rucsa(P) = maxCongM(P)), |.|).

Proof. We give the only the proof foRysa The proof forRycsa(P) proceeds exactly in the
same way.

Let[Y] e MSAP). We haveM (P*Y) < M(P) andM(P!Y) is consistent. Assume thist(P*Y)
is not a maximal consistent subsetM{P). There exists a consistent sub-age@daf A
such thatM(P!Y) = Z < M(P). Since bothM(P!Y) andZ contains at most one af, —¢
for every¢ e A (otherwise they would not be consistent), there must hesach that either
peZor—¢peZ andg ¢ [Y]. Butthen[Y]u {¢} < Z < M(P) andZ consistent implies
thatM([Y] u {¢}) is a consistent subset M(P), contradicting[Y] € MSAP). Therefore,
M(PYY) e maxCongM(P)),<).

Conversely, leZ e maxCongM(P)),<). Y = {¢ € A| ¢ eZor—¢eZ}is apreagenda of
A, and becausg is a consistent subset M(P), Z contains at most one df, —¢ for every
¢ € A, thereforeM (P)!Y = Z.

Assume there is &’ > Y such thatM(PY') is consistent. TheM(PY') > M(PY) = Z,
contradictingZ e maxCongM(P)),<). ThereforeY is a maximal consistent sub preagenda
of P. O

We note that even when is odd, Rusa(P) and Rucsa(P) may contain incomplete judg-
ment sets. Take for instanée= ({a,b,a A b},{a, —b,—(a A b)},{—a,b,—(aA b)}); then
Rusa(P) = Rucsa(P) = {{a,b},{a,—(aA b)},{b,—(a b)}}. However, whem is odd, ev-
ery judgment set ifRysa(P) anda fortiori in Rycsa(P) is equivalento a complete judgment
set: here{a,b}, {a,~(aA b)} and{b,—(a A b)} are equivalent to, respectivelg, b,a A b},
{a,—b,—(aAb)} and{—a,b,—(aA b)}.
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Proposition 2.2.4. If n is odd then for every 8 Rysa(P) and every E Rycsa(P), there is a
complete judgment set Such that the deductive closures of J andik equivalent.

Proof. LetJ € Rysa(P) and assumd is not equivalent to a complete judgment set. There is
a¢ € A such that neithei |= ¢ norJ = —¢. Becausais odd,M(P) is a complete judgment
set, and contains eithgr or —¢. Without loss of generality, assume it contaipis Then
Ju{g} = M(P)andJu {¢} is consistent, contradictinhe Rysa(P). The proof forRuycsa
follows from the fact thaRucsa(P) < Rusa(P). O

While, as far as we are awarBysa is new, Rycsa coincides with theEndpoi nt 4 rule
defined in (Miller and Osherson, 2009). We repeat the dedimitiere using our terminology.
Recall thatd is the set of all complete and consistent judgment setd for

Definition 13 (Endpoint rule) Let d be a distance function between judgment sets. The
judgment aggregation rulEndpoi nt 4 is defined as:

Endpointy(P) = {Je ® | d(J,M(P)) < d(J,M(P)) forall ' & d}

Proposition 2.2.5. Rycsa=T1 Endpointyg,.

Proof. A judgment set] € ® extends a judgment séte A, alternativelyJ is an extension
of A, when if ¢ € A, then¢ € J. We claim that for evernyP € ®" and everyA € A, we

haveA e MSAP) if and only if for everyJ € ® extendingA, and everyd’ € @ it holds that
du (3, M(P)) < du(J',M(P)).

We show the fist direction. Assume thaats a consistent subset bf(P) and letd € ® be an

extension ofA. We have thatl (J,M(P)) < m—|A|. We need to show that for evedye ®

it holds thatdy (J,M(P)) < dy(J',M(P)).

Assume the contrary, namely that there exists® such thaty (3, M(P)) < dn (J,M(P)) <
m—|Al. |J ~M(P)| > |A] andJ’ ~ M(P) is a consistent subset bf(P). As a consequence
A¢ MSAP). We conclude that for everdie ® extendingA it is the case thady (J,M(P)) <
dn (J’,M(P)) for everyJ’ € ®. Therefore Tengpoint (P) = Trycsa(P)-

We show the second direction. Assume that @ and A = JnM(P). We have
that dy(J,M(P)) = m— |A] andA is a consistent subset M(P). We need to show that
Ae MSAP).

Assume the contrary, namely that¢ MSAP). If A¢ MSAP), then there exists a con-
sistent subsef’ of M(P) such that/A’| > |A]. But now, anyJ’ € ® extendingA’ is such
thatdy (J',M(P)) < m— |A'| < m— |A| = dy(J,M(P)), which implies that we do not have
dn (I,M(P)) <dy(J,M(P)) for everyd' € ®. Thereforedy (J,M(P)) < dy(J',M(P)) for ev-
eryJ' e ® implies that) n M(P) e MSAP). We conclude thalr,,cso(P) = Tengpoint (P). O

2.2.2 Rules based on the weighted majoritarian judgment set

We first define theveighted majoritarian judgment sef a profileP as

whereN(P, ¢) = #{i, ¢ € J}.
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WhereasM (P) keeps only the information about which one, of the two prajms ¢ and
—@, is supported by a majority of votens(P) keeps much more information, since it stores
the number of voters who suppdrtand—¢. The setM(P) can be recovered from(P), but
notvice versa

Definition 14 (Rule based on the weighted majoritarian judgment set)

A rule R isbased on the weighted majoritarian judgmentfsistere exists a function g map-
ping every judgment set (consistent or not) to a nonemptpfsednsistent judgment sets,
such that for every profile P,(R) = g(w(P)).

This family can be viewed as the judgment aggregation copateof voting rules that are
based on the weighted pairwise majority graph, such as naxianked pairs, or Borda.

The first rule of this class we consider is tliaxweight sub-agenda rule

Rwvsa andRycsaconsider the judgments on the agenda subset as a unit tleabéskept in
its entirety or got ridden of. A finer way of defining a judgmeule consists in looking for
maximal or maxcard majority-consistent subsets of the Setamnentary pieces of informa-
tion consisting each of a pair (element of the agenda, judgmeittaticited from an agent).
Equivalently, this comes down to weigh each element of tremdg by the number of agents
supporting it, and then to look for maxweight sub-agendas.

Definition 15 (Maxweight sub-agenda ruRuwa). For any sub-agenda ¥ A, the weight
of Y with respect to P is defined by @) = >, ,.y N(P.¢). Let MWAP) be the set of
all consistent sub-agendas Y 4f maximizing w. The maxweight sub-agendadgment
aggregation rule Rgwa maps P to Rwa(P) = {Y | Y e MWA(P)}.

Example 2.2.6. Consider the agenda and profile of Example 2.1.1. We obtain:

N(P,pAr)=10, N(P,—=(par)) =
N(P,pAs)=10, N(P,— (pAS)):
N(Pg)=13  N(P—q) =4
N(Pprg) =6 N((P—-(prq) =11
N(Pt) = 10, N(P,—t) = 7

Ruwa(P) = {{pAr,pAsa,pagt}}, duetow({pAr,pAsd,pagt}) =49is maximal
with respect to all other complete and consistent ¥i.

The intuition behind this rule is that we look for a minimalmhber ofelementary information
itemsto remove fronP so that it becomes majority-consistent. An informatiomitie an el-
ement fromA approved by an agent. The set of information items assabveita P, denoted
by 2(P), is the multiset containing as many occurrenceg af agents approvinggin P. E.g,
if A={a,b,c,arb}andP={{ab,c,an b},{—ab,c,—(ar b)},{a,—b,c,—(anr b)}),
then X(P)=1{a, b, c,anb, —a b, c, —(anh),a —b c —-(anb)} and Z(P)=
{a,a,—a,b,b,—b,c,c.c,anb,—~(anb),—(arb)}.

Let MaxCardZ(P)) be the set of all maxcard consistent subsets xP). If
S € MaxCardZ(P)), then for everyp € A, Scontains either all occurrences ¢fin Z(P)
or all occurrences of-¢ in Z(P). Let Js be the judgment set containirfg if S contains
all occurrences of in X(P) and—¢ if S contains all occurrences oef¢ in X(P). Then

RMWA(P) = {J3| MaxCard(Z(P))}.
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Although it looks entirely new, we will show that this naturale corresponds to a rule
already defined, in a different way, in (Endriss et al., 2()10b

Proposition 2.2.7. Rywa is majority-preserving.

Proof. Let P be a majority-consistent profile. We claim tHwa(P) consists of all com-
plete consistent sub-agendas extendii@). Whenn is odd, thenM(P) is a complete
sub-agenda, so in this caBawa(P) = M(P). However, ifn is even therM (P) might be in-
complete. For instance, if= 2, A = {p,q} andP = {{p,q},{p, —q} > thenM(P) = {p} and
Ruwwa(P) = {{p.,a},{p,—a}}. LetJ be a complete consistent judgment set extent¥iig).
If J ¢ Ruwa(P), then there exists a consistent judgmentXesuch thaty ;. N(P.¢) >

29caN(P.@). This implies that there must be ¢ e A such that¢ € J, —¢ € Y, and
N(P,—¢) > N(P, ¢). The latter implies thap ¢ M(P), which contradicts the assumption
thatJ extendsM(P). O

The following rule is inspired from the ranked pairs rulesdring theory (Schulze, 2003). It
consists in first fixing the truth value for the elements ofdlgenda with the largest majority.
It proceeds to iterate, considering the elements of thedayeanthe decreasing order of the
number of agents who supportthem, and fix each agenda iskiegodhe majoritarian value.
It proceeds iterating as long as this is possible withoudipoing an inconsistency.

Definition 16 (Ranked agendRgrpa). LetY = {¢ € AIN(P,¢) > 3}, and let>p be the
complete weak order relation on Y defineddy>p @ if N(P,¢) > N(P,¢). Rra(P) is

defined as follows: & Rga(P) if there exists a linear ordesp on A refining > such that
RA(>,P) = J, where RA>,P) is defined inductively by

e order the elements of Y using the relatieni.e., such thats 1) > ... > dg(m);

e D:=¢;
e fork:=1to mdo: if Du {@;} is consistent then D= D U {dq i) };
e RA(>,P):=D.

Rra is based on the weighted majoritarian judgment set. This isuh special case of the
sequential aggregation rules defined by (L.ist, 2004b), e/ttez rule is defined without spec-
ifying a particular order of aggregation.

Example 2.2.8.Consider the same profile as in Example 2.1.1. We havg ¥ A r,pA S,q,
—(pa Q),t},andg>p —(pA Q) >p PA I ~p PA S~p t (Where~p and>p are respectively
the indifference and the strict preference relations irelifrom>). We obtain

RRA(P) = {{q7ﬁ(p/\ Q),t,_‘(p/\ r)a_'(p/\ S)}}

Every judgment sel in Rra(P) is complete; if not, there would begdae A such that neither

¢ not—¢ is in J. Sinced is consistent, eithet u {¢} or Ju {—¢} is consistent. But then,

either¢ or —¢ would have been incorporatedJdnwhich contradicts the assumption tidat

contains neithe¢ nor —¢. More generally, when the number of voteris odd, each of the

collective judgment sets obtained from any of the rulesouhticed so far is equivalent to a
complete judgment set.
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Proposition 2.2.9. Rga is majority-preserving.

Proof. In >, the elements d¥(P) are considered before the elementglgM (P). Therefore,
when an elemenp of M(P) is considered, the current judgment Beis a subset oM (P)
andD u {¢} = M(P), thereforeD u {¢} is consistent, which implies thélt is incorporated
into D. Since this is true for ang € A, we get that any element &a(P) containsM(P).

Now, letJ be a consistent, complete extensionMfP). Take> such that all elements of
M(P) are considered first, then all elementJofM (P}, then all elements ofi\J. This order
refines>p, because iff € PM(P) thenN(P, ¢) > 3, if ¢ € J\{M(P} thenN(P,¢) = J and if
¢ € A\J thenN(P,¢) < 3. Lastly,RA(>,P) = J, which proves thal € Rra(P). a

2.2.3 Rules based on the removal or change of individual judgents

The principle at work, for this family, is that we look for a wified profile, as close as
possible to the original profile (with respect to a givenaliste), such that the resulting profile
is majority-consistent. Different rules will be obtainediwdifferent distance functions.

This family can be viewed as the judgment aggregation copateof voting rules that are
based on performing minimal operations on profiles with thgppse of obtaining a profile
for which a Condorcet winner exists. Such are the Young (¥pd895) and Dodgson rules
(Dodgson, 1876). See (Elkind et al., 2009) for a generallfaafivoting rules of that kind.

The first rule we consider is called tNeungrule for judgment aggregation, by analogy with
the Young rule in voting, which outputs the candidat@inimizing the number of voters to
remove from the profile so thatbecomes a Condorcet winner.

Definition 17 (Young rule for judgment aggregati®ty).

Given a profile P= (J1, ...,Jn) and a subset of agents®Nc {1,...,n}, the restriction of P to
N*is P~ = {Jj,j € N*), and is called asub profileof P. Let MSRP) be the set of maxcard
majority-consistent sub profiles of P for which(RT™) is a complete judgment set. Then the
Youngjudgment aggregation rule Y maps P to(R) = {M(P~) | P~ € MSR(P)}.

Intuitively, this rule consists of removing a minimal numlé agents so that the profile
becomes majority-consistent. Or, equivalently, we mazahe number of voters we keep
of a given profile. If the profild® is majority-consistent, then no voter needs to be removed
andY(P) = {M(P)}, henceY is majority-preserving.

Example 2.2.10.0nce again we consider P fot given in Examplz 2.1.1. The result

Ry(P)={{=(pAT),~(PAS),q,=(pra)}}

is obtained by removing 3 of the judgment sfgis~r,p A S,q,(p A g),t}. Removing less
judgment sets, or other 3 judgment sets, does not lead to @rityagonsistent profile.

Now, instead of looking for a minimalumberof individual judgments to remove, we can
look for a minimalsetof individual judgments to remove, leading to the followinde.

Definition 18 (Inclusion-Young ruleRyy).
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Let mSKP) be the set of maximal majority-consistent sub profile®PP. Then thénclusion-
Youngjudgment aggregation rule Y maps P to

Ry (P) = {M(P~) [P~ e mSRP)}
Example 2.2.11.The inclusion Young rule applied to the the profile P resuits i

{=(pAr), ~(pArs), 0, ~(pra) },
R'Y(P)_{ {par, prsG  pag, t}}'

Riy is majority-preserving for the same reasoriRgs

If a profile is not majority-preserving then one might looktla¢ problem from a different
view point. The Young rule and the Inclusion Young rule mialiy alter the profile by re-
moving agent’s judgment sets. The profile can be minimatratl also by repeating agent’s
judgment set, extending the profile instead of shrinking te intuition behind extending is
the assumption that there is confirmation pending for sontleegidgment sets in the profile.
We may ask which is the least amount of confirmatian, what is the smallest super-profile
of the majority-inconsistent profile that is itself majority-consistent. We thus obtain a new
rule, thereversed Young judgment aggregation rwidnich is also majority-preserving.

Definition 19 (Reversed Young rule for judgment aggregatitay). Let P=(Jy,...,Jn) be
a profile. Asuper profileof P is a profile P = (Jy,...,Jq), Where g= n, such that for every
ien+1,...,q there exists a K n such that J=J;. Let MSAP) be the set of minimal
(with respect to cardinality) majority-consistent supeofiles P" of P. The reverse Young
judgment aggregation rule RY maps P to/P) = U{Rusa(P") | Pse MSAP)}.

Example 2.2.12.For the profile P of Example 2.1.1, the outcome

Rry(P) = {{—(pAT),=(p~S),q,~(PAO)}}

is obtained by adding 3 of the judgment sets§pAr),—(pAs),d,—~(p A 0), —t}. Adding
less, or other 3 judgment sets, does not lead to a majoritysistent profile.

Comparing Examples 2.2.12 and 2.2.10, we observeRh@®) = Rgy(P). However, this is
not the case for all profileB.

In words,Rgy consists in duplicating judgment setsRrin a minimal way so thalP becomes
majority-consistentRgry is majority-preserving: wheR is majority-consistent, no judgment
set inP needs to be duplicated to restore majority-consistency.

Ry, Ry andRgy consider a judgment set as a unit, which is either selecteenoved as a

whole. Instead of removing entire judgment sets, we may fookiner changes in judgment
sets so that the resulting profile becomes majority-comsisiVe give two such rules below,
defined on the notion akctangleandco-rectangldor a profile.

Definition 20 (Rectangles and co-rectanglesiGiven a profile P= (J4,...,Jn), we define a
rectanglefor P as a Cartesian produgt = | x Y, where IC {1,...,n} is a subset of agents
and Yc A is a sub-agenda ofl.. A co-rectangl® for P is the complement of a rectangle for
P.

The restriction of P to rectanglp = | x Y is the profile defined by the set of agents I, the
agendaY, and defined by B (JnY[iel).

The restriction of P to co-rectangl@ = | x Y is the incomplete profile defined by the set of
agents N= {1,...,n}, the agend&l, and defined byP=(J nY|i e N).
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The intuition forP, is that only the opinioné, ¢ ) inside the rectangle count, whereasRgr
only the opinions outside the rectangieount.

Definition 21 (Maximal rectangle rul®vr). A rectanglep is maximalP-consistentf P, is
majority-consistent and for every super rectanglef p, P,/ is not majority-consistent. The
maximal rectangle rules defined by

Rur(P) = {M(P,) | p maximal P-consisteht

Definition 22 (Maximal co-rectangle rul®ycr). A co-rectangle is maximalP-consistent
if Pp is majority-consistent and for every super co-rectandfleof o, Py is not majority-
consistent. Thenaximal co-rectangle rulis defined by

Rucr(P) = {M(Ps) | & maximal P-consisteht

Rwvr are andRycr are majority-preserving.

Note that if we restrict our attention to (co-)rectangleB of the formN x Y, then we recover
MSA(P), whereas if we restrict our attention to (co-)rectanglethefform| x A, then we
recovemSRP). Similar rules can be obtained by maximizing gieeof the (co-)rectangle.
Before going further, we first establish thjicr coincides with a rules that we already know.

Proposition 2.2.13. For all P € ®", Rysa(P) = Rucr(P).

Proof. We first prove that, for alP € ®", if J € Rycr(P) thenJ € Rusa(P).

LetJ e Rucr(P). As a consequence, there exists a maxinfatonsistent co-rectangle
d = 1 xY such that) = M(Ps). J is consistent, therefor&~ M(P) is a consistent sub-
set of M(P). Assume thatl n M(P) ¢ Rusa(P). There exists &' € Rusa(P) such that
Jn M(P) c J. Let¢p € I\(InM(P)). From¢ € I =< M(P) and¢ ¢ J we getp €.
Consider now the co-rectang® = I x (Y\{¢}). M(P%) andM(P?') agree on all elements
of the preagenda except Moreover,M(P?) andM(P) agree onp, whereasvi(P?) and
M(P) disagree og. Therefore,

M(PY AM(P) = (M(P® AM(P)) U {¢} (2.1)

Lastly, sincePY is majority-consistenth is majority-consistent as well, which together
with (2.1), contradicts the maximality @. Therefore,) € Rysa(P).

We now prove that, for alP € ", if J € Rysa(P) thenJ € Rycr(P).

LetY e MSAP). As a consequendd (P) € Rusa(P). Assume thalN x Y ¢ MCR(P). Note
thatN x Y = N x (A\Y) is a co-rectangle that B-consistent, therefore there must exists a
largerP-consistent co-rectangle. Such a co-rectadgleannot be obtained by removing less
agents, sinc®\ x Y does not remove any agent. Consequently we must remove &smal
subset of the agendie.,d = N x (A\Z) = N x Z with Z o Y. But then the restriction d?
to Z would be majority-consistent, contradictiige MSAP). ThereforeY e MCR(P). O

The last rule we define does not remove agenda elements aotios, but looks for a min-
imal number ofatomic change# the profile so thaP becomes majority-consistent. We
consider an atomic change to be the change of truth valuestmment of the preagenda
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Votersparpasq paqgt
6x| + + + + +
4 + + - - +
3| = — + + =
4| = = + = =

MQ)| + + + + +

Table 2.2: The profil&).

in an individual judgment set. For instance, Ji = {p,q,pAQ,r,par}, then
Ji={—p, a —(pArq),r,—(p~ar)}is obtained fromJ; by a series of three atomic changes
(change in the truth value qf, of p A qand ofp A r).

This approach is in spirit close to Dodgson’s voting rulejekifooks for the smallest number
of elementary changes in a profile with the purpose of turitimgto a profile for which a
Condorcet winner exists. Replacihgving a Condorcet winnday being majority-consistent
and adapting the notion of elementary change, we get ounjedgjaggregation rule.

Definition 23 (Minimal number of atomic changes riknac). Given a profile P, a profile Q
consisting of complete and consistent individual judgrsetgtis a closest majority-consistent
profile to P if Q is majority-consistent, and there is no mé#jeronsistent profile Qsuch that
D (P, Q) < Du(P,Q). Let CMQP) the set of all closest majority-consistent profile to P. The
minimal number of atomic changes rusedefined by

Runac(P) = {M(Q) | Qe CMC(P)}

Ruvnac is not a new ruleFully, one of the four methods introduced by (Miller and Osherson,
2009), looks for the closest profile of individual judgmethtzt yields a consistent proposition-
wise majority output, and then take this output. TherefBgyac corresponds to thEully
voting rule together with the choice of the Hamming distaasethe distance measule
Miller and Osherson (2009) do not commit to a specific distametric. Another possible
choice would consist in allowing the modified profile to beiindually inconsistent, leading

to the so-called®ut pu rule in (Miller and Osherson, 2009).

Example 2.2.14.Consider the profile P from Example 2.1.1. The profile Q givedable
2.2 is the closest majority-consistent profile to P witfPBR) = 3.

We obtain Rinac(P) = {pAT,pASqQ,pAQt

If P is majority-consistent then no elementary change is ne¢derkforeRynac is majority-
preserving.

We could also look for the closest profil€with respect to set inclusion. However, this
would give a very weak rulR where¢ belongs to some judgment setR(fP) as soon as one
individual judgment containg.

2.2.4 Rules based on distances

Two classes of distance-based rules appear in the judgrggregation literature. The first
one is characterized by the minimization of distances betwedgment sets and does not in-
clude altering the profile in any way (Pigazzi, 2006; Endeisal., 2010k; Miller and Osherson,
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2009). This class is derived from distance-based mergiegatprs (Konieczny and Pino-Pérez,
2011). The second one is characterized by the minimizafidistances among profiles and
relies on making minimal changes to the profile (Miller andh@son, 2009). The rules we
consider in this section resort to some kind of minimizatidrdistances among judgment
sets without changing the profile.

Miller and Osherson (2009) propose four distance-based fol judgment aggregation. We
have already discussed three of them, narkelyl , Qut put andEndpoi nt . The fourth
one,Pr ot ot ype, is defined as follows.

Definition 24. Pr ot ot ypey(Ji,...,Jn) is the set of all judgment setseJ® such that
S d(,d) <D, d(7,3), W e @

This rule has also been considered independently in (Endrial., 201Cb). We propose a
larger family of aggregation rule, in the same spirit as [d¢Miand Osherson, 2009).

Letd: ® x ®+— NO be a distance function between judgment sets fiwand® : (N°)" s NO
be a symmetric, non-decreasing function such that, foryexey, xi, ...,x, € N° has the
following properties®(X,...,X) = X; O(X1,...,%,) = 0ifand only ifx; = ... = x, = 0.

The distance-based judgment aggregation®dl€ induced byd and® is defined by:

RIO(Jy,....dn) = argmin®(d(J,Jp),...d(J,dn)).
Jed

Definition 25. A judgment aggregation rule @istance-baseidiit is equal to R© for some
d and®.

Here we consider onlp = >’ and® = max, and the Hamming distandg. In the case
when® = ) we obtain the distance-based procedure of Endriss et @O0 We choose
RAH-X because it captures the intuition of a majoritarian operato R%H-™2* because it cap-
tures the intuition of compromise between the individugdsigments (Brams et al., 2007,
Konieczny and Pino-Pérez, 2011). The minimization of treximum distance minimizes
the disagreement with the least satisfied individual, hgreganteeing some degree of com-
promise.

We show thaR-X andRywa are equal rules.

Proposition 2.2.15. For all P € ®", RH-%(P) = Rywa(P).

Proof. Given two complete judgment sefisand J’, and ¢ € A, defineh(¢,J,J') = 1 if
¢ € (I\Y)u (I"\J) andh(¢,J,J") = 0 otherwise.

For any profileP = (Ji,...,Jny € ®" and anyd € ®, we have
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Sie1dn(3,3)
= Z?:12¢67[ h(¢7‘]v‘]l)
=201 (Xpea(9,3,3) + Xggs h(¢,J,Ji))
= 1 (Zgeah($:3.3) + X pesN(9,3.3))
= Zin:l Z(PEJ h(¢,J.3) + Z(PEJ h(_'(pv‘lv‘]i))
= Z(/)EJ (Zinzlh(¢v‘]7‘]i) + Zin:lh(ﬁqbv‘]v‘]i))
=2.4c3(N=N(P,¢) + N(P,—9))
= 2pec12(N—=N(P¢))
= 2n=[J|—2wp(J)
Therefored! ; dw(J,3) is minimum if and only ifJ e MWA(P), that is,wp(J) is maximum.
Since every element diWA(P) is a complete judgment seMfWA(P) is equal to the set

of all complete judgment sets minimizing!_; du (J,J), which allows us to conclude that
RIH-2 andRywa are equivalent.

O

Comparing Definition 25 and the definition Bf ot ot ypey we observe that for all profiles
Pe ®", R™Z(P) = Prot ot ypeg, (P). Consequently, for all profileB e ®", Rywa(P) =
Pr ot ot ypeg, (P).

As a consequenc®%- is majority-preserving. This is however not the caseRgtm2
which is the only one of our rules failing to satisfy majorfjtyeservation.

Proposition 2.2.16. R:MaX{s not majority-preserving.

Proof. Consider the agendd = {a,—a,b,—b} andP = ({a,b},{a,b},{—a,—b}). Then
RAH-MaX(P) — {{a —b}, {—a,b}}; howeverP is majority-consistent ankll (P) = {{a,b}}.

O

Example 2.2.17. Consider the profile P for agendd of Example 2.1.1. We obtain that
RWZ = {{pAT,pAsq,pAgt}while

{=(pAr), =(pArs), q —(prq), t},
{_'(p/\r)a p/\sa_'qv_'(p/\q)a t}7
{=(pAar), PpAs aq pnrg t}
Rdeax(P): {p/\r,*(p/\S),—'q,—'(p/\C]), t}7
{par,=(prs), 9, pnrg t}
{par,  pas —q,=(paq), —t},
{par, pas —q, pnrg —t}

The full calculations are presented inwards Table 2.3.

2.3 (Non)inclusion relationships between the rules

In this section we consider the equality and inclusion iefships between the rules we
have introduced. This analysis is necessary to establistti®collective judgments derived



2.3 (Non)inclusion relationships between the rules 37

J|[{par, pas g pAq t}du (3, d0) | dH (J; Jg) | dH (3, J3) || 22| MaX
J - - - - - 5 3 1 49 5
X - - - -+ 4 2 2 46| 4
B - -+ - - 4 4 0 40| 4
s - -+ -+ 3 3 1 37 3
J5 - -+ 4+ - 3 5 1 45 5
Js - -+ o+ 4+ 2 4 2 42| 4
N - + - - - 4 2 2 46| 4
Jg - - + o+ 2 4 2 42| 4
Jo - + - - - 4 2 2 46| 4
Jio = F o = AP 3 1 3 43| 3
Ji1 - + + + - 2 4 2 42| 4
Ji2 - + + + + 1 3 3 39 3
Jiz|| + - - - - 4 2 2 46| 4
J1a + - - -+ 3 1 3 43 3
Jis||  + -+ + - 2 4 2 42| 4
Jigl| + -+ + o+ 1 3 3 39 3
Ji7 + + - = = 3 1 3 42| 3
Jig + + - - + 2 0 4 40 4
Jio||  + + + + - 1 3 3 39 3
Joo||  + + + + 4+ 0 2 4 36| 4

Table 2.3: The calculations foR%™-*(P) and R*Ma(P). Recall that}; ;d(J,Jj) =
60 (i, J20) + 4du (i, J1s) + 7du (Ji, J3)

from one rule compare to the collective judgments derivechfanother rule. We have the
following diagram (Table 2.4), wher@c means “inclusion-wise incomparableZ, means
thatTgr, (P) < Tr,(P) for every profileP € ®", whereR; is the row rule andr; is the column
rule, correspondingly for>. The number next to inc:- or o, denotes the proposition in
which the relationship is proved.

| Rucsa| Ruwa | Rra Ry Riy Rry Rur | Runac | ROH-M
Rvsal|c,2.3.1c,2.3.2] <, 2.3.3|inc.2.3.5inc 2.3.16,2.3.2]inc 2.3.14 >,2.3.18inc, 2.3.22inc, 2.3.
Rwvicsa inc 2.3.6 inc 2.3.7|inc/2.3.8inc, 2.3.16,2.3.2{inc 2.3.12 5,2.3.19|inc 2.3.21 inc 2.3.4|
Rvwal inc 2.3.10inc 2.3.8inc, 2.3.21.2.3.1pnc 2.3.12 5,2.3.19 inc 2.3.23 inc 2.3.4|
RrA| inc 2.3.9inc, 2.3.16,2.3.2[inc 2.3.12>, 2.3.2(inc 2.3.23 inc 2.3.4
Ry 5,2.3.15 |inc2.3.11>,2.3.19 inc 2.3.23 inc 2.3.4|
Ry inc2.3.11>,2.3.18/inc 2.3.23 inc 2.3.4|
Rry inc2.3.13inc 2.3.23 inc 2.3.4
RMR inc, 2.3.24inc 2.3.4
RvNAC inc 2.3.4

Table 2.4: A summary of the (non)inclusion relationshipsiMeen the proposed rules.

For every profileP € ®", if a collective judgment is in all the judgment s&gcsa(P), or
Ruwa(P) or Rra(P), then that collective judgment is in all the judgment dRiga(P). For
ever profileP € ®", if a collective judgment is in all the judgment s&gsa(P), Rucsa(P),
Ruwa(P), Rra(P), Ry (P) or Ry (P), then that collective judgment is in all the judgment sets
Rur(P). This means that the rul&ysaandRyr are very “weak” in the sense that they often
select a very large number of judgment sets. In this senseikaBy is weaker tharfRy. For

a decision reaching context in which the rule should seleéttée judgment sets as possible,
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we can choose from seven rules, out of which fiR@csa Rra Ry, Rry and RA+-Max haye
not been studied in judgment aggregation.

Following are the proofs for these (non) inclusion relasioips.

Proposition 2.3.1. For every profile Re ", Try,s1(P) < Trycsa(P)-

Proof. If Y — A is a maxcard consistent sub-preagend4d ofvith respect td®, then it is also
a maximal consistent sub-preagenda with respebt ttf a € Tr,,,(P), thena is inferred
in every maximal consistent sub-preagenda, arfiortiori in every maxcard consistent sub-
preagenda, thereforee Try,csA(P).

To show thafTry,cgx(P) & Trysa(P), consider the profild® in Example 2.1.1. As it can be
observed in Example 2.2.2r,,cs2(P) = P A T, but we can observe from Example 2.2.1 that

Trusa(P) £ P A T O

Proposition 2.3.2. For every profile Re ", Try,s,(P) < Trywa(P)-

Proof. If Y A is a consistent sub-preagenda maximizirgY ), thenM(P*Y) is a maximal
consistent sub-agenda with resped®tdf a € Tr,,.,(P), thena is inferred in every maximal
consistent sub-preagenda, anfbrtiori in every maxweight consistent sub-agenda, therefore
a e TRMWA(P)'

To show thafTr,,.(P) & Trysa(P). consider the profilé in Example 2.1.1. As it can be
observed in Example 2.2.Gg,,,,(P) = 0, but we can observe from Example 2.2.1 that
Trusa(P) # @

O

Proposition 2.3.3. For every profile Re ", Try,s,(P) < Trga(P)-

Proof. In the construction oRga(P), let Z be the subset oft composed of theJ, such that
0 A Uk is consistentZ is a maximal consistent sub-agenda with respeBt @ is consistent
by construction, and maximal because every time a forrmiylés rejected, it is because it
produces an inconsistency with the formulas already ptésen If o € Tr,,.,(P), thena is
inferred in every maximal consistent sub-agenda,afuattiori in Z, thereforex € Trg,(P).

To show thatTrg,(P) & Trysa(P), consider the profild® in Example 2.1.1. As it can be
observed in Example 2.2.8g.,(P) = q, but we can observe from Example 2.2.1 that

TRMSA(P) ¥ g O

Proposition 2.3.4. RH-MaX s incomparable with all the other rules.

Proof. Let R be a majority-preserving rule. Take the profl@s in the proof of Proposition
2.2.16. Thema < —b € Tea, max(P), whereasa < —b ¢ Tr(P) (sincea < b e Tr(P)); and
ace Tr(P), whereasa ¢ T, max(P). Therefore R M js incomparable with all of the five
other rules. O

Proposition 2.3.5. Ry is incomparable with Rsaand Rcsa
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aa—(bvc)bca—(dve de
+ + + - + + -
+ + -+ + -+
_|_ — —_ — —_

Table 2.5: The profil® used in provindRy inc RysaandRy inc Rucsa

Proof. Consider the pre-agenda= {a,a— (bv c),b,c,a— (d v €),d, e} and the profild®
for this agenda for three agents given on Table 2.5.

We have thaM(P) = {a,a— (bv ¢),—b,—c,a— (d v ), ~d,—e}. The minimal inconsis-
tent subsets d¥1(P) are{a,a— (bv ¢),b,c} and{a,a— (d v €),d,e}. Consequentiyv(P)

has 10 maximal consistent subsets: 9 contairirgnd one equal tM(P)\{a}. The 9 sets
containinga contain two of the three formulg® — (bv ¢), — b, — ¢} and two of the
three formulaga — (d v ), —~d, —e}. These 10 maximal consistent subsets correspond to
10 maximal sub-agendas. The only maxcard consistent seidagsA\{a}, and in this sub-
agenda ofi, —ais inferred. Thereforelr,,.s.(P) = —a. All sub-profiles ofP of size two are
majority-consistent, and each of them acceptthereforelr, (P) = a. As a consequence,
Ry andRycsaare incomparable. Fdik, (P) ¢ Tr,,s4(P), take the same profile as above and
note thata e Tg, (P) buta¢ Tryg,(P).

To show thaflr,,s,(P) & Tr, (P), assume the pre-agendais extended with another agenda item
¢, on which the agents vote +, + and - correspondingly. We fawdgr,,;, but$ ¢ Tr,. O

Proposition 2.3.6. Rywa is incomparable witfRuycsa

Proof. To show thaRuywa & Rucsatake the following seven agent profike

We ObtaerMWA(P) = {{aa baa A b}} andRMCSA(P) = {{av b}a {av —av - b}v {ba —av -« b}}
Consequentlya e Try,,A(P) anda ¢ Try,csa(P)-

For the converse, th&ycsa & Ruwa revisit the example of Proposition 2.3.5. We have
—a¢ Tryya(P) and—ae Trycsa(P). O

Proposition 2.3.7. Rra is incomparable with Rcsa

Proof. Same profilé® as in Proposition 2.3.5. We have tia,,(P) = a. Henceae Trg,(P)
and—ae Rycsa(P), see Proposition 2.3.5. ([

Proposition 2.3.8. Rywa is incomparable with R

Proof. Consider the following pre-agenda
A={aa—p,a—q,a—(p1 A qi),a— pz,a—G,a— (P2 A G2),a— Ps,
a—0z,a— (P3s A G3),a— pa,@a— Ga,@a— (Pa A Ga)}.

Let the profileP be as given on Table Z.6.
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\oters
Agenda x1 x1 x1M(P)|N(P, ¢;)
a + + +| + 3
a— p1 + + + 2
a— Q1 + - + | + 2
as(praq)|+ - -| - | 1
a— p2 + + - + 2
a— Q2 + - + | + 2
as(p A+ - - - | 1
a— ps + + - + 2
a—Qs + - +| + 2
am(parag|+ - -| - | 1
a— g + + - + 2
a—0q + - +| 4+ 2
a—(pag+ - -| - | 1

Table 2.6: The profil® used to shovRywa INnc Ry. The judgment sets are the second, third
and fourth column of the table.

We obtain thaRuwa(P) = {{—a,a— p1,a—qi,—~(a— (p1 A G1)),a— pz,a— 0,

—(a—(p2 A 02)),a— p3,a—03,—~(a— (P3 A 03)),a— Ps,a— 04, —~(a— (Ps A Ua))}}.
HenceTr,,A(P) = —a.

The result forRy (P) is obtained when exactly one, either one, of the voters i©weah. For
Ry (P) we obtainTg, (P) = a. O

Proposition 2.3.9. Rra is incomparable with R

Proof. We haveTr,,(P) ¢ Tr, (P) as a consequence of Propositions 2.3.3 and 2.3.5.

To show thaflr, (P) & Tre,(P), consider the pre-agenda= {p,q,p A q.r,s,r A st} and
the 18 agents profile:

pgpAaqgrsrast
Ix[++ + —+ — +
3x|[++ + —+ — -
Ax|++ + +- - -
7 T ——
4|+ - — ++ + +
Ax|—+ — ++ + +

The minimal number of agents to remove to make the profile ntgjoonsistent is two.
These two agents are the two agents of the fourth row (lighy ghaded). We obtain
te TR\((P) andt ¢ TRRA(P)' O

Proposition 2.3.10. Rga(P) is incomparable with Rwa.

Proof. Consider the same profile example in Proposition 2.3.8. Waiokhatgz € Trg,(P)
and—\(plge TRMWA(P)'

O
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Proposition 2.3.11. Rgy is incomparable with Rand Ry .

Proof. Consider the pre-agendd = {p,q,p A q,r,s,r A st} and the profileP for this
agenda given in Table 2.7.

Votersp qpAaQgr srast
Ix(++ + -+ — +
3x[++ + -+ - -
A<+ + + +- - =
2x|+ - - 4+ - - =
4|+ - - ++ + +
Ax|—-+ — ++ + +

Table 2.7: The profil® used to shoWr,, (P) |= —t.

We obtainRry(P) = {p,q,p A q,r,S,r A S,—t}, by adding the fourth judgment set six times,
i.e.,asM(P"), whereP’ is the profile given in Table 2.8. Consequeriy, (P) = —t.

Votersp qpAQgr srast
Ix|[++ + —+ — +
x|++ 4+ -+ - -
Ax|++ + +- = =
8x|+—- — +- - -
A<+ - - ++ + +
Ax|—+ - ++ + +

M(P")|+ -+ - -

Table 2.8: The profilé®’ obtained fromP of Table 2.7 by adding the fourth judgment set 4
times.

The Ry(P) and Ryy (P) are obtained by calculatinl(P”), the profileP” being given in
Table 2.9 and obtained fromby removing the fourth judgment set (both of them).
Ry(P)=Ry(P)={p,a,p ~ q,r,s,r A sit}, hencelr,(P) =t andTg, =t.

Votersp g pAQr srast
Ix(++ + -+ - +
3x|++ + -+ - =
Ax|++ + + - - -
Ox|+—- — +- - =
4|+ - - ++ + +
4x|—+ — ++ + +

MP)++ + ++ + +

Table 2.9: The profil®” obtained fronP of Table 2.7 by removing the two judgment sets in
the fourth row.
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O

Proposition 2.3.12. Rgy is incomparable with Bcsaand Rawa.

Proof. Consider the pre-agenda from Example Z.1.1 and the pPfiigen in Table 2.1. As
it can be observed in Examgple 2.2. gy (P) = {—(p A r),—(p A S),0,—(p A Q),t},
obtained by adding 3 of the judgment séts(p A r),—(p A s),0,—~(p A q),—t}.
HenceTrg, (P) = —(p A 1).

For the same profil® we obtain thafTr,.,(P) E P A r andTr,,.(P) = p A T, see
Examples 2.2.2 and 2.2.6. O

Proposition 2.3.13. Rgy is incomparable with @g.

VoterspgpAagr srastuvwy
IxQ|++ + ++ + —————
Ixpl++ + +—- — +4+——+
IxB++ + +— — ++—+-
Ix+—- - +4+ + +—+——
IxJkhl+- - +4+ 4+ —4++++
IxJpl—-+ - —+ — +-—4+++
Ixyl-+ - —+ — —++++
Majority|+ + — ++ — +4++++

Table 2.10: The profil® used to provéyr inc Rgy.

Proof. Consider the pre-agenda= {p,q,p A~ q,r,s,r A s;t,u,v,w,y} and the Profilé for

it given on Table 2.10. We obtaRry(P), by repeating the first judgment set once, namely,
asM(Pry), Pry being given on Table 2.11. We obtain thty(P) = {p,q,p A Q,r,S,r A S}
and as consequendg,, (P) # tv uv vv wv y.

Votersp q pAQr srastuvwy
2xH[++ + ++ + ————-
Ixhl++ + +—- — ++—-——+
IxB++ + +—- — ++—+-—
Ixhl+—- — ++ + +—+——
Ixkl+—- — ++ + —++++
IxJ—+ — —+ — +—+++
Ixkl—-4+ - —+ — —++++
Majority|+ + — ++ — +4++++

Table 2.11: The profil€y constructed from profil® in Table 2.10.

The maximal rectangles are given in Table 2.12. We obfRig,(P) =tvuvvvwvy.
Consequentlyir,z(P) € Tryy(P).

Now consider the pre-agenda= {p,q,p A q} and for it the profileP in Table 2.13.

We obtainRry(P) = {{p,d,p A a},{p,~d,—~(p » q)},{—p,q,—~(p » g)}}. Consequently,
Trey(P) = pv 0. The maximal rectangles for this profile are:
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Sef Removed setRkemoved issuds ResultingSets

‘]8 {‘]6} {p q, r,s, u }
Jo {J7} {p, qa, rs, t }
Jio|  {%, .35} { —~(pAra), s v, Wy}
Ju|  {d, R, 4} { a—-(pra), s—=(nArs, U vwy}
Ji2 {‘Jls‘JZs‘J5} { g, _'(p A q) S, _'(r A S), t, v, W }
Jiz| {d, 33,38} { a-~(pra), s—=(~rs9, u, v, Wy}
14 {J17J37‘J5} { [} "(p A q)7 S, "(I’ A S), t, Vv, Y}
Js|  {d,da,35} { q, —(ras),t u vwy}
Jie {J27J37J4} { [} "(p A q) S, —t v w y}
7| {J2,d,35} { q, s, —=(r A S), w }
Jig|  {2,3,35} {p, q, s, =(r A S), —u, Vv }
o {J,ds,35) { g n s —(f A 9), v}
Jo {p.r}{ a s, =(rAs), t, U v,wy}
‘le {p7 S} { [} r, "(l’ A S), t, u v, w, y}
Jo2 {pr ~st{ a rs, t, U v,wyl
Jo3 {a,r}|{p, q, s, —=(r A s), t, u v,wy}
J24 {a,s}|{p. q, o= As,t u vwy}
Js {a.r A st{p, q, rs, t, U v,wy}
J26 {p A q7r} {p7 q, S, "( A S), t7 u v, w, y}
Jo7 {p ~ a;s}|{p, q, r, —(ras),t u vwy}
J28 {p A QA S} {p7 q, s t7 u viw y}
o9 {‘]2} {p} { [} "(p A q) r,S, t, v, W }
J30 {Js} {pI{ o —(pAra)rs t, v, oy}
1 {‘]2} {q} {p7 "(p A q) r,S, t, v, W }
J32 {Js} {at{p, —(pnrars t, v, oy}
J3 {3} {p A~ di{p q, rs, t, v, wo}
Ja4 {Js} {p A at|{p qa, rs, t, v, oy}
Jz5 {Ja} {r}|{p. q, s, =(r ~ 9 u Wy}
J36 {‘]5} {l’} {p7 q, S, "(I' A S) t

Ja7 {Ja} {st|{p. q, o —=( A9 u Wy}
J38 {‘]5} {S} {p7 q, r, "(I' A S) t }
Jz9 {da} {r ~ st|{p. qa, rs, u Wy}
) {Js} {r ~ st|{p, q, r,s, t }

Table 2.12: Maximal rectangles for the profile in Table 2.10.

Votersp q pA q
Ixql++ +
Ix|+ - -
IxJ3|—+ -
MP)|++ —

Table 2.13: The profil®, counter-example fdRry(P) € Rur(P).

p1 = {J2,Js} x A giving rise to{—(p » q)},

p2 = {J1,J3} x A giving rise to{q},

p3 = {1, X} x A giving rise to{ p},
pa=Nx{d,p A g} giving rise to{g, ~(p A )},
ps =N x {p,p A q} giving rise to{p,—~(p A q)},
ps = N x {p,q} giving rise to{p,q},
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Due to{—(p A 0)} € Rur(P) we obtain thalr,z(P) ¥ p v 0. HenceTre (P) & Tryr(P).
O

Proposition 2.3.14. Rgy is incomparable with Rsa.

Proof. To prove thaflr,,s,(P) & Trgy(P) we consider the profil® from Example 2.1.1, and
Examples 2.2.12 and 2.2.1. We obtain thgj.,(P) = t, butTrs, (P) # t.

To prove thatTrg, (P) & Trysa(P) We consider the profilé® from Table 2.7. We obtain
Trry (P) = —t. HoweverTg,,g,(P) # —t.

O

Proposition 2.3.15. For every profile R ®", T, (P) < Tr (P).

Proof. If Y c A is a maxcard consistent sub-preagenda (wlP}.of A then it is also a
maximal consistent sub-preagenda with respe®.tdf a € Tr, (P), thena is inferred in
every maximal consistent sub-agenda aridrtiori in every maxcard consistent sub-agenda.
Consegeunetly € Tr, (P).

To show thaflr, (P) ¢ Try (P) consider the profile from Example 2.1.1. For this profile we
obtain:

e Ry(P)={{—(p A 1),~(p ~ 9),0,~(p A 0)}}, see Example 2.2.10;

e Rvy(P)={{=(p A 1),=(P A 9,8—(P A O}, {p A P A SQ,P A qt}}, see
Example 2.2.11.

It holds thatTgr, (P) = —(p A r), while Tr, (P) # —(p A ). O

Proposition 2.3.16. There exists a Pe ®" such that &,(P) € Tr,(P) for
Ze {MSAMCSAMWA RA RY,MR,MCR MNAC}.

Proof. Consider the pre-agenda= {p,q,p A 0,t1,t2,1t3,14,1s,16,t7,tg} and for it the profile
P given on Table 2.14. We obtaRy by removing any two voters:

Votergpg pA qlitatatststgtytgtg
Ix [++ + + - - -+ +4+ - -
ox |[++ + +4+- - -+ -+ -
Bx |[+- - +++-- -+ -+
Jax |+ - - -+ ++ - -+ - -
Ix [-+ - - -+++--++
Jx |-+ - - - -4++4+-++
MP) |++ -

Table 2.14: The profil@.

e removingJ; andJ; we obtain{—(p A q),—t1,ts,t4, —ts,to}

e removingJ; andJ; we obtain{g,—(p A q), —t1,t4, —t7,ta}
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removingJ; andJ, we obtain{g, —(p A q), —t7,tg,t9}
removingJ; andJs we obtain{p,—(p A Q),tz, —ts}
removingJ; andJs we obtain{p,—(p A Q),t2,t3, —t5, —tg}
removingJd; andJ; we obtain{q,—(p A ), —t1, —t2,t4,15}
removingJ; andJs we obtain{g,—(p A q), —ta,t5,t9}
removingJ, andJs we obtain{p,—(p A q),t7, —tg}
removingJ, andJs we obtain{p,—(p A q),t3, —ts,t7, —tg}

removingJs andJ,; we obtain{q, —ty—ts,t5,ts, —t7,tg}
removingJs andJs we obtain{p, g, —ts,ts, —tg}
removingJs andJs we obtain{p, g, —to}

removingJ; andJs we obtain{p, q,t;, —t3, —ts,ts}
removingJ; andJs we obtain{p,q,t1, —ts}

removingJs andJs we obtain{p,ty,t, —t4, —ts,t7tg, —tg}

We have thaRyy (P) = Ry(P). Let us denote witlw the formula—t; v —to v =tz v —tg v
—t5v —tgv —t7v —tgv —tgand with@ the formula; v to v t3v t4 v ts v tgv t7 v tg v tg.
We obtain thatr € Tr,, (P), but ¢ Tgr,, (P). For the rest of the rules we obtain:

{{p},{a}.{p ~ a}} = Rz(P), whereZ e {MSAMCSAMR,MCR} henceqa ¢ Tr, (P).

Observe thaN(P,p) = 4,N(P,—p) = 2,N(P,q) = 4,N(P,—q) =2,N(P,p » q) =2,
N(P,—(p A q)) =4,N(Pt) = N(P,—t) = 3, fori € [1,9]. Observe that a judgment
set that include either one ¢p,q, p}, {—p,q,—~(p ~ q) or {p,—q,—~(p ~ q) and any
consistent subset df;, —ti}, i € [1,9] will have the maximum weight of 37. Conse-
quentlyRyuwa(P) contains the judgment sets:

{P,0,p A Qt1,12,13,14,15,16, 17,18, to},

{—p,0,—(p A Q),t1,t2,13,14,15,t6,t7,1g, to},

{p,—0,—(p A Q),t1,t2,13,14,15,t6,t7,1g, to}.

Consequentlfiuwa(P) ¥ a.

For the profileP we can construct the following order:
pP~gd~—-(PArQ>ti~—ti~fh~-th~tg3~ 3~ ~ g ~t5~ -5 ~ g~
—tg~t7~ 7 ~tg~tg~tg~—tg>—-p~—-Q~p A Q.

Correspondingly, we obtain, among others, the followirdgjment sets ifRra(P):
{p,q,t1,12,13,14, 15,16, t7,tg, to},

{p,—(P A Q),t1,12,13,14,15, 16,17, 15, o},

{0,—(p A Q),t1,t2,t3,14,15,t6,t7,1g, 1o},

{p,q, —~t1, ~tz, —t3, —tg, —ts, —tg, —t7, —tg, —to},

{p, —t1, —tz, —t3, —ts, —ts, —tg, —t7, —tg, —to},

{0, ~t, ~tp, —t3, —tg, —ts, —te, —t7, —tg, —to},

{p,q,t1, —to, —t3, —tg, —ts, —te, —t7, —tg, —to},
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{p,t1, ~t2, —t3, —tg, —t5, —tg, —t7, —tg, —to},
{q,t1, —to, —t3, —ta, —t5, —tg, —t7, —tg, —to},
etc.

Consequentlyr ¢ Tre,(P).

e Runac={{p,—=(p ~ @)},{a,—~(p A a)}}, hencea ¢ Tryyc(P).

Proposition 2.3.17. There exists a profile P such that:

L. Trusa(P) & Try (P),
2. TRucsa(P) & Try (P),
3. Truwa(P) £ Try (P),
4. Trea(P) & Try (P).

Proof. This relationship follows frorfr,, (P) = Tr, (P), Proposition 2.3.15, and: Proposition
2.3.5, for items 1 and 2, Proposition 2.3.8 for item 3, andoBsition 2.3.9 for item 4. O

Proposition 2.3.18. For every profile Re ®", Tr,,z(P) < Trysa(P) @and Rrys(P) < Try (P).

Proof. Removing only voters, as we do Ry, corresponds to a rectangle in the form of
| x A, while removing only votes on a subset of the agenda, like ovia &Ry sa, corresponds
to a rectangle in the form dd x Y.

To show thafr,,s, 4 (P) Tryx(P), consider the profil® from Example 2.1.1. For this profile,
we obtain:

® Rusa(P)={{p A ,p A sqt}{p Ar,pAs—(pna),t}{g—-(p A q),t}}, see
Example 2.2.1; and

e Ry(P)={{—=(p A 1),=(P A 9,0,~(P A~ Q},{P A I,P A S0,p A Q,t}}, see
Example 2.2.11.

We obtainTrys, =, TRysa # O TRy | g andTryg, H t. SinceRusa(P) U Ry (P) < Rur(P)
we obtain thallr,,; F t andTrys ¥ . O

Proposition 2.3.19. For every profile R= ®":

* Tryr(P) < Trycsa(P),
e Tryr(P) © Truwa(P), and

(] TRMR(P) c TR\((P)-

Proof.
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o Tryr(P) € Trycsa(P) is a consequence dk,,; (P) < Trysa(P), Proposition 2.3.15, and
TRusa(P) € Tryesa(P), Proposition 2.3.1.

o Tryr(P) < Trywa(P) is @ consequence a3k, (P) = Trysa(P), Proposition 2.3.15, and
Trysa(P) € Trywa(P), Proposition 2.3.2.

e Tryr(P) = Tr/(P) is a consequence Gig,(P) = Try (P), Proposition 2.3.18, and
Try (P) = Tr, (P), Proposition 2.3.15.

To show thaflry,.a(P) & TrRyr (P): TRuwa(P) & Trys(P) andTr, (P) ¢ Tryx(P) consider the
profile P from Example 2.1.1.

¢ As it can be observed from Example 2.2.2, hefige.,(P) =t and we showed in the
proof of Proposition 2.3.1.8 thdk,,,  t.

e As it can be observed from Example 2. 2Rywa(P) = {{p A ,p A S,q,p A Q,t}},
hencelr,,A(P) =t andTry, # t.

e Asitcanbe observed from Example 2.26(P) = {{—=(p A r),—~(p A 5),0,—(P A Q)}}
hencelr,.sA(P) = 0 and we showed in the proof of Proposition 2.3.18 igj; ¥ q.

O

Proposition 2.3.20. For every profile Re ", Tr,,r(P) < Trga(P).

Proof. This inclusion is a consequenceT,;(P) < Try,s,(P), Proposition 2.3.18 and
Trusa(P) < Trea(P), Proposition 2.3.3. 0

Proposition 2.3.21. Rynac is incomparable with Rcsa

Proof. To show that there exists a profiesuch thafTr,,.,(P) ¢ Tryyaer CONSider the pre-
agenda and profile in the proof of Proposition 2.3.5 in whighhave thallr,,.s,(P) = —a.
There are 23 profileQ at a minimal distanc®(P,Q) = 2. We obtainTg,..(P) # —a
because

Runac(P) ={ {a,a— (bv c),—b,c,a— (d v e),—d, e},
{a,a— (bvc),—b,c,a— (dve),d,—e},
{a,a— (bvc),b,—~c,a— (dve),—d, e},
{a,a— (bvc),b,—c,a— (d v e),d,—e},
{a,—(a— (bvc)),—b,—c,—(a— (dve)),—d,—e}
{-a,a— (bvc),—b,—c,a— (dve),—d,—e}}.

To show that that there exists a profiesuch thafTr,, . ¢ Trycsa(P), consider the profile

P from Example 2.1.1. We havi,,,,.(P) = 0, see Example 2.2.14, bilig,,.,(P) # g, see
Example 2.2.2. O

Proposition 2.3.22. Rynac is incomparable with Rsa.
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Proof. To show that there existsRasuch thaflr,,s,(P) ¢ Trywac(P), consider the pre-agenda
A={pP.q,p A G,p A =0, 01,02, —P,03, da}, where

ar=pA—QqA—Gq

a2 = pA—QA—QqA—0q,

az3=QqA—pA—p,

Az =QA—"PA—=pPA—P.

A profile for this pre-agenda is given in Table 2.15.

Voterqp g pA QP A —q01 02 QA —P 03 04
1x |[++ + - - - - - -
Ix |+- - + + + - - -
Ix |-+ - - - - + + +

M(P)|++ - - - - -

Table 2.15: The profil®, counter-example fofr,,s,(P) < Trynac(P)-

We obtain

Rusa(P) = {{a,—(p A @),~(p A —0),—a1,—02,~(q A —p),~a3, ~04},
{p,—(p A 9),—(p A —Q),—a1,—az2,—(qA —p), 03, —04},
{=(p A~ 9),—(p A —0),—a1,—az2,~(qA —p), A3, —~0a}}

Consequentlyir,,;,(P) = pv a.

VoterpgpA qQp A —QoO1 02 QA —P a3 04
1x |-- - - - - - - -
I1x [+- - + + + - - -
1x |-+ - - - - + + +
MP)[- - - - - - - - -

Table 2.16: After changing the first three judgments of thet figent.

To obtainRynac(P), we need to change the first three judgments of the first vol¢aining
the profile given in Table 2.16. This is the minimal changacsiif either the second or the
third agent change either their judgment pror their judgment org, they have to change
additional other three judgments. We obtBgnac(P) = {—p,—q,—(pA q),—(p A —Q),
=0y, —d2,—(qA — p),—0a3,—ds}. We observe thalr,,,..(P) # p Vv q.

To show that there existsRsuch thafTr,,,,.(P) & Trysa(P), consider the profilé® from
Example 2.1.1. We haveg,,,..(P) = 0, see Example 2.2.14, bilig,s,(P) ¥ g, see Exam-
ple2.2.1. O

Proposition 2.3.23. Rynac is incomparable with R Ry, Rra, Rry and Rywa.

Proof. Consider the pre-agendb= {p,q,p A g} and the profilé® from the proof of Propo-
sition/2.3.11, given on Table 2.9. SinBginac(P) = M(P) u M(P”), whereP’ andP” are
asin Tables 2.17 and 2.18, we obtain thédp A q) € Tryyac(P)-

On the other hand, we obtain:

o Ry = {{p}.{a},{~(p~ a)}},
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Votergp q pA @ \Votergp q pA q
Ix|++ + Ix|+ + +
Ix|- - - Ix|+ - -
Ix|-+ - Ix|- - -

M(P)|- + - M(P)|+ - -

Table 2.17: The first profilé?’, used to prove Table 2.18: The second profil®’, used to
Rvinac is incomparable witlRy, Ry, Rra, RrY prove Rynac is incomparable withRy, Ry,
andRuwa. Rra Rry andRuwa.-

Ry = {{p},{a}.{—(p ~ a)}}
Rry = {{p,a},{—0,~(p A a)},{—p,~(p ~ Q)}}
Rra={{P,~0,—~(p A A)},{p,—a,—=(P ~ O)},{p,a, P A q}},

Rwwa= {{p,—a,—=(p A @)},{p,—0,~(P A~ 9)},{P,q, P A q}}.

Consequentlyir,,yac(P) & Tr, (P) for Z € {Y,1Y,RY,RAMWA}.

To show thaflTr, (P) ¢ Try,nac(P) consider the profilé from Example 2.1.1. As it can be
observed from Example 2.2.1%,,,,.(P) = p A r, but we can observe in Example 2.2.10
that for this profileTr, (P) = —(p A r). Furthermore, we can observe in Example 2.2.11
thatTry (P) ¥ p A r; in Example 2.2.12 thalir,, (P) = —(p A r) andin Example 2.2.8 that
Trea(P) = =(p A 1).

To show thafTry,,A(P) ¢ Trynac(P), consider again the pre-agenda of the proof of Propo-
sition 2.3.22 and its corresponding profifegiven on Table 2.15. For this profile we get
thatRuwa(P) = {p,a,p ~ 0,—(p A —Q),—01,—02,—(q A —p), 03, —~04}, Since for this
judgment set the weight is 17, and for the remaining threergtlessible judgment sets the
weights are: 14 for the set of the judgment sets of the se@rdithird agent and 16 for the
judgment se{—p,—q,—=(p A 0),=(p A —Q),—0a1,—~02,~(qA —p),—0a3,—0s}. Conse-
quently, Tryws = P v 0. In the proof of Proposition 2.3.22 we show tfiaf,,,.(P) # pv q

for this profile. O

Proposition 2.3.24. Rynac is incomparable with Rr.

Proof. To showTg,,;(P) & Tryuac(P) consider the first part of the proof of Proposition 2.3.22.
To show thatTryy.c(P) & Trys(P) consider the profile given in Table 2.13. We obtain

Trunac(P) =~ (P A @) sinceRunac(P) = {{p.—a,=(p ~ @)}, {=p.a—(p A @)}. However
Trur(P) £ —(p A ), see the second part of the proof of Proposition 2/3.13. O

2.4 Conclusion

In this chapter we design judgment aggregation rules basedinimization. For a consen-
sual group, a collective decision has to be such that it adésowith the view of the majority
of the agents in the group. A consistent issue-majorityiseshich each judgment is sup-
ported by a strict majority of agents, does not exist for gyepfile. The profiles for which
such a set exists we call majority-consistent. We desiggmeht aggregation rules that
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minimally change the profile into a majority-consistentfjjleo When the profile is majority-
consistent, no change is necessary. As a consequenceubanisgority set is always selected
by our rules, when it exists. Each concept of minimal charnigesgise to a new judgment
aggregationrule.

We define ten judgment aggregation rules based on miniraizagirouped in four families.
We analyze how these rules relate to similar voting rulesalso to the judgment aggrega-
tion rules proposed in (Miller and Osherson, 2009). The afrthis chapter is to generate
a large selection of concrete judgment aggregation rulasahe majority-preserving and
can be applied to any profile. Judgment aggregation theomnaity follows the reverse
methodology, studying the minimal sets of properties thatlze simultaneously satisfied by
a non-dictatorial or non-oligarchic rule or, such as then¢svork of (Nehring et al/, 2011;
Nehring and Pivato, 2011), the characterization of rulegkvkelect from a desirable collec-
tion of judgment sets.

To determine if two judgment aggregation rules are distiwetstudy the inclusion relations
between the collective judgments selected by pairs of folethe same profile. One purpose
of the inclusion analysis, summarized in Taole 2.4, is tafyexhether two rules select
different collective judgments for the same profile. Anatparpose of this analysis is to
qualify the rules to be able to distinguish them. Our anaysd®ws that the ruldysa and
Rvr are very “weak” in the sense that they often select a verelatgnber of judgment sets.
In this sense the rulBy is weaker tharRry.

The inclusion analysis enables us distinguish betweenrutgnent aggregation rules based
on the number of judgment sets they select. A consensuapgrsually needs only one
collective judgment set to be selected by the judgment agdien rule. Therefore the rules
Ruvsa Ry andRyr are a bad choice for aggregation rules in consensual centebawever
we still need to be able to distinguish between the remainifegs and pair them with partic-
ular problems of decision reaching in consensual groupghis@nd we return to these rules
in Chapter 4 where we develop other properties for judgmggtegation rules and study
how they are satisfied Bycsa Rra Ruwa Runac Ry, Rry andRoH-Max

Since the aim of application for our rules are computatieonatexts, one can also distinguish
between rules by considering the complexity-theoretipprtes of the rules. While we can
reasonably expect that for some rules sucRag finding the collective judgment sets can
be done in a computationally efficient way, for other othershsas the young rules we can
expect that this task is not a problem of low computationatplexity.

That the group decision minimizes the loss of informatiamfithe profile is only one way to
interpret adherence to majority. What we considered indhépter is the utilitarian perspec-
tive of minimizing loss of information. Another way is to nifnize the loss of information
from each individual judgment set in the profile, namely tketan egalitarian perspective.
The ruleR%-Maxjn particular embodies this concept. An interesting cldssles can be con-
structed that minimally change each judgment set in thelpitofobtain a majority-consistent
profile. These types of rules would be of interests to grotipsif-interested agents that need
to reach a consensus on how to share a resource, the sofe#ldidision problemssee for
instance (Brams and Taylor, 1996, Introdcution).
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Developing weighted ternary
distance-based judgment aggregation
rules

Abstract. Unlike in consensual groups, in hierarchical groups theseglice
of the group decision to some majority is not the most relecancern. The
agent responsible for the decision in a hierarchical graeguds to use the ex-
pertise of each agent that contributes opinions. Judgmeighits can be used
to represent the expertise of an agent regarding a givem.isé¢hile in con-
sensual groups each agent can be expected to give a judgmeathb issue, in
hierarchical groups this is not necessarily the case. Timec4ithis chapter is
to develop judgment aggregation rules for hierarchicalpso We extend the
distance-based rules of the previous chapter into a clgasgfent aggregation
rules that aggregate three-valued judgments with assacigeights. We give
specific examples of rules and show the inclusion relatimsshetween each
pair. For this class of rules we also consider the computaticomplexity of the
winner determination problem.

3.1 Introduction

Consider as an example of a hierarchical group a touristmetender agent that needs to
find the best hotel for you, provided your demands and carditi This agent assembles
information from various sources. While the hotel web pagdgghtrbe highly reliable on the
issue of Wi-Fi being available in the rooms, the web page @n esperience is the one with
higher reliability than the hotel page when it comes to tlseésof how silent the room is at
night. There would be certain information that the tourgtiat would disregard, for instance
the quality of the bacon served for breakfast assessmantfre vegetarian tourist blog. Also
the agent is not going to be able to find information on all dedsaand conditions from every
source. Consequently, the tourist recommender agent need® a judgment aggregation
rule that aggregates judgment sets in which some agen@imlost some issuesg., allow
for three-valued judgments, and have different weightamgigg the issues.

In many aggregation contexts for hierarchical groups,rioisfeasible or desirable to request
all the agents to vote on all the issues. In these contexfsrelit agents may have differ-
ent levels of expertise on different issues and consequéwir judgments should have a

51
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higher bearing on the collectively binding decisions. Thlkes introduced in Chaptear 2 are
defined for binary and unweight judgment sets. The problersyad in this chapter is the
development of weighted three-valued judgment aggregatiies.

Aggregation frameworks that allow for three-valued andneweilti-valued judgments have
been considered in for instance (Gardenfors, 2006; Pandwan Hees, 2005; Dietrich, 2007,
Dokow and Holzman, 2010Db; Li, 2010). Of these, only (Li, 2PpBesents an actual rule,
the sequential rule, for aggregating such judgments. Challrules introduced in Chapter
2, the rules based on the weighted majority graph and the hdsed on distances can be
extended to handle weights on judgments. From the rulesllmasthe weighted majoritarian
graph, we defined the rulkza andRywa. A weighted three-valued extensionRga can be
easily constructed following the definitions and analy$iétg) 2010). The ruleRywa, as we
showed, is equivalent to the distance-based Rgles. Therefore, it is the class of distance-
based rules the one we extend in this chapter. More precisehgeneralized further the
family of Ry . The generalization approach we take can be directly appdiggeneralize
Runac into a weighted three-valued rule. Observe that if we watdgenbnsider only weights
associated with agenda issues, we would be extending tb& baked on the majority graph.
If we wanted to consider only weights associated with an faidgka rulesRy, Rry andRyy
are the best candidates for extending.

The challenge in distance-based aggregation is not in ggting multi-valued rules, but
rather in aggregating rules in which weights are assignedequdgments. A judgment is
specified by a pair (agent, issue). Distance-based aggegates originate from belief
merging (Konieczny and Pino-Pérez, 1999, 2002; Konieetral., 2004). Given a set of be-
lief sets and a set of constraints, belief merging theorglistihow to merge a set of belief
bases in such a way that the resulting belief set, or seteypocate as much as possible
from the individual beliefs and satisfy all the given coasits. In belief merging, con-
sidering weights for an agent is not uncommon; see for instdRevesz, 1995). Weights
assigned to an agent are also recently considered in judgaggnegation, (Nehring et al.,
2011; Nehring and Pivato, 2011), however in neither field @oewcounter weights assigned
to an (agent,issue) pair, and weights assigned to issua®acensidered in judgment aggre-
gation. We solve the challenge of assigning weights to juglgmby observing that some-
times a distance measure can itself be expressed usinglametic aggregator.

As in Chapter 2, here also we study inclusion relations betwgairs of specific rules to
verify that these rules select different judgments for oradile. The example scenario of a
hierarchical group we consider in Chapter 5 is an examplgefts making group decisions
in uncertain environments. Since these agents are sevesyrce bounded we make a
complexity-theoretic analysis for the family of aggregatrules we develop in this chapter.

This chapter is structured as follows. In Seciion 3.2 wepithtice the necessary definitions.
In Section 3.3 we design the family of weighted distancestasles for aggregating ternary
judgments and also give examples of specific rules in thiglyarin Section 3.4 we define

an inclusion relation between judgment aggregation rutelsaaalyze this relations between
pairs of the specific rules introduced. Although we want a tbht aggregates ternary judg-
ments, having only binary collective judgment sets setébtethe rule can be desirable. In
Section 3.5 we show how the family of weighted rules can bth&rrmodified to allow the

decision-making agent to control structural propertiethef selected (collective) judgment
sets. The binary value of the collective judgment sets i$ sicictural property. In Sec-

tion 3.5 we also show how known judgment aggregation rulesbeadefined and extended
when represented as a weighted distance-based rule. lio$8di we show the computa-
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tional complexity of determining whether a judgment setriag the ones selected from a
distance-based merging rule. In Secfior 3.7 we make oulgsiogs.

3.2 Preliminaries

In this section we prepare the ground for building our fanuifyextended distance based
judgment aggregation rules. We construct a general judgaggregation framework for
representing three valued judgments. We also present fivétides of the family of rules
we start from.

3.2.1 A dual framework for representing judgment aggregaton problems

The problem of aggregating judgments was formulated b érisl Pettit, 2002) using logic
representations. This problem, under the namesbstractor algebraic aggregatiorhas
precursors in (Gilbaud, 1966; Wilson, 1975) and (Rubimséeid Fishburn, 1936).

To represent an aggregation problem in a logic-based framewne needs to specify a
non-empty setl of well founded logic formulas and a binary (consequencejaticn
E < P(L) x L, whereP(L) denotes the power set 8f. £ is called alanguageand its
elementgpropositions Propositions are not necessarily atomic formulas.

Definition 26. A set of formulas 8§ £ islogically interrelatedf there exists at least onge S

such that either§¢} = ¢ or S\{¢} = —¢.

Definition 27. A judgment aggregation problem is specified by a set of issaled an
agendaA < L. Issues are the propositions on which the judgments are dé&st issues are
interdependent, meaning that they share sub-formulasoarzdé subject to an additionally
specified set of constraint®,c £. The setd u R is logically interrelated.

A (binary) judgmenton issuea € A is usually defined, see for instance (Dietrich, 2007), as
the choice of one element from the $af—a}. Pauly and van Hees (2006) construct a multi-
valued logic framework in which a judgment is a valuationA — T, whereT is a set of
values associated with gradient degrees of truth.

In an abstract framework no agenda is given, instead, thetagboose from a set of allowed
binary sequences. For example, if the agenda of the aggyagabblem in propositional
logic were{p,p — q,q), then the corresponding set of allowed sequences in anaabstr
framework would bg(0,1,0),{0,1,15,(1,0,0>,(1,1,1)}.

A dual framework for judgment aggregation with abstentioas be constructed: the judg-
ments are represented both as propositions and as valsiafianthis end, a ternary logic
languagels is used. We do not discuss here the possible logigghat can be used to
represent the judgment aggregation problems and we do noeoo ourselves with partic-
ular ternary logics. The choice of logic depends on the paldir decision-problem that is
modeled.

L3 is the set of well formed formulas of propositional lodigrop (in BNF):

pu=T[LIp[~¢|¢rd[dved|d—¢|d—0,

wherep e Lo, Lo being the set of atoms.
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The formulas ofC3 are assigned values from the et {0, 2 5,1}. Avaluation is a function
Vo : Lo — T, where the truth-values 0 and 1 are interpreted as in ckldsigic, vo(L) =0
andvp(T) = 1. The intermediate truth—vaIL%is interpreted depending on the semantics of
the particular ternary logi€ 3 used. The semantics @f; also determines how the function
Vg is extended to a function: L3 — T.

A judgment sequender an agendal, with cardinalitym, is the sequencae {0, 3 5,1}™ of
judgments assigned to each of the issues.ikVe writeA(a) to denote the judgment assigned

to ae A according to sequende A judgment sefor an agendal is the setA e %A where
A=Au{—alaecA}. Ajudgment sequenca corresponds to a judgment sktandvice
versa if and only if, for allae A the value ofa according toA is:

e Oifand only if —ac A,
e lifand onlyifae A and
e lifandonlyifag¢ Aand—a¢A.

A consequence relation for a ternary logjeg, is defined in the standard way (Urguhart,
2001). Given a set of formuldsc £3 and a formulap € L3, we say thatp is entailed by,

if and only if all assignments that makd™ true, also make true. A formulay for which

O 3 Y is a tautology ofC3. A formula g is satisfiablein L3, if and only if there exists
at least one valuatiomsuch thaw(y) = 1. A set of formulad is inconsistentn L3 if and
only if [ = 1, andconsistentdenoted™ 1 L otherwise. Observe thétis consistent if there
exists a valuation such thaw/(AT) = Lorv(ATl) = 5

A judgment setA is completewhen there exists na e A for which a¢ A and —a ¢ A.
Correspondingly, a judgment sequerces complete when there exists a& A for which
A(@) = 3.

Example 3.2.1(Judgment sets and sequencdspnsider an agenda = {c;,¢c1 — $1,51),

R = and agents N= {1,2,3,4,5}. Let the judgment set for this agenda assigned byd
2 beAl 2 = {C1,C1 — S1,91}. The corresponding sequence m_rz is Ar2 =<1,1,1). Letthe
judgment set aSS|gned By4 and5 be% 45 = {—c1}. The corresponding sequence Rgm 5
iSAgas = (0,1 3 2> The judgment set and sequenceXand2 are complete, while those for
3, 4 and5 are not complete.

A judgment sefA and its corresponding sequerfareconsistentor logic L3, when

AU R L. Given an agendd and constraint&®, we can generate the set of all consistent
judgment sets and corresponding sequences. The set ofralistent sequence with
respecttk, is A(A, R, =3), while the set of all corresponding consistent sefis(id, R, =3).

To ease reading, we write simply and A whenever it is understandable from the context
what A, R and =3 are used. We denote by‘PP and by A!P™P, the subsets of and

A correspondingly, which satisfy the propeRyop. For exampleProp can be the subset
of all judgment sequences frof®,1}™; the subset of all judgment sequences in which the

judgmenton issuais 3 etc.

Example 3.2.2. For agendaA = {aj,a; A az, &y} andR = ¢J the setsh and A are:

—{<000> (3.0,0),<0,0,3), <% 0,3, <100> (0,0,1), <1072>
<2,0 1), 1,3,1), <0 3.0, (3,3,0),(0,3,%, (33,3, {1,3,0),
(0,3,1), <1,§7%> (331, L,1,1)}
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A={{—-a1,— (a1 A az),~ax},{—(a1 A @), ~az},{—a1, —(a1 A @)}, {— (a1 r @)},
{a1, — (a1 A @), —a@p}, {ay, (a1 A @2), @z}, {ag, — (a1 A @)}, {— (a1 A @2), —ap},
{a17a2}7 {_'alv ﬁaZ}v {—'az}, {ﬁal}v {}7 {alﬂ _'a2}7 {ﬁalﬂ az}, {al}a {aZ}a
{al, (a1 A az), az}}

In judgment aggregation, a judgment profile is a structuat dontains all the judgments
made by agentdl over the agenda items iA. We give a dual definition of a profile: as
a matrix of judgment and as a multiset of judgment sets. Thélprdefined as a matrix
corresponds to the definition of a profile in abstract aggrega

We definerr to be an x m matrix, wheren = |[N| andm = |A|. The elements oft are
judgments: each row of the matrix is the judgment sets of @emtfromN for all issues
from A, while each column contains the judgment sets of all of treneggfromN for one
issue fromA. We define an operator to retrieve a given row, and the operatoto retrieve

a given column from the matrix. Thug>i returns the sequence of all judgments made by
agenti andmtva returns a sequence of all values assigned to agendadssue

Definition 28 (Profile matrix) Let N be a set of n agents antian agenda of m issues. A
judgment profilert € {0, %,1}”*”‘ is a|N| x |A|-matrix T = [p; ;] where p; = vi(a;), and
ieN.

The operators> : {0,3,1}™Mx N — {0,2,1}M and v : {0,3,1}™M x A — {0,3,1}" are
defined as:

m>i = {(pij | j.e {1,...,m}>and
mva; =(pijlie{l,....n}).
Since the judgment sequence can be seen as @ tnatrix, Ava = A(a) denotes the value

assigned to issugaccording to the judgment sequerfcéNe use the notatiof; = rm>i, and
pi,j to denote the judgmertim>i) v j.

Example 3.2.3.Consider the crew of cleaning robotsN{r1,r»,r3} that renders judgments
on agendad = {p1, p2, p3,g} where:

p1: The meeting room is empty.
p2: The floors in the meeting room are dirty.
ps: There is garbage in the meeting room.

g: The group should clean the meeting room.

The constraintis that the group should clean the meetingrd@and only if the room is empty
and the floors are dirty or there is garbage in the roare,, R = {(p1 A (p2 v p3)) < 0}.
One possible profile of judgments is:

P1 P2

ril 11
m=ry({ 01
r31 10

1

The judgment sequence of the robpis rm>r, = (0,1, 3,

for pg is v ps = (1, 3,0).

0)>. The sequence of all judgments
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Alternatively we define a profile to be a multi-set of judgmsetis, multi-set since more than
one agents can submit the same judgment set.

Definition 29 (Profile set) Let N be a set of agents antian agenda. A judgment profile P
for A and N is a non-empty multiset of n judgment sets2Al.

Example 3.2.4. The profile P corresponding to profiig from Example 3.2.3, is
P = ({Pp1. P2, 3,9}, {—P1, P2, =0}, {P1, ~P2, ~P3, —~0}).

3.2.2 Binary unweight distance-based judgment aggregatiorules

A judgment aggregation function is typically definedfdgy, ..., An) € {0,1}", Aq,...,Aq €

A, whereA is the set of all consistent and complete judgment sets. Atradi aggregation
function is instead defined ds: {0,1}™" — {0,1}™. In the judgment aggregation literature
it is always assumed, and we assume it here alsoPthat” and that the allowed co-domain
of f should also bé.

A judgment aggregation rule can be definedmasA" — P(A), where? denotes the non-
empty power set. Thdistance-based procedym®BP defined in (Endriss et al., 2010b) is a
judgment aggregation rule. We give the definition of thiusing our notation.

Let A*P denote the subset @f which includes only the sequences fr¢f1}™.

n
DBP(1) = argmin ) & (A, m>i).
AcAYO =1

TheDBP chooses the collective judgment sequences in the followang First theHamming
distancesdy between a judgment sequendes A'%! and each ofm>i are calculated. A
Hamming distance between two binary sequences is defined as

(AA) = ) |A(a)) —Ala)l.

s

j=1

The rule selects thosee A'0! for which 3 ; &4 (A, rr>i) is minimal.

3.3 The judgment aggregation rules

The distance-based belief merging rules developed in @&amy and Pino-Pérez, 1999) are
constructed by specifying a metric function (called a distain the work in belief-merging)
and an arithmetic aggregation function. In one directiomge&neralize thBBPin the fashion
of the operators of (Konieczny and Pino-Pérez, 1999), msittering a general aggregation
function instead o' ; and a general distance measure insteag}of

If a judgment has assigned weighitwe can see it as an unweighted judgment appeaving
times in the profile, as ifv agents gave the same judgment. Consequently, the aggtegate
judgments oDBP can be viewed as multiplied by a unique weight 1. We use thieola-

tion to generalize th®BP in another direction: before being aggregated the judgsneret
multiplied with their assigned weights.
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3.3.1 Aggregation functions

Aggregation functions are defined in (Grabisch et al., 2@@93). Since we use aggregation
functions extensively, we give this definition here.

Definition 30. Letl be a non-empty real interval. An aggregation function ismction
O:I"—1
that satisfies the following properties:

o if X<y, then®(X1,...,%..., %) < O(X1,...,Y,..., %) (hon-decreasing);
e ( satisfies the boundary conditions:

—inf @=inf I;
—supG®=supl.

For example, the_ is an aggregation function defined for the interyaloo, +0) since

; n
Xilmini:j_Xi =+

We also include here the definitions of the most common ptimgseof an aggregation func-
tion, as given in (Grabisch et el., 2009).

Definition 31. An aggregation function is:

e symmetricif and only if®Q(X) = ©([X]s), for everyx € I" and permutationo
(Grabisch et al., 2009, pg.22);

e associativef and only if ©(x) = x for all xe T and®(x,O(X’),x"”) = O(x,x’,x") for
all x,x',x"” € | Jpeno I" (Grabisch et al., 2009, pg.22);

e idempotentf and only if®(x,x...,x) = x for all xe I (Grabisch et al., 2009, pg.24).

In (Konieczny and Pino-Pérez, 1999) timenimality of aggregation functions is considered.
We give here the general definition of this property.

Definition 32. An aggregation functio® satisfies minimality whe@(x) = inf Tif and only
if x=0Q(nf I,...,inf I).

As a consequence of the infimum boundary conditio@@nd the property of non-decreasing
we have thatik = ©(inf L,...,inf I) then®(x) =inf L. Therefore® satisfies minimality
when if©(x) = inf Tthenx=Q(inf I,...,inf I).

We give the definitions of some common aggregation functiohise functions)., Max,
and an operatdBmaxare considered in (Konieczny and Pino-Pérez, 1999; Kanieet al.,
2004);>.,M, maxandAM are presented in (Grabisch et al., 2009, pg.6). The aritlcmetan
AM defined aAM(X4, ..., X)) = 1 3(xq,...,%). Observe that, while it holds thatvi(x) >
AM(y) if and only if >3(x) = > (y), the functionAM is idempotent, whilé’ is not.



58 Chapter 3 Developing weighted ternary distance-based judgent aggregation rules

Definition 33. For x € I", the following functions are defined

X)) =Xa+...+FXn;
maxx) = maxXy,...,Xn);
AM(X) = 3L

Mn(x) =X1-... Xn;

Gmaxx) = {(y1,.--,¥n) [ Yiexandy > - > yn}.

The functionsr, max AM, N andGmaxare aggregation functions. Ti@maxis also called
aleximaxoperator. The>}, max AM andGmaxsatisfy minimality on the intervdl = R* =
[0,+0), while N satisfies minimality on the intervdl= [1,+0). To see thaGmaxis

an aggregation function, observe tl@maxsorts the input vector in a descending order.
There is a one to one correspondence between the naturalensimibd the sorted vector
Konieczny et al. (2004).

All aggregation functions we present here are symmetricsatidfy associativity. Only the
aggregation function8M andmaxare idempotent.

3.3.2 Distance functions

Konieczny and Pino-Pérez (1999) define “distances” whablzad Deza (2009) define to be
a “metric”. Here we follow the nomenclature and definitiofigldeza and Deza, 2009), pri-
marily because we want to use a type of metric, not consider#&bnieczny and Pino-Pérez,
1999), that would enable us to construct weighted distdrased judgment aggregation rules.
We present the definitions frorn (Deza and Deza, 2009, pgad)(Deza and Deza, 2009,
pg.45) that we use.

Definition 34. Let X be a set. A functiod : X x X — R™ is calleda distanceon X if the
following properties are satisfied for everyyyze X:

e J(x,y) = 0 (non-negativity),
e 3(x,y) = O(y,x) (Symmetry), and
e O(x,x) = 0 (reflexivity).

A distanced is called ametricon X when for every,y,ze X:

e J(x,y) = 0if and only if x=y (identity of indiscernible);
e O(X,y) < 0(x,2) + &(zYy) (triangle inequality).

The setX, d) is called a metric space whehis a metric.

Definition 35. Let (X1,d1), (X2,d2),...,(Xm,dm) be a finite, or countable, number of metric
spaces. A product metric d is a metric on the Cartesian produs Xo x - - x Xy =
{X=(X1,X2, ..., Xm) : X1 € X1, ...,Xm € Xm} defined as a functio® of o, ..., om.

Theorem 3.3.1.1f X3 = Xo = ... X, = X, (9, X) is a metric space an@ is an aggregation
function forl € [0, 4+00) that satisfies minimality, then(®,x’) = ®['_,5(x;,X) is a metric.
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Proof. Assume tha® is a metric. As a consequené€xy,xp) = 0 if and only if x; = xp,
O(X1,%2) = O(X2,X1) andd(x1,X2) + O(X2,X3) = (Xy,X3) for anyxg, Xz, x3 € X. We need to
show that satisfies identity of indiscernible, symmetry and triarsguhequality.

Identity of indiscernible

Since® satisfies minimality, thed(x,x") = ®[_,0(x,x) = 0 if and only if 5(x;,x/) = O for
eachi. Therefored satisfies the identity of indiscernibledfsatisfies this property.
Symmetry

From the definitiord(x,x") = ®_,0(xi,X/), while d(x’,x) = ®'_;3(x{,X). We obtain that
d(x,x’) = d(x’,x) if 8(x,X) = &(X,x) for eachi. Therefored satisfies symmetry ib satis-
fies symmetry.

Triangular inequality

Since?d satisfies triangular inequality, we have tlzﬁat(,l,xz) + 5( i , x3) = 8(x, x2) for each
i € {1,...,m}. Consequently®™,d(x',x?) + ®M,8(x?,x%) > @™ ,6(xt,x?) since both®
and+ are non-decreasing. O

The well known functions, the Hamming distance anddteestic distanceare both product
metrics that can be defined for aXy We will give their definitions, as well as introduce
some other product metrics and distances. Some of theséidns@re defined only for
X = {0, 3,1}, since we are interested in three-valued judgments.

Definition 36 (Hamming product metric)

The Hamming metric is a functiody : X x X — {0,1}, which indicates if two judgments
differ. It is defined as:

_ {0 wheng =a
O (ay,8) = {1 whena #ay
The Hamming product metricydis a function ¢ : X™ x X™ — N, which indicates the
number of judgments on which two sequences differ. It isetkfs:

s

Ay (X, X' ) =) (X, X)-

1

Example 3.3.2.Consider the agendd = {a;, a,, a3} and the sequences for ity A= (1, 2,O>,
<27170>1A3 <1727 >

The Hamming metrics between these sequences are:

du (A1,A2) = 2 because the judgments in And A differ on issues aand &,
du (A2, A3) = 2 also because the judgments ip &nd A differ on issues aand &,

du (A1,A3) = 0 because the judgments in And A are the same on all issues.

The drastic distance between to sequences is one if thersszpiare different and zero if
they are the same.
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Definition 37 (Drastic product metric)

The drastic distance is a functiomd X™ x XM — N° defined as:

do(X,X") = max 3 (X1,X}), OH (X2,%5), - - - , O (Xm, X)) -
Example 3.3.3. Consider the sequenceg Ay and A for the agenda from Example 3.3.2:
Al = <17 %7O>1 AZ = <17 170>1 A3 = <17 2 >
The drastic metrics between these sequences are:

dp(A1,A0) =

1
dp(A2,A3) =1,
dp(A1,A3) =0

The Hamming distance does not make a difference by how muchuslgments differ, but
whether they differ or not. WheK = {0,1}, this is not a problem, but foX = {0 ,2,1}

we might want to consider by how much do two judgments dif@éne way to capture this
concept of distance is by tHxicab metrica measure introduced by Hermann Minkowski
(1864-1909). The Taxicab metric between two judgment secgeis the sum of the absolute
values of the difference between each judgment pairs indaences.

Definition 38 (Taxicab product metric)

A taxicab metric is a function
5r:{0,3,1} x {0,3,1} — {0, 1,1}, which indicates by how much do too judgments differ. It
is defined as:
Or (x1,%2) = [X1 — X
The Taxicab product metric is a function d{0, 3,1} x {0, 3,1}™ — N° defined as:

m

dT(X,X/) = EéT(Xthl)

i=1

Observe tha} is an aggregation function that satisfies minimality on titerivall = N°.
Example 3.3.4.Consider A, A; and A for the agenda from Examgle 3.3.2; A <1, 5,00,
Ay, =(1,0,0), Az = <2,1,O>.
The Taxicab metrics between these sequences are:

dr (AL, A2) = [1—1|+|3-0[+]0-0| = 3,

dr(Az.As) = [1— 3/ +10 -1 + (00 =13,

dr(A1,Ag) = |1—3|+[3-1/+|0-0] =1
Observation 3.3.5.1f Aj, Ay € {0,1}™ then d; (A1, A2) = dr(A1,A2)

The Taxicab metric does not make a difference whether thgnjigeht is determined, 1/0 or an
abstention. With choosing the metric the designer choosestd treat the abstentions with
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respect to judgments “yes” and “no”. By choosing the Hamnonghe drastic metric, the
abstentions are treated as equal to the “yes” and “no” juddsneT he “distance” functions
can be defined to treat the abstentions differently.

The distanceng assigns the distance zero from any judgment to an abstethias consid-
ering an abstention to equal to “yes” when compared to a “yedment and “no” when
compared to a “no” judgment.

Definition 39 (Optimistic metric)

The optimistic distance is a function
Mo : {0,3,1}Mx {0,3,1}™— {0,1} defined as

Mo(x,x') = Y 37 (%, X))
i=1

Observation 3.3.6. The function rp satisfies non-negativity, symmetry and reflexivity, but it
does not satisfy identity of indiscernible. The functfx) = (3> o| |)(x) does not satisfy
minimality.

Example 3.3.7. Consider the agenda from Example 3.3.2 and the judgmenfsefs and
As for this agenda: A= (1,3,0), A, = (3,3,0), As = (0, 3,0).

The optimistic metrics between these sequences are:

mo(Al,Az) =0+0+0=0,
mo(Az2,A3) =0+0+0=0,
mMo(A1,A3) =14+0+0=1.

In all the metrics we presented, the number assigned to aopg@irdgment sequences is
always obtained by comparing only the two sequences in tineg(Paiddy and Piggins, 2011)
introduce a more complex metric for complete judgment sets functiong : A9t x AL,

that is not a product metric. Their metric is defined in théofwing way. Letg = (A‘01, &) be

a graph where the vertices are the judgment sequence¥in The set of edges e A0 x

AYOY consists of pairg¢Ag, Ay) € € for which there exists nd e A1 such thaty (A, Az) =

du (A, A) +du (A Az). Ametricg(Ag,Az) is the number of edges in the shortest path between
Aq andAz.

We can extend the metric of (Duddy and Piggins, 2011) to irglete judgments by using a
graphgs = (A, &) and allowing for an edge to exist betweknandA; if an only if there exists
noAce A such thaty (A, Az) = dr (A, A) + dt (A, Az). We call this metriag. We calculate
0(A1,A2) as the number of edges in the shortest path betwgemdA,. However, whether
this metric is meaningful depends on the semantics of theatgrogics. For instance, for
the logics of Kleeney or tukasiewicz, and a classieal, there is a judgment sequence at
a Taxicab distancé or at a Hamming distance 1 for each judgment sequenée ifihis is
because a judgment s&is consistent wheA U R 3 L is false or unknown to be falsee.,
evaluated tc}.

Other distances and metrics can be defined.
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3.3.3 Weights

Different agents may not be equally competent, or able,ue gidgments on all agenda is-
sues. Enriching the judgment aggregation problem reptaienwith a collection of weights
captures this variety. There are three possible types gftvethat can be considered: weight
associated with an agent, weight associated with an agesda and weight associated with
a judgmentj.e., with a (agentissue pair. All types of weights can be represented with a
weight matrix Given a set of agentd and an agend4, a weight matriXW is a W j]nxm
matrix. The elements &/, w(i, j) e R*, are the weights assigned to the judgments given by
i e NforanajeA

One interpretation of the judgment weights is that of theglverepresenting reputation or
perceived accuracy of an agemnegarding issua at a given time. The reputation can be
defined simply as the ratio between the number of times art &jasked to make a judgment
on issuea; before time momernit and the number of times, untilhas his judgment been
confirmed. Assume that(i, j,t) € [0,1] is the normalized reputation of agentegarding
aj € A. Weights can be constructed from reputatidn j,t) aswi j(t) = 1+r(i, j,t), thus
maintaining that; ; > 1. When the reputation of the agent is 0, namely none of higijuehts
is confirmed, his weight is 1, because the opinion of this ag@hneeds to be considered.

The cases when no weights are supplied, when weights assbwidgh an agent are supplied,
or when weights associated with an agenda issue are suppéirdall be represented as a
special case dN. If no weights are given, thew = U, whereU is such that for eachand

j, Wij = 1.

If the weights associated with an agent are given then foh gagi 1 = W2 = --- = Wim.

In judgment aggregation problems that use this type of wiejghe reputation of the agents
is set beforehand and does not depend on the agéhdafor a set of three agents and an
agenda of three issues the maifixs a possible agent weight matrix.

111
W=1121212
020202
If the weights associated with agenda issues are giventieachj, wy j =wo j = --- = Wy .

This type of weights distinguishes between the relevanamefissue over another. These
weights do not depend on the agent who renders a judgmemnt.i¢saea is more relevant
then issued, then the difference in judgments @nis more severe than the difference in
judgments or&'. E.g.,for a set of three agents and an agenda of three issues thg Was

a possible issue weight matrix.

1215
W=|[1215
1215

Consider the so called “truth-functional” agendas, whielm be partitioned into a set of
premises and a set of conclusions. Based on this partitioa,can distinguish between
premise-based rules, which place higher importance onrs@ipes and conclusion-based
rules that place higher importance on the conclusions. Aling to the premise-based ag-
gregation rule defined in (Dietrich and Mongin, 2010), themdive judgments on the issues
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from the set of premises are the judgments supported byd stdjority. We can use the
weights to force a rule aggregator to be premise-based, drngasing the weights on the
premises, or conclusion based, by increasing the weightiseooonclusions.

In this thesis we work under the assumption that the weight¢ are specified by the agent
who aggregates the judgments. The presence of judgmerttiséigan aggregation problem
implies that one pre-established agent or service aggretfa judgments centrally. This im-
plication is due to the collective judgments selected ddpanon who assigns the associated
weights.

Lastly the weights can be used to represent aggregatiomgonsbn which not all agents are
allowed to give judgments on all agenda issues. If the aggiregagent is not interested in
the judgment ora; of agenti, then he should set(i, j) = 0. The zero weight can also be
used in the case when the agents fail to report a judgment vea igsue due to for instance
technical difficulties in communication.

3.3.4 Distance-based rules, the generalization

We can now "“lift” the definition of the premise-based procedalong the two directions and
construct a new family of weighted distance-based judgraggtegation rules.

Definition 40. LetA = {ay,...,am} be an agendaR a set of constraints, N a set of agent
names, and\(A, R, =3) the set of all consistent three-valued judgment sequences &nd

R. Let® be an aggregation function, and d a product metric. The roetrs constructed from
an aggregation functio® that satisfies minimality and a distanée A weighted distance-
based aggregation rule is a functid®® : A" x (R*)™M — P(A), defined as:

MO (W) = argmin Oy @y w(i, }) - 5(Aa), T, ).
AcA

Example 3.3.8. Consider the profilet from Example 3.4/1 for agents N {1,2,3}. Let the
weight matrix be W.

aiapas aQiazag
1{133 11%2
m=2({100 w=2|1%2
3000 31%?1

We use® = ® = >, and d = dr. The sum of weighted distances between=Am>1, and
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each sequence af, when® = >’ is:

ZI lZJ 1W(i, j) - Or (Aavay, Avaj)
=302 (W(i,1) - &t (ALvay, Avay)
+w(| 2)-or(Atvay,Aivay)
(I,3 5r(A1V33,A|V83)

,2)

)

(1 2 (Alvaz,Alvaz) ( ) (Alvag,Alvae,))
Alval,szal) + W(27 2) .

w(3,2

w(1,1)- or o ot
o Ot (ArVag, ApVag) +W(2,3) - Or (A1 Vag, AVag))
or or

(
(W(2,1)-
(

)
)
(Alval,Alval) + W
(
O (

+
+ (W(3,1) - or (A1Vay,Azvay) + W(3,2) - ot (A1Vay, AzVay) + W(3,3) - o1 (A Vaz,AzVag))
=111~ 1l+z-%—%|+2-l%—%|
+1-1- 1|Jrg 11— 0|Jrgl |? 1]
+1-11-0[+5- |% 0|+A—1 |% 1
=0+0+0+0+g+5+8+3+4
= 3.66

If the weight matrix contains weights associated with annagee can define a weighted
aggregation rule without the requirement thas a product of distances. L&tbe a weight
tupleV = [w],x1 containing the weight of each agent.

Definition 41. An agent-weighted distance-based aggregation rule is eactiom
NSO AN x (RT)" — P(A), defined as:

ASP(mV) = argmin O(wy - d(A, Tm>1), ..., Wy - d(A, T>n)).
AcA

The co-domain of the rule& must be a power set &f. However, we can define the rules
A for a profiler e {0, 2,1}””” instead ofrre A", without much modification. This means
that the distance-based judgment aggregation rules cgmpieéito sequences which are not
consistent for the chosen logic. Miller (2008) studied theecwhen each agent is allowed to
use his owrsubjective rulesk; for the judgments he produces. In addition to this variation
one can also conceive the case when each agent uses intlisidijactive semanticsOur
rulesA%© can be applied to both of these two cases. The definitidd6fdoes not explicitly
consider the ternary logic semantics. This concern is vesoby defining the seA. The
difference between aggregating sequences consistent instance Post logic (Post, 1921)
and Kleeney logic (Kleene, 1938) is that the co-domain®® is different for each of these
logics.

3.4 (Non)Inclusion relationships between specific rules

Each combination of),® andd gives rise to another aggregation rule, however not all of
these rules are meaningful. We call a raleaningles# for every profile, except the profile

in which g, = ™ = --- = 1, each judgment set that is in the profile is also selected as a
collective judgment set. Namely, a rule is meaningless wbeall me A" and for alli € N,

m>i € AYO(m,U). For instance, combiningl with any distance function gives rise to a
meaningless rule, since for eache A" we obtain thatA®™(7,U) = . Combiningmax

with dp gives rise to a meaningless rule as well, since urigss ™ = - -- = 1, we obtain
AT (L U) = A.
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Combiningmaxwith d, or d; we obtain a rule that behaves as a plurality voting rule, hgme
it selects the judgment sequence that is supported by thedanumber of agents, regardless
of how big this number is with respect to the total number afragn. When such a sequence

does not exist, the entire profile is selected.

To usell we need to use a function whose domaifilis+co) instead of[0, +00). One such
function ismp : {0,1}™ x {0,1}™+ N defined as:
me(x,X') = ML 2304

We can then obtain an opera#»1. However, for every profilet, A™ ™ (71,W) selects
the same judgment sets A% -2 (71, W): it is enough to observe that for any three judgment

sequenced, A; andA,, from {0, %, 1}™Mit holds

D Wi - G (A, Aw(i) < D wai- O (A(), Ae(i)
i=1 i—1

if and only if

m m
[ [wai - 220 AOAD) < Ty ;- 200 ADA2D),
=1 i~1

We can construct a judgment aggregation function for theruall = [1, 4+ c0) as
N*(x) =ML (x + 1).

Usingl* =M og, whereg(x) = x+ 1, we can obtain meaningful judgment aggregation rules.

We can illustrate the specific rules that can be obtained thighmetrics and aggregation
functions that we introduced through an example.

Example 3.4.1. Consider the agendd and corresponding set from Example 3.2.2, and
the profile:

133
m=[100
000

Table 3.1 gives the results fafH©(,U), Table 3.2 gives the results fafo-O(7,U), Table
3.2 gives the results fak%©(7,U), and Table 3.4 gives the results #6Fo-O(r,U). The
dark gray fields are the minima in each column correspondiagtaggregation rule. For this
m, all rules select1,0,0). However this is not the case with all profiles.
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A [dn(A<1,3,3))|d4(A (1,0,0))[dn(A{0,0,0)[ 3 [Max| Gmax [M*[AM
(0,0,0) 3 1 0 4| 3 1(3,1,0)] 8]1.33
(3,0,0) 3 1 1 5| 3 |(3,1,1)|16]1.66
(0,0,3) 2 2 2 6|l 22227 2
(3,0,3) 2 1 2 5|12 | (2,2,1)|18]1.66
(1,0,0 2 0 1 EE e
(0,0,1) 3 2 1 6| 3 |(3,2,1)24
(1,0,3> 1 1 2 4| (2,1,1)]12(1.33
(3,0,1) 3 2 2 7| 3 |(3,2,2)|36(2.33
(1,3,1) 1 1 3 7| 3 1(3,3,1)/16/2.33
(0,1,0) 2 2 1 5|1 | (2,2,1)]18]1.66
%,%,0> 2 2 2 6| 22227 2
0,%,1 1 3 2 6| 3 |(3,21)24| 2
%%32[ 1 3 3 7| 3 /(331)322.33
1,%,0) 1 1 2 4| 21,1)]12]1.33
<o,i,1> 2 3 2 7| 3 1(3,2,2)36/2.33
13,3 0 2 3 5| 3 |(3,2,0)[12]1.66
4,1,1 2 3 3 8| 3 |(3,2,2)48|2.66
(1,1,1) 2 2 3 7| 3 |(3,2,2)|36(2.33

Table 3.1: The Hamming metric between the sequencasaind the elements d.



3.4 (Non)Inclusion relationships between specific rules 67

A |dp(A{1,3,3))|db(A.{(1,0,0))|dp(A,(0,0,0))| 3 [Max] Gmax|r*| AM
(0,0,0) 1 1 o |2 & [{@%0) 4 [©%s
pd g NI
Eljoj-z—li 1 1 1 3| @ E1’1'1; 8| 1
22 Ly
(1,0,0) 1 0 1 H A 4 066
(0,0,1) 1 1 1 3@ | @118 1
<1,o,%> 1 1 1 3|@|@a1yl8| 1
<2,o 1) 1 1 1 3|@|@a1yl8] 1
<1,2,> 1 1 1 3@ | @118 1
<o,2,o> 1 1 1 3@ | @118 1
S I IR F| ([ HE
111 1 1 1 3| @ (1'1'1) 8| 1
272’2 14y
<1,2,o> 1 1 1 3| @1yl 8] 1
B Gl e
1202
111y 1 1 1 3|@|@a1yl8| 1
1,1, 1 1 1 3|@|@a1yl8] 1

Table 3.2: The drastic metric between a sequencgeand the elements df.

If a rule is not meaningless, how can we determine if it seldué same collective judgment
sequences as another rule? In Chapter 2 we defined the emgdeadnd set inclusion of
judgment aggregation rules through the logical theory efrtles. The majority of the rules
based on minimization select incomplete judgment setslddieal theory based comparison
is adequate there since it compares the collective judghsemtcted by the two rules that are
being considered.

The distance-based judgment aggregation rules always stleast one collective judgment
for each agenda issue, therefore a more adequate relatidys@nbetween the rules is one
that considers which judgment sequences as a whole aréeskéewd not the individual judg-

ments. We introduce a variant of rule relations, considganule to be more discriminant
than another rule when the set of sequences selected bystheliralways includes the set of
sequences selected by the second rule, under the same anafileeight matrix. We define

this rule relations concept formally.

Definition 42 (Rule Relations) Let R and F, be two judgment aggregation rules defined as
Fi:9'x (RT)™Ms P(S)and K : ' x (RT)™M— P(S).

We say that rule Fis included in rule |, denoted F— R, if for everyrre " and

W e (RT)™Mit holds that k(7T,W) c Fo(1T,W).

A rule F is incomparable with rule ; denoted F% F, if there exists a pairre S' and
W e (RT)™M such that if(T,W) ¢ Fo(,W) and R(m,W) ¢ F1(T,W).

Arule R is equal to rule &, denoted F= F, if for everymre S" and We (R™)™™M it holds
that R (T, W) = F(rT,W).
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A dr(A{L3,5)]dr(A(1,0,0)]dr(A0,0,0)[>[Max Gmax | M* [AM
<ooo> 2 1 0 3| 2| (21,0 6 | 1
(3,0, o> 1% 1% % 3% 1% (11;,;,; 9.375|1.16
(0, o,2> 13 15 3 33| 12 | (13,13,3) | 9.375|1.16
(3,03 1 1 1 3 i (1,1,2) 8
(1,0,0) 1 0 1 HB 4
(0,0,1) 2 2 1 5| 2 18
(1,0,3> : 1 1% 2% 1% 13 5.645)0.83
(3,0,1) 11 1% 17 43| 13 (11,13.13)[15.625 1.5
<1,%,1> : 1? 25 4¥ 22 (2? %,%) 13.129 1.5
(0,3,0) 13 13 : 33| 15 | (13,13,3) | 9.375|1.16
<;,10> 1 1 1 3 i (1,1,2) 8 |1
% % 1 2 1 42| 11 | 12 |13
3.%.3 % 13 1% 3% 1% (11,13, 3) | 9.375|1.16
{, g,o> 3 i 1; 23| 13 (1%,%,%) 5.625(0.83
<o,-,1> 13 23 13 53| 25 |(23,15,11)21.8751.83
<1 ) 0 1 2 3| 2| (21,0 6 | 1
2,2,1> 1 2 2 5/ 2| (221 | 18 |1.66
(1,1,1) 1 2 3 6| 3| (321 | 24 | 2
Table 3.3: The taxicab metric between a sequenceasaind the elements af.
A [mo(A {1, 3,3))|mo(A{1,0,0))[mo(A,{0,0,0)) > [Max| Gmax|M*| AM
(0,0,0) 1 1 0 2/ 1 |(1,1,0) 4/0.66

Table 3.4: The optimistic metric between the sequencesand the elements of. Note
that since the sequence in which all judgments]?':lm'll always be closest to any judgment
sequence, we can disregard it.
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We show the inclusion properties of the distance-basedegggion rules built upon the spe-
cific aggregation functions we considered.

Proposition 3.4.2. A%% = A%AM for d such thate = Y .

Proof. Forn> 1

izm]w O(Avaj,Aiva)) <anzm:w O(A'vaj,Aiva;)
i=1j=1 i=1j=1
if and only if
1 n m 1 n m
ﬁZZW 5(Ava;,Avaj) <522W S(A'vaj,Ava)).

i=1j=1 i=1j=1

Proposition 3.4.3. A9Maxc Ad.Gmaxgnd Ad.Gmax+ Admaxfar d sych tha® = 3.

A [dn(A,{1,0,0%)[d(A (1,1, 1))[dn (A, <0,0,0%)[Max] Gmax
(0,0,0) 1 3 0 3 [ (3,1,0)
(0,1,0) 2 2 1 B 221
(1,0,0 0 2 1 B
(1,1,1) 2 0 3 3 |(3,2,0)

Table 3.5: The Hamming metrics between the sequencasaind the elements of. The
dark gray fields are the minima in the corresponding column.

Proof. For xq,...,Xn,Y1,---,¥n € RT if Gmaxxy,...,X,) < Gmaxy,...,yn) then the first
element ofGmaxXxy, ..., Xn) is smaller or equal to the first element®@maxys, ..., yn). Since
the first elements cBmaxXxi, ..., X)) ismaxXxi, ..., X,) and the first element of
Gmaxysi,...,Yn) ismaxyi,...,yn). Consequently, if

m
Gmaf.; Y w(i, ) 6(Avaj,Ava;j) < Gmaf_ lZW )-3(A'vaj,Ava;)
= =

then
m m
Z 5(Ava;j,Ava)) < Z S(A'vaj,Avaj).

To show thand:Cmax¢ admax it is syfficient to give an example af. Considerd = dy and
W =U. LetA = {a3,a,a3}, R = {ag < a1 A ap} and

100
=(111{.
000
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As it can be observed in Table 34+ ™(,U) = {(1,0,0),(0,1,0)}, while
A%-CmX( U) = {(1,0,0)}. O

Proposition 3.4.4. A%6Maxx AY for d such that® = 3.

Proof. We give a counter-example.
Let A = {a1,ap,a3}, andA = {0,0,0),{0,1,15,{1,0,0),{1,1,0)},d = dy, W = U and
110

m=|110].
000

As it can be observed in Table 3™, U) = {(1,0,0)} while
AT U) = {(1,1,0)}.

A~ [dn(A(1,1,09)[dn (A, (1,1,0))[dn (A,{0,0,0))] Gmax ]|y
(0,0,0) 2 2 0 (2,2,0) 4
(0,1,1) 2 2 2 (2,2,2)| 6
(1,0,0) 1 1 1 3
(1,1,0) 0 0 2 (2,0,0)|2

Table 3.6: The Hamming metrics between the sequencasaind the elements of. The
dark gray fields are the minima in the corresponding column.

O
Proposition 3.4.5. A%X % A" where d is such tha® = >

Proof. We give a counter-example.

Let A = {a1,a2,a3,24,3s,3s,87,3s, 39,310, 11, 812,813,814} be an agenda. The set of all
consistent judgment sets fordtis given in Table 3.7.

| A= {a1, @, a, &, a, a, a7, ag, a, aio, a1, ar, a3, au} |
Al = {a, —a, —a3, a, —as, —a, a7, —ag —ag, &, —a11, @12, A3, 14}
AZ = {—a1, ap, —a3, ~a4, as, —ap, —ay, ag, —ag, —a10, A1, —A12, A3 14}
AN = {—ay, ~ay, as, —ay, —as, A, —a;, —ag, g, —aio —A1, A2, X3 A4}
At = {—ay, —ap, —a3, —~ay, —as, —as, —ay, —ag, —ag, —a1g, —aA11, 12, —A13, A14 }
A = {—ay, —ap, a3, ~ay, —as, @, —ay, ag, —ag, —aig, —aA11, —a12, —aA13, —d14 }

Table 3.7:The setA of consistent judgment sets for agenéla

Let the profilert be such thatr>1 = A1, m>2 = A, and >3 = As. As it can be observed in
Table 3.8A%-Z(r,U) = {Al, A2 A3}, while A%-T* (,U) = {A%).

O
Proposition 3.4.6. A%CMax AN for d such that = 3.

Proof. Consider the same examplemfs in the proof of Proposition 3.4.5;
A%Cma{ iy ) = (AL A2 A%}, while A% (T U) = (A%, O
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A€ A|dy (A A1) |dH (A A2) |dH (A Ag) | 20| M
Al 0 8 8 |16/ 81
A? 8 0 8 |16/ 81
A3 8 8 0 |16/ 81
A? 5 5 5 |15/216
A° 8 6 4 |[18]315

Table 3.8: The sum and product of Hamming metrics from an element in ¢éhé\ go each of the
agent’s judgment sequences.

3.5 Representational abilities oA%®

In this section we discuss the expressivenegs'ét in terms of judgment aggregation prob-
lems it can be applied to. We show how the co-domain can beated to obtain desirable
properties for the collective judgment sequences. We disa siow one can emulate the
premise and conclusion based procedures using%ferules.

3.5.1 Co-domain restrictions forA%®

A desirable property of an aggregation rule is to aggregatemplete judgment sets but
select a complete collective judgment set. This means we avardgment aggregation rule
that has incomplete judgment sets in its domain, but onlypieta judgment sets in its co-
domain. The co-domain of th&%© rules is the set of all consistent judgment sequences
A. As a consequence, this property of completeness of theatiwit judgment sets is not
satisfied by theAd® family. However we can extend the definition 4% to include the
co-domain as an additional parameter of the function.

Definition 43. Let X< A be the subset of judgment sequences that satisfy a certzpery.
A X-restricted distance-based judgment aggregation mitbé rule
NGO - AN 5 RMM s P(A) — P(P(A)) defined as:

AYO (1T, W, X) = argr;ﬂn@{‘:l(@ﬁ":lwi’j -S(A®), pij))-
S

To ensure that the selected judgment sequences are conpietaeeds to set — A0,
Restricting the co-domain can also be used to engineerltiwallactive judgment sets adhere
to the view of the majority on particular agenda issues. Akn@v from the impossibility
results in judgment aggregation such as (Dietrich, 200dtyRand van Hees, 2006), for most
logics, the issue-majoritarian set is not always a consiggelgment set. However, for some
subset of agenda issuBs= A, majority-adherence can be consistent and guaranteed. Thi
subseB must be such that for adle B and any valuatiorB\{a} u R £z a.

3.5.2 Emulating other judgment aggregation rules withA4-®

The first two judgment aggregation “rules” are the premiaeddl and conclusion-based pro-
cedure presented in (Kornhauser and Seger, 1993), undeathes “issue-by-issue voting
and “case-by-case voting” respectively. These rules gpéicgble to agendad that can be
partitioned to a set of premise’ and a set of conclusion4®.
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Of the two procedures, the premise-based one has been ntersierly studied in, for in-

stance (Dietrich and Mongin, 2010; Mongin, 2008; Endrisal 20100). According to the
premise-based procedure, the collective judgment on aipeeis the judgment supported
by a majority of agents. According to the conclusion-basext@dure, only the collective
judgments on the conclusions are derived, by selectingjtaiment for each conclusion
that is supported by a majority of agents. Due to the “mangaiocompleteness of the

selected judgment sets, this procedure is not much comsidiethe literature. We extended
the conclusion-based procedure with a distance-baseeédguoe in (Pigozzi et al., 2009) to
obtain collective judgments on the premises as well. Herbuwild on the work presented in
(Pigozzi et al., 2009).

When the judgments are three-valued, there are two waysfioedne majority function.
One is them; function which is used when aggregating binary profiles i@hbr 2.

Definition 44. Let Ny ={i|m; =1} and N ={i|m;=0} The  function
m: A" x (RT)™M x A — {0,1} is defined as:

L Dieny Wij > Dien Wij
my(ray) = {0 iff Ycn, Wij < Dieng Wi j
1 iff otherwise

The my function undefined whe;;y, Wi j = >jicn, Wi,j and biased against the undecided

judgment, namely thé is only selected if the number of agents who render judgmeast 1
the same as the number of agents who render the judgment MbAased majority function
can be defined as well.

Definition 45. Let Ny = {i | mj =1}, Ny = {i | mj = $}and N = {i| mj =0}. The

unbiased, or absolute, majority functionmA" x (RT)"*M x A — {0,1} defined for & A
as:

I Dieng Wi > Dieng Wi + 2ieny , Wi
Iff Dieng Wi > Dieny Wi + 2ien, , Wi
iff otherwise

mz(T[,aj) =

Nk O B

Maj(r,W) = (mp(mv1,W),...,mp(mvmW))

The functionmy, is undefined when there is no one judgment that is supportedrbgjority
of agents in a pair-wise compartment (with the other two judgts). For ternary judgment
profiles we can define as many premise-based proceduresasithanajority functions that
can be defined.

Definition 46. Given a profilerre A", an agendad = {af,...,af} U A° andR. The biased
premise-based procedure-BPBP and the unbiased premise-based procedure RBP is
defined as

B—PBP(P) = {my(m,a”) |aP e AP} u {&° | a®e A°, {my(m,al),...m(maf)} U R =3 &%

U —PBP(P) = {mp(m,aP) | aPe AP} U {a®| a° € AS, {mp(m,a)),...mp(m,af)} U R |=3 &°}.
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Another way to view the premise- and conclusion-based phaes is as rules in which
the adherence to majority is guaranteed for the set of pesnir the set of conclusions
correspondingly. We can represent and extend the premridesamnclusion-based procedures
through a distance-based aggregation Afl&.

The premise-based procedure is only applicable for thosélgs P for which the set of
premises is logically independent. The premise sub-prafilés the matrix obtained from
the sub-sequences containing only judgments on the premiistuitively, ri° is the matrix
obtained when fronat by removing the columns corresponding to the element‘of

E.g., let agend& be such thatl® = {p, p — q} and AP = {q}. If mis a profile forA, then

1 is the premise only sub-profile.
1 10
m=|1 =13
0 01

We can extend the biased and unbiased premise-based presBduPBP andU — PBPto
weighted distance-based judgment aggregation rules ifollogving way.

RNk O
[N )

Definition 47 (Extended premise-based procedurdsjt X,, and X,, be co-domain restric-
tions defined as:

Xop: A € Xpp if and only if Aa) = my(rt,a) for allac AP

Xup: A€ Xyp if and only if A@) = mp(1,a) for all a e AP.

The biased and unbiased premise-based weighted aggradatictions are defined as:
b— pbmn’vw) = Ad"@(nvwvxbp) and
u— pbmn-vw) = /\d-,G(n-’W’Xup).

If the agenda is such that the judgments on the conclusi@nsrdaquely determined by the
judgments on the premises, then the choice afd® are irrelevant. Otherwise there will be
as many premise-based procedures as ther@agg pairs.

In the similar manner we can define two extended conclusaseth procedureb,— cbpand
u—chp

Definition 48 (Extended conclusion-based procedurdst the restrictions ¥ and X,c be
defined as ¥: A € Xy if and only if A| a corresponds to afr,a) for all a € A°
Xuc: A € Xycif and only if A| a corresponds to a{r,a) for allae A°.

We can define the extended conclusion-based procedures as:

b— cbp(r,W) = A%O(711, W, Xpe) and
u—cbp(rm,W) = A0 (11, W, Xy).

We can go about another way to extend the premise-basediumese by using\%™2. LetA
be an agenda containing only one isslI® = ¢ andrt a profile for this agenda. We obtain

thatA(A7R7 ):3) = {<1>7<%>a<0>}
i1 |1—Aval = [N-| + |No|,
S, 0— Aval = N | + [No| and
Yitallz —Aival] = [Ny |+ [N-|.
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Thev selected byA%r%(11,U) corresponds to the unbiased majority(71,a). WhenA has
more issues, theAd X (7’ U) returns the sequence corresponding to the{setP,aP) |

aP e AP} because ] ; & (Av |, i, j) are minimal for the judgments that correspond to the
unbiased majority, due to

Zin:ldT (AvAl)
= Y121 Or(Avj, i, j)
= ZT:lZi:léT(Avjv Tl'i, J)
Therefore, we can define an unbiased premise-baset)iRBP also as follows. LeAP =

AYX (1P, U). We concatenate to the sequeadethe sequence of judgments on the conclu-
sions obtained by deductively closimj). We write

UPBP(m) = APu(v(a) |ac A°andA’ U R =3 v(a)).

Another judgment aggregation rule frequently considerethe literature is theequential
judgment aggregation procedufkist, 2004a; Dietrich and List, 2007b; Li, 2C010). This rule
pre-supposes that there exists a total otd@ver the agenda issues. The agenda issues are
ranked according to some parameter as for example, relewafribe issue. The sequential
procedure consists in applying the majority functionto a subset of the agenda, starting
from the issue ranked highest accordingt@nd continuing down the order until the judg-
ments on the remaining issues are determined bynilie, a) already calculated. If the order

is not total, then we can apply the® rules to ensure that the collective judgments on the
preferred issues correspond with(7T,a). We can usen, as well.

3.6 Computational complexity of winner determination

Determining the complexity of thevinner determination problerfor social choice rules is
one of the fields of research in the focus of computationabsatioice (Chevaleyre et al.,
2007). The winner determination problem in voting theohesproblem of deciding whether
a particular candidate is selected as the winner for a givefig of votes when a particular
voting rule is used. The computational complexity of the méndetermination problem is
used as an indication of how difficult it is to determine thépati from a particular social
choice rule in the “worst case” profiles.

Endriss et al. (2010b) define the winner determination mnobfor judgment aggregation
rules in terms of collective judgments instead of collestjudgment sets. Given a num-
berK, a profilerr, an agendal and a judgment for agenda issaiethe winer determination
question is whether there exists a judgment sequarca ‘% such that(a) = v(a) and the
distance fromA to the profile is smaller or equal thah Endriss et &l. (2010b) show that
this winner determination problem, fdr=dy, ® = >, and binary profiles, is solvable by a
non-deterministic Turing machine in polynomial time.

In judgment aggregation, the winner determination probdam be defined as the problem
of deciding whether a given judgment set is selected as thective judgment set when a
particular judgment aggregation rule is applied to a givasfile of judgments. This is the
approach we take because the distance based rules germlatéve judgments for each
issue. When the judgment aggregation rule is resolute, lmnddllective judgment sets are
necessarily complete, it is a good choice to define the wide&rmination problem as in
(Endriss et al , 2010b) since by checking for each judgméether it is selected as collective
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or not, once can compute the entire collective judgment détsvever, when the judgment
aggregation rule is irresolute, or the incomplete judgnsets can be selected as collective,
this approach of checking judgment by judgment does not teambmputing a collective
judgment sets.

We define thgudgment rule winner determination probleand state it for an instance of an
agendad, set of rulesR, and a judgment aggregation rife A" x (RT)™M — P(A)in
the following way.

Definition 49 (WinDetfor F).

Let F be a judgment aggregation rule:FA" x (RT)™™M — P(A). We consider an agenda
A of cardinality m, set of rulef, and a set of agent n names N. The WinDet problem for F
is specified by the following input and output.

Input: Profilerre (A(A, R, =3))", sequence AA(A, R, |=3) and weight matrix W& (R* )™M,
Output: true if and only if Ae F(rT,W).

We show the computational complexity of ténDetproblem forA%® andwW = U without
fixing the® andd.

Proposition 3.6.1. If ©® and d are computable in polynomial time then WinDetA8€ is in
g

Proof. zg is in the second level of polynomial-time hierarchy, seauF&s3....

Figure 3.1: The polynomial time hierarchy, under the commassumption thaP-NP. The
arrows denote inclusion.

Zg is the class of all decision problems that can be solved bynad@terministic Turing ma-
chine in polynomial timei.e., NP Turing machine, that has access to a non-deterministic ora-
cle that takes polynomial time to respond to problems sdhtite., NP oracle (Papadimitriou,



76 Chapter 3 Developing weighted ternary distance-based judgent aggregation rules

1994, pg. 425). Each levebf the hierarchy is determined according to the followingia-
las, where the exponent is the class of the oracle:

° Aip = Pzip—l
p P
o 3P — NPH-1
e MP =coN P

We prove the proposition by showing an algorithm¥éinDetfor A%©.
Algorithm: WinDef(1, A)

1. guess a valuationv for the atoms inA4;

2. if vis a model forA and not ExistBette(, A)
then return(true) else return( false);

Oracle: ExistBettefr, A)

1. guess A’ € {0, 5, 1}™;
2. guess a valuationv’ for the atoms im4;

3. if vV isamodel fo and O(d(A, 1), ...,d(A', M) > O(d(A, m),...,d(A m,)) then return(true)
else return(false);

A distance from a judgment sequen&eo a profilerris the output ofo]' ,d(A, rm>i). The
algorithm proceeds as follows. Recall ttdatan contain both atomic and non-atomic formu-
las. First, a valuation for the atoms.his guessed. We check that the valuation is a model
for A, i.e.,such that for its corresponding judgment 8ét holdsA U R 1 L. Then we make

a call to theNP oracle who returns a Boolean answer to the question of whathelgment
sequence exists that is closer to the profile thali such a sequence is foundljs not among
the selected collective judgment sets.

The oracle determines its answer in the following way. Fargudgment sequenc® is
guessed and then a valuation for the atom&'iis guessed. We ensure thtis consistent
and then we compare the distance frahto the profile and the distance frofvto the profile.
The algorithms and the result can be easily adapted for tiightesl case oa\%@.

O

The assumption we make fgy andd is that they are computable in polynomial time. The
distances and aggregation functions we introduced in @e8ti3 are computable in polyno-
mial time, with the possible exception of the distamlgeproposed in (Duddy and Piggins,
2012).

To calculateds(Aq,Az), one has to determine the shortest path between the vettices
sponding toA; and A in the un-weighted bidirectional gragh= (Awl,E). Finding the
shortest path in a graph with non-negative weights can h&dalsing the Dijkstra’s algo-
rithm (Dijkstra, 1959) in quadratic time over the number eftices. However, complexity is
added by constructing the grath The set is the set of edges defined@s, A) € € if and
only if there exists né\ e A'9Y such thatly (Ag, A2) = dn (Ag,A) + dy (A, Az). Consequently,
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to constructG one has to check, for eadky andA; that there is nA between them. We
conjecture that this problem is not solvable in polynomirakt

In the weighted case, a weight matvikis also a part of the input. § andd are computable
in polynomial time with respect to the size mfandW, then so i, and the above result can
be easily adapted.

Let us define acoreof aA e A, with respect to a weight matriw/ and a profilert to be the
distance from A tat.

s(A, W) = ®in:1 @En:iwi,j -0(AvVa;, 15 j).

Depending oW andd, the number of possible scores can be known. For instance, fo
a weight matrix in whichw; ; = 1 for all i and j, and the Hamming distance, the number
of possible scores is exactly the cardinality of the agemdalus one. If the number of
possible scores faA®® is known in advance and bounded by a polynomiahjm then
computingWinDetfor A%O is in ©5. @5 = PNPI°d ] s the class of problems solvable by a
polynomial-time deterministic Turing machine asking atstd(log n) adaptive queries to
anNP oracle)!

The (conditional) membership i®; can be demonstrated by the following variation of the
algorithm.

For an ordered sef, let med X) denote the median of, X* denote the subset &f from
med X) up, andX~ the part belonmedX). LetVal be the set of possible scores.

Algorithm: WinDet(r, A)

1. Poss.=Val;
2. repeat
3. k:=medPoss;
4. if Exist(m,Poss )
then Poss.= Poss™ else Poss:= Poss';
. until |Pos$ = 1;
6. if S(A, ;W) = med Posg
then return(true) else return( false);

[

Oracle: Exist(, Posg

1. guess A’ € {0, 3,1}™ and a valuation;
2. ifvis a model forA’ and s(AP™Me, 11 W) e Possthen return(true) else return(false);

According to this algorithm, we do a binary search to find theimal scores(A’, T, W) that
can be assigned to somMéc A. The binary-search algorithm can be executed in logarithmi
number of steps, with respect to the siz&/af and that is why there are logarithmic number
of calls made to the oracle. If the score of the candidate this minimal score theA is
among the sequences selected\B{ (1, W).

Endriss et al. (2010a) show that their winner determinatimblem for the premise-based
procedure is decidable in polynomial time. The complexitgsinot change when we con-
sider ouWinDetfor theB — PBP(P) andU — PBP(P) rules.

11 would like to thank an anonymous reviewer for the workshbBacial Choice and Atrtificial Intelligence held
in conjunction with the 2% International Joint Conference on Atrtificial Intelligenfmr hinting the property and
sketching the proof.
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Proposition 3.6.2. The WinDet problem for B PBP(P) and U— PBP(P) is in P.

To prove this proposition, it is sufficient to give a desddptof an algorithm that decides if
AeB—PBP(P) orAc B—PBP(P). First we check whether the candidatis consistent. This

is a model checking problem for ternary logic which can beemin polynomial time. Then,

for each judgment fog; in AP we check whether it corresponds to the biased or unbiased
majority of 1’ va;. This can be done i®(m-n) time.

The complexity of a winner determination problem only irati&s how difficult it is to ver-
ify that a judgment sequence is selected. In judgment aggjcey it would be of interest
to determine the complexity of theearch problem In a decision problem, we look for a
confirmation whether a given output can be produced by aifumcin a search problem, we
instead look for the output that a function produces for @giargument.

TheWinDetproblem forA9-- while W = U is (still) in NP. This can be proved by slightly
modifying the proof presented in (Endriss et al., 2010a).

Theorem 3.6.3. The WinDet problem foA%T~ while W = U is in NP for Kleene and
tukasiewitz logic.

Proof. Endriss et al. (2010b) reduce their winner determinatiambl@m to the well known
NP hard problem of integer programming, see for instance (@i, 2009, Chapter 2). We
can do the same. We write a varialyje {0,1,2} for eachae A andx € {0,1,2} for each
element ofr € R. The constraints fox; is X, > 0 for eachj. The constraints fox; depend
on the ternary logic used. We show the constraints for themdeand tukasiewitz logic.
The Kleene logic observes the relations between the comescto we can give only the
constraints for- and A:

ay=—ap: Xo =2—X1
az=a1Aap: X3 <X, X3 < Xo, X1 +X2 < Xg+2
=g ca:Xi+tXo<X3+2,x1+az3<Xp+2
X >0 (3.1)

For the tukasiewitz logig — ¢ = —(—¢ A ¢) does not hold, hence we need to specify the
constraints fox; for all of the connectives:

a=—a;: Xo =2—X1
az=aAay: X3 < X1,X3 < Xp, X1+ Xo < Xz + 2
ag=ava. X3 = X1,X3 = Xo,X1 + Xo = X3+ 2
az=a —a: X3 < 2,X3 < 2—X1+ X2, X1+ X2 < Xg+ 2
B=ag e X+ XB+2 X +ta3<X+2,X+X3<X+2,2< X +ax+X3
X >0 (3.2)

We omit the requirement in the proof of (Endriss €t al., 2()1Bhat a for particular judgment
a;, the constraink; = 1 is added because we are not interested if one particulgnjadt is
selected as collective or not. We set the s¢Otte be the score of any of the sequences in the
profile. The rest of the proof can be used unchanged.
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Letre A", W=U, andAc A. Let

n(A(), v j) = #{i | S(A(j) — 1.}) :%
1

Mo (A(]), v j) =#{i | 0(A(]) — mm,j) = (3.3)
Ford = d it holds that
Z (A mm>i) = 32 &r(A()), 1)
i=1 i=1j=1
= > M VIAG) — ]
i=1j=1
= > (e (A()), IV ) + 2na(A(j), 1TV §) (3.4)
j=1
Ford = dy it holds that
Z (Amm>i) = > o (A()), 7 j)
i=1 i=1j=1
= Y 3 AG) = ]|
i=1j=1
= 2 n2(AG). 9 1) (3.5)

Il
[aN

To compute a winner underA%-X  we need to find a sequencé e A(A,R,|=3), or
A € A(A,R,}=3k) correspondingly, characterized by variables . ., xm that minimizes the
sum

N1 (X1, TVL) + 2-Np(Xq, V1) + - - - + N (Xm, TVM) + 2- Np(Xm, TTVM).

For the caselr we need to minimize the sum

Np(X1, VL) + - - - + Np(Xm, TTVM)..

To this end we introduce an additional set of integer vaeigygl > 0 for j € [1,m]. We ensure
thaty; = ni(xj, mvj) + 2-ny(xj, TV j) by adding the constraints :

(Vi<m) ny(xq, mv1) +2-np(xj, TV j) < Y;

(Vi<m) ni(xq, V1) +2-ny(xj, MV j) =y; (3.6)
or the constraints

(Vi<m) ni(xq, V1) +2-ny(xj, MV j) <j

(Vi<m) ny(xq, V1) +2-ny(xj, MV j) >; (3.7)
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correspondingly.

Now we need minimize "
2 yj <K
j=1

subject to constraints (3.1) and (3.6) for Kleene logic dndto constraints (3'1) and (3.7)
for Kleene logic andly, to constraints (3.2) and (3.6) for Lukasiewicz logic atid and to
constraints (3.2) and (3.7) for Lukasiewicz logic aigd This integer program is feasible if
and only ifAis a winner forAd, > (r,U).

O

3.7 Conclusions

Judgment aggregation rules used by hierarchical groupddhbe able to aggregate incom-
plete judgment sets into complete judgment sets regardfdbe number of agents or type
of agenda. The rules should also be able to aggregate wdigittlgments. In this chapter we
develop a family of weight-sensitive distance-based jueignaggregation rules that satisfy
these requirements.

A distance-based judgment aggregation rule is fully spetifiy specifying a paifd,®) of
product metricd (specified by another aggregation functi@nand a metricd) and aggre-
gation function®. We present examples of distance functions and aggregatiations.
While the Hamming and Drastic distances have already beed imsjudgment aggrega-
tion, the Taxicab distance is a new option. From the five agggien functions we pre-
sented,>’, maxand Gmaxhave been already introduced in the literature of beliefgimgr
by (Konieczny and Pino-Pérez, 1999), AN andlM* are new. When applied to the same
profile, AM gives the same results &3. The rulel*, however, gives rise to truly new
aggregation operators. We summarize the (non) inclusisultebetween the families of
distance-based aggregation rules in Table 3.9.

NS ADAM pd max Ad,GmaXAd,ﬂ*
ARX = x££
AWM= = o 2
S c £
Ad.Gma £ # > = #

Table 3.9:The summary of the (non)inclusion results tbbeing a product metric constructed using

®@=3.

In this chapter we also discuss the computational compl@fithe winner determination
problem for the distance-based aggregation rule. For apaaifiedd and® the complexity
is 2, which can be considered as high silig’ein the second level of the polynomial time
hierarchy (Papadimitriou, 1994, pg. 425). This compleistyowered toG)E when certain
distances and aggregation operators are used, sufih @sd>. In Sectior 3.5.2 we intro-
duced the extended premise-based procedure. The comypdéxite winner determination
problem for this procedure is considerably lower, but thenise-based procedure is not ap-
plicable to all agendas. Endriss et al. (2010a) show thatkithg whether an agenda is “safe”
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is a problem in the complexity clagsy, which is in the same level in the hierarchy Es
Consequently, checking if the premise-based procedurbeapplied safely is more difficult
than using the procedure (Endriss €t al., 2010a). The distbased aggregation rules have a
higher complexity, but they can always be applied.

Based on the complexity analysis in Section 3.6 we can makedhclusion that extending
a distance-based rule from binary to ternary judgments doemfluence the complexity of
theWinDetproblem for the rule. However, extending the rule from urghégd to weighted

judgments can influence thginDetcomplexity.

Compared to Chaptar 2, here we do not generate as many speleficHowever, we do give
a “template” for many weighted distance-based rules, epebified by a pair of aggregation
functions and a metric. Therefore we need to be able to digism among all possible specific
rules that can be generated using this “template”. This mézat we need to know how to
select the aggregation functio@sand®, and a metri@d so that the resulting rule is adequate
for a given decision-reaching problem.

In part we answer the question of selectidg® and d by the complexity analysis of the
WinDetproblem. For well-behaved rule in terms of complexity of WWaDet problem,®,

@ and & should be computable in polynomial time and the co-domairsoth © and®
should be enumerable. However this characterizatiap,@ and? is still very general. In
the next chapter we define various structural and relatiomgderties that enable us to further
specify®, ® andd and distinguish further among weighted distance-basedrul
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Selecting judgment aggregation rules

Abstract. We need a way to distinguish between the judgment aggregatio
rules we constructed. To accomplish this we qualify the mdgt aggregation
rules by the properties they satisfy. In the judgment agafieq literature such
properties have been studied from a combinatorial, whicipg@ries are mutu-
ally consistent, or characterization point of view. Oneitgafly studies which
minimal set of properties can be satisfied by a judgment Alirnatively one
studies the properties that characterize all rules thacsebllective judgment
sets from a desirable set of judgment sets. Compared withepties studied in
voting theory, not many properties in judgment aggregatiave been consid-
ered for judgment aggregation rules. In this chapter wetcoctsproperties for
judgment aggregation rules and we study which of our rulésfgahem.

4.1 Introduction

In Chapters 2 and 3 we introduced many judgment aggregaties producing distinct judg-
ment sets for the same profile. How can we choose which rulsddar a given multi-agent
system group decision problem? A judgment aggregationisuéefunction that assigns a
non-empty set of collective judgment sets to a profile ofuitial judgments. How good is
a specific judgment aggregation rule for a particular pnoisle

The conventional approach to qualifying aggregation rulesocial choice theory is a theo-
retical analysis of properties; one conceptualizes, definel studies (un)desirable properties
for the rules. In this chapter we take the theoretical apgrda qualifying judgment ag-
gregation rules. In social choice theory, one studies whiagtimal set of properties can be
satisfied at the same time by a non-dictatorial or non-otigiarjudgment aggregation rule,
such is the work of (Dietrich and List, 2008a; Nehring and 542010b), or the properties as
a way to characterize the rules that select from a specifiectan of judgment sets, such as
(Grandi and Endriss, 2010, 2011; Nehring et al., 2011; Mehaind Pivato, 2011). This gives
rise to impossibility results along the line of the Arrowsebrem (Arrow, 1963, Chapter 3).

In this chapter we are interested in constructing desinafglperties for judgment aggregation
rule and in analyzing which of the rules introduced in Chegfeand 3 satisfy the constructed
properties. Each aggregation context gives rise to its atroknecessary, desirable, and
undesirable properties for a rule.

The properties of a judgment aggregation rule can be cledsifitwo large groupsstructural
characteristicsandrelational properties The structural characteristics are the properties that

85
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are satisfied by the profile being aggregated and by the tiokesets that are the aggregate,
i.e.,these are properties of the domain and co-domain of the jedgaggregation rule. The
relational properties are the properties that hold betwberinput profile and each of the
assigned judgment sets. It is mainly the relational pragethat have been considered in the
judgment aggregation literature.

The first desirable properties considered for judgment egagion are universal domain,
anonymity and systematicity (List and Pettit, 2002), digecimported” from the prefer-
ence aggregation conditions of Arrow (Arrow, 1963, Cha@er Further properties have
been considered: independence of irrelevant informatidiat(ich, 2006a), monotonicity
properties (Nehring and Puppe, 2010a; Dietrich and LisD52@Qist and Puppe;, 2009), and
(Dietrich and List, 2008a) as well as unanimity propertig$dr instance (Dietrich and List,
2008bh; List and Puppe, 2009).

In the judgment aggregation literature (List and Polak,C30but also in the abstract and
binary aggregation literature (Dokow and Holzman, 20:10&@n@i and Endriss, 2011), one
considers a judgment aggregatimctionto be a function which associates a profile of bi-
nary judgments to a unique complete set of binary judgmetitgyre 4.1 a). The listed
properties, universal domain, anonymity, systematitfitg, monotonicity and the unanimity
properties, are defined for such judgment aggregation ifumet In Chapter 2 we defined
judgment aggregation rules which are functions that aaseei profile of binary judgments
to set of a possibly incomplete judgment sEigure 4.1 b). In Chapter 3 the judgment aggre-
gation rules are extended to functions that associate apaiofiles, of ternary judgments
and associated weights, to a set of sequences of ternampgrdg, Figure 4/1 c).

P q phg P g PAg P a pAg
L[-» ¢ -(pAq) 1[-p ¢ -(pAg) 10 1 0
2|p —a —(pAg) 2|p —¢ ~(pAg) 2(3 0 0
3Llp g pAg 31lp ¢ pPAg 311 1 1
b i 2 b i /\
{p,q,p N g} g q}q (pAa)} 0,1,0
(Es 15 E)
a) Judgment aggregation b) Judgment aggregation ¢) Judgment aggregation
function rule from Chapter 2 rule from Chapter 3

Figure 4.1: lllustration of the different ways to define judgnt aggregation functions.

The structural properties of judgment aggregation, pality those referring to the domain,
can be considered without drastically adapting the defimiéivailable in the literature. How-
ever, for studying relational properties one needs to coostlefinitions for judgment ag-
gregation rules that correspond to the properties defingddgment aggregation functions.
The main culprit for these difficulties is thaesolutenes®f judgment aggregation rules. A
judgment aggregation rule issolutewhen for every profile, and every weight matrix in the
case of a weighted rule, the aggregate is a singleton setrrasdlute otherwise.

Consider for instance the unanimity principle which stalted if all agent rendered the same
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judgment for issu@ e A then this is the judgment fain the collective judgment set. Since
we have more collective judgment sets, is the unanimitygipie satisfied if the unanimous
judgment is contained in at least one, most of, or all of tHeective judgment sets? We need
to define the relational properties for the generalizedohate version of judgment aggrega-
tion rules. We construct these definitions by first definingwhdoes a property of a resolute
rule corresponds to a property of an irresolute rule. Asduiriity the example of the unanim-
ity property, there can be several versions of an irresalueproperties that correspond to
a given resolute rule property. We consider the most commopegsties encountered in the
judgment aggregation literature.

A common concern when constructing a social choice rulesiseisponse to manipulative
agents. An agent is manipulative if he choses the informatiosubmit (opinions, judg-
ments, preferences, votes, etc.) instead of being honiélstthe purpose of ensuring that the
aggregate is one he prefers. A social choice rukrategy-proofvhen none of the agents
can benefit by being manipulative. Manipulability of judgmeaggregation rules is more
difficult to study compared to that &.g, voting theory, since the agents are not modeled
to hold preferences over the judgment sets. The researchanipaiability of judgment ag-
gregation function, by Dietrich and List (2005) and Endesal. (2010b), is conducted by
making the assumption that the smaller the distance betaeeagent’s judgment set and a
collective judgment set, the more that agent “prefers” tindlective judgment set. The same
approach is taken by Everaere et al. (2007) for studying theipulability of distance-based
belief merging operators.

Apart from the properties considered in the judgment aggjienq literature, there are many
interesting properties that can be imported from votingotiie These are of interest for
judgment aggregation rules as well, both from social-teBoand computational viewpoint.
In particular we can outline the propertys#parability(Smith, 1973), also callecbnsistency
by (Young, 1975) and thindependence of clongsoperty (Tidemen, 1987). The property
of separability in voting theory states that, given two gesfiof votes for the same set of
candidates, if a candidate is among the winner of the botfilgpspthen the same candidate
is among the winners of the profile obtained by combining tbih Iprofiles. This property
is desirable from a computational point of view. Aggregatimaller profiles of judgments
is more efficient than aggregating large profiles. If a rubg atisfies separability is used, a
very large group of agents can be split and their profilesegaied separately. Comparing
the winners from each profile can eliminate the need to agdedfe joint profile of all the
agents.

The property of independence of clones in voting theorestdiat when a candidate is added
to the set of candidates, and this candidate is identicalc@naidate already in the set, the
winner of the election does not change. There are no camdidfajudgment aggregation, but

the independence of clones can be defined for agenda itedeednif two agenda issues are
logically equivalent, then the collective judgment on tlethbequivalent issues should be the
same, regardless the profile. We define the separabilityralggpendence of clones properties
in a judgment aggregation framework.

The manipulability of a social choice rule is an importarsuis when the outcome of the
rule constrains in some way the behavior of the agents. Fanple, a person in a group of
friends, choosing a restaurant for dinner by voting on actiele of restaurants, is expected
by social norm to go to the restaurant that is selected by atiag/rule, even if he does not
particularly prefer it. In an agreement reaching settimga@ent is constrained to abide by the
results of the judgment aggregati@ng, participate in solving the problem once a solution is



88 Chapter 4 Selecting judgment aggregation rules

agreed on. However, we made the assumption that the agemnsmanipulative and thus
we are not concerned with this aspect of the judgment aggoegales.

In some aggregation contexts it is possible to evaluateenf@pnance of a judgment aggre-
gation rule experimentally. Consider Example 4.1.1.

Example 4.1.1. A group of three agents needs to agree on whether there is @nfitee
building they occupy. They consider the following set aféss

o fire is observed (f),
e smoke is observed (s),

e the alarm went off (a).

The agenda isA = {f,s,a} and the constraints ar® = {s— f,(aA s) — f}. The robots
interpret their perceptual data to construct an opinionaedjng the truth-values of f, s and

a. Since the perceptual data can be inconclusive or evengwiore to sensor malfunction,
the robots may observe an=aA as true even when a is false, or observe a as false even
when it is true. However, regardless of what the robots olisethere is a unique factual
truth-value assignment of f, s and a that corresponds to theah state of the world.

Truth-trackingis the process of establishing these unique truth-valussthrrespond to the
actual state of the world (Hartmann et al., 2010). How gooddginent aggregation rule is
can be measured with respect to how good the rule is at tratking, namely how often it
is the case that the collective judgment set assigns vahasorrespond to the actual state
of the world.

If the aggregation context is such that truth-tracking is ¢foal of the collective decision
then a good judgment aggregation rule is one that is good#-tracking. To ascertain the
truth-tracking quality of a rule, one needs to constructnausation or experiment in which
one can compare the number of total aggregations with théauof aggregations in which
the collective judgment set produced by said rule are falitiof the truth. The experimental
approach to qualifying judgment aggregation rules in teofrtsuth-tracking is addressed in
(Ganesan, 2011).

This chapter is structured as follows. In Section 4.2 we @ivdefinition of an aggregator
rule that generalizes the aggregators considered in Qlsabtencd 3. We also define when
a property defined for one type of rule corresponds to a ptppefined for another type of
rule. In Section 4.3 we define and analyze the structuralgrt@s considered in the judg-
ment aggregation literature. In Sections 4.4 and 4.5 we eeafiid analyze the first relational
properties studied in judgment aggregation: independehiceslevant information, neutral-
ity and anonymity. In Section 4.6 we define and study majeaitfrerence properties, in
Section 4.7 unanimity adherence properties, in Sectiom¥aBotonicity properties and in
Sectior 4.9 separability properties. In Section 4.10 we ¢/ie definitions of properties that
can be desirable for a judgment aggregation rule, but we dstndy how these properties
are satisfied by the rules we considered in Chapters 2 ands3lylia Sectior 4.11 we give
an overview of which properties are satisfied by which ruled elate aggregation contexts
with structural and relational properties that are advgexas for rules used in these contexts.
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4.2 Preliminaries

We begin by constructing a general definition of a judgmengfregation rule. The rules
introduced in Chapters 2 and 3, but also judgment aggregatitctions in other literature,
e.g, (List and Polak, 201.0; Dokow and Holzman, 2010b; Grandindriss, 2011), are a
special case of this general rule. Using this definition we define properties of rules that
are applicable for all categories of rules.

Definition 50. Let N be a set of n agent names, T a finite enumerable set ofvalties,

t a T-valued logic with an entailment operatpsr, A < £ an agenda of m elements and
R < L aset of constraintsA (A, R, =1 ) is the set of all sequences from*T™ that satisfy the
constraintsR and are consistent with respectfter. LetR™ be the interval of real$0, +0)
and §,S < A(A,R,=L). A weighted judgment aggregation rule is a function

F oS x (RYH™M s P(S)).

We have so far worked with three types of sgtands; .

Example 4.2.1. Let the set $be the set of all consistent and complete (binary) judgment
sequences. Namely S A(A, R, =) < {0,1}™, wherel= is the classical propositional logic
entailment operator. A judgment aggregation function #épjnaggregation rule, abstract
aggregation rule) (List and Polak, 2010; Dokow and Holzr2010b; Grandi and Endriss,
2011) can be defined as

f: S x (™M S,
Example 4.2.2.Let § = A(A, R, |=3) < {0, %, 1}™ wheref=3 is a classical entailment op-
erator for some three-valued logic. The rules in Chapter 8 ba defined as

NGO - % % (R+)nxm — T(Se,)

Example 4.2.3.Let § = A(A,R,}=a.) = {0,3,1}™ be the set of all ternary judgment se-
guences consistent with respect to the ternary tukasielogiz semantics (tukasiewicz,
1920; Urguhart, 2001). We can define the rules based on niaitioin in Chapter 2 trough

Definition50 using Sas a co-domain.

Recall that most of these rules in Chapter 2 are such thatdlexted collective judgment sets
are incomplete. Each judgment set A incomplete on a judgfoemte A can be replaced
with two complete judgment sets Aand A~ such that a= AT and —ae A™; the resulting
judgment sets being consistent under ternary tukasiew@iz kemantics.

According to the semantics of the Lukasiewicz ternary lagie can think of the truth-values
as sets of classical truth-values, namely {F}, 1= {T}and3 = {T,F}. The third value is
in a sense interpreted as a variable that can be replaced &ittier true or false. Therefore,
the co-domain of the aggregation rules from Chapter 2 is eajent toP(S.). The rules in
Chapter 2, can be defined as

R: S x {1}™M— P(]).
Observe that §S < A(A, R, [=aL).
The relational properties of judgment aggregation rulas ¢an be encountered in the litera-
ture are defined for functions that are resolute. How canadioslal property defined for res-

olute rules be “lifted” to irresolute rules? Moreover, if Wwave a definition of relational prop-
erty for irresolute rules, how does this property relate poaperty defined for resolute rules?
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To answer this question we introduce the conceltiftirig between properties. Observe that,
when restricted to the (possibly empty) domah= {rr| me A7 and|F(m,U)| =1},Fisa
resolute rule. Recall that was the weight matrix in which all weightg(i, j) = 1. We con-
sider the unweighted ca$® = U only since the resolute rules considered in the literature,
and the properties defined for them, are unweight.

In addition to the difference in output cardinality, thealkese rules defined in the literature
are defined for binary judgments, while the rules defined iagiér 3 are defined for ternary
judgments. Therefore, when constructing a definition ¢iflgf, we also need to consider the
relation between the seBfor which the aggregators are defined.

Definition 51. Let the function f. S'— S be a resolute rule and ley)be a property for
such defined functions. Let:F§' x (R*)"™™— P(S,) be a judgment aggregation rule that
satisfies some property). The sets S, &nd § are such that & § and Sc §. A property
(x) lifts a property §) if (y) is satisfied by F for evergre S" such thafF (r,U)| = 1.

For a relational property, there will always be more than possible ) property that lifts
the samey() property due to the irresoluteness of the judgment aggjcegaules. In the next
chapters we construct properties by lifting the most comproperties for resolute rules.

4.3 Structural properties

Once we have the definition of a rule, we can consider its stracproperties. The type
of judgments being aggregated characterizes the ingutthe domain, of a judgment ag-
gregation rule. We can distinguish between two orthogoys: thevalue-typeand the
weight-type The value-type specifies the values that the judgmentssiptbfile can take.
We have considered binary and ternary judgment profilestiMalued profiles are consid-
ered in (Pauly and van Hees, 2006) and (Li, 2010). The weigig-specifies the weights
that can be associated with the profile. We considered umveigfiles, agent-associated
weights, agenda issue associated weights and judgmertitseig

One structural property considered in the judgment aggicgiterature iuniversal domain
defined in (List and Pettit, 2002) for judgment aggregatiamctions. The universal domain
is satisfied when the judgment aggregation function is déffoe all profiles of complete
and consistent judgment sets. Universal domain is simpigteralize, since it only refers
to the rule’s domain. All introduced judgment aggregatioles satisfy universal domain by
construction.

Definition 52. A judgment aggregation rule F from Definition /50 satisfies timéversal
domainif and only if, for everyd, R and}=, § € A(A, R, =L).

Collective rationality(List and Puppe, 2009) is another structural property amrsd in the
literature. Collective rationality states that only raéb collective judgments are admissible
as outputs. This means that the judgment aggregation misg/alselects consistent judgment
sets. This property is also easy, when compared to otheepiegp, to define for the judgment
aggregation rules of Definition 50.

Definition 53. A judgment aggregation rule F from Definition 50 satisfiedlective ratio-
nality if and only if, for everyre §¥ and We (R*)™™ F(r,W) € A(A, R, EL).
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The judgment aggregation rules of Definition 50 satisfyexilve rationality by construction.

The outputj.e.,the co-domain, of a judgment aggregation rule is also cheriaed by value-
type as wellge.g, binary in the case of, Lukasiewicz ternary in the case Bf ternary in the
case ofA. The value-type of the output is expressed trough a propaitgd completeness
(List and Puppe, 2009). A judgment aggregation functioises completeness if it always
selects complete judgment sets. We give a formal definitonules.

Definition 54. Let A9 be the binary restriction of the sét(A, R, = ). A judgment aggre-
gation rule F from Definition 50 satisfiemmpletenesg and only if, for everyrre SN and
We (RT)™M F(mW) < AL

Most of the rules we defined do not satisfy completeness. Xteptions are the ruledRywa
andRd+-MXin Chapter 2.

Additionally, the output is characterized by the cardityaliamely how many sequences are
included in the output. According to cardinality, we digfirish between resolute rules that
are also referred to as functions and always select a unigigejent sequence, and irresolute
rules. All the rules we introduced in Chaptars 2 and 3 arsdlige by construction. As mul-
tiple impossibility results in judgment aggregation shoegolute rules that satisfy some min-
imal desirable conditions can only be defined for restrictethains (List and Polak, 2010;
Dietrich and List, 2010). We refer to resolute rulesfasction aggregatorsind irresolute
rules agule aggregators

4.4 Independence of irrelevant information

One of the first properties considered in judgment aggreqaitiist and Petiit, 2002) is the
property of systematicity. An unweight function aggregdty binary judgments satisfies
systematicity if it satisfie;xdependence of irrelevant informatibandneutrality. The prop-
erties of systematicity and in particular independencerelévant information have been
among the most debated in the judgment aggregation literatith (Dietrich and List, 2005;
Nehring and Puppe, 2005) deeming this property desirabte(@hapmen, 2002) discussing
its controversies.

In voting theory, the property of neutrality states thatahger of the candidates in the candi-
date set has no bearing on who is selected as the winner.gmjiot aggregation, if it is to be
a counterpart of the one in voting theory, then the propeirtyeatrality should state that the
collective judgment selected for a collection of individjuelgments does not depend on the
particular issue for which those judgment are rendetedthe order in which the issues in
the agenda are given, does not influence the collective jedfjset obtained. In judgment ag-
gregation neutrality, when considered together with irsheience of irrelevant information,
is taken to mean that each issue is aggregated using the ggnegation rule for each issue.
Indeed, this latter view on neutrality is a consequence efting counterpart neutrality in
the presence of independence of irrelevant information.

We illustrate the voting counterpart neutrality with an exde. Consider the following two
profiles for some agendé = {a;,a,,a3} andA’ = {ay,a;,a3} correspondingly:

lindependence of irrelevant information is also sometinadied independence of irrelevant alternatives.
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100 010
m=[010 m=[100
111 111

Observe that the judgments fay in 11y are the same as the judgmentsdgiin 1. Assume
that a rulef is applied to bothrm, and 1, Ay = f(m) and Ay, = f(m). If f is neutral,
then necessarily (1) = A2(2), A1(2) = Ax(1) andAz(3) = A3(3). None of the rules we
defined considers the order of issueslinvhen selecting the collective sequences, therefore
by construction our rules satisfy neutrality.

The property of independence of irrelevant informatiotestdhat the collective judgment on
each issue depends only on the individual judgments foligkae, and not on the judgments
rendered for the other issues in the agenda.

We call two matrixesvl; andM; j —equalwhenM;Vj = M,V j. Two profilesm; and
over the samé, A andR areaj-equalwhenmvj = mvj for aa; € A. We illustrate the
property of independence of irrelevant information usimgd; -equal profilesty and r, of
three agents for agendh= {aj,ay,az}.

100 100
m=|{010 m={000
111 111

Itholdsmva; = mVva; andmVay # mVay. Let f(m) = A; andf(m) = Ay. If f satisfies
the independence of irrelevant information, thgiwva; = Ayvay.

There are many ways in which we can lift the function aggregagfinition of the indepen-
dence of irrelevant information property. The first one iscbysidering a bijective relation
between the outputs of the aggregator on ax@qual profiles.

Definition 55. A judgment aggregation rule F satisfies (Ill-1) when for eagkequal
profiles and weight matricesy;, m and W, W, correspondingly there exists a bijection
bt : F(rm,Wh) — F(m,We) such thatif b (A) = A, then A7j = A'V].

Another way to lift the independence of irrelevant inforioatis by assuring that a collective
judgment fora;j, assigned according to some collective sequence for tHéepra, is also
included in some collective sequence for.

Definition 56. A judgment aggregation rule F satisfies (ll1-2) when for egagual profiles
and weight matricesin, m and W, W, correspondingly, if &j = x for all Ae F(m) then
Avj=xforall A e F(m).

When (l11-2) is satisfied, (11l-1) may notbe. Considér= {p,q,pAq,r},R=,N = {1,2 3},
and the following-equal profiles:
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papaqr
Agent111 1 0 Paprqr
Agent]00 O O

Agent201 0 1
Agent200 0 1

Agent310 0 1
Fom,U)j01 0 1 Agent300 0 1
’ F(m,U)j00 0 1

10 0 1 (27 )|

In this case (l11-2) is satisfied, but (IlI-1) is not becaudgijaction cannot exist between sets
of different cardinality. If (11l-1) is satisfied, then (H2) is necessarily satisfied. Consider
these other-equal profiles, now foN = {1,2,3,4}:

pgpAqr papaqr
Agent10 0 O Agent]00 O O
Agent210 0 O Agent200 0 O
Agent301 0 1 Agent300 0 1
Agent411 1 1 Agent400 0 1
F(m,U)[10 0 O F(m,U)J00 0 O

01 0 1 00 0 1

Inthis case, (l11-2) is the one that is satisfied. The propglt-1) is trivially satisfied since the
condition thatAv j = x for all A€ F (1) fails. Other lifting of the independence of irrelevant
information can be constructed as well. We do not dwell farrtbn the independence of
irrelevant information since the construction of our rukesuch that we can expect none of
them to satisfy the introduced (111-1) and (111-2). As aru#itration, consider an example for
A%-X. Consider the the set = {(1,0,0),(0,1,0),(0,0,0),(1,1,1)} and the profilest and

000 100
nm=(000 m=]010].
111 111
We have thatl; va, = A* vag, for alli € {1,2,3}. HoweverA%:2(m,U) = {A} = {(0,0,0)},
while A%-2(1%,U) = {A},A5,A5} = {(0,1,0),(1,0,0),(1,1,1)}.

4.5 Anonymity

Another property considered among the first in judgment eggtion is that of anonymity.
The property of anonymity states that the outcome of thetfon@aggregator does not change
regardless of how one permutes the order of the judgmenirstts profile. Since this prop-
erty does not hinge on the cardinality, input and output tyaleie of the function aggregator,
we can construct the most simple lifting. We begin by defimitgn a matrix is a permutation
of another matrix.

Definition 57. Let Myxm and M,,,, be matrices, lex = ( M>1,... ,M> n ) and
X' = (Ml ..., M>n) M isa permutationo of M, denotedM], if and only if

X' = [X]g, for a permutatioro.

Definition 58. A judgment aggregation rule F from Definition'50 satiste@®nimityif for
everyrre §\W e (R*)™™, and every permutatioa, F(T,W) = F([11]g,[W]o).
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The rules based on minimization are anonymous becauseuherder of the matrix is not
considered when selecting the collective output (Bui\fi; = U for everyg). In the case of
the rules from Chapter 3, whether the rule is anonymous dispamthe aggregation function
used to construct it.

Proposition 4.5.1. If ® is a symmetric aggregation function (see Definition 31)nth&®
satisfies anonymity.

Proof. Assume thato is symmetric function. A functior® is symmetric if and only if
O(X) = O([x]o) for everyx e I" and permutatiow. It follows that®(x1, ..., Xn) = O(Y1,-.-Yn)
for any two sequences of rational numbeéxs,...,xn) and(yi,...,yn) such thaty is some
permutationg of x.

Consider aire A" andW € (RT)™™ and a permutatiow. Let Ae A and lets(A, T,W)
denote the score & with respect tam>i andW calculated as

s(i) = @]Lywi j - 0(A(j), 5 j>1).

The scores fofm] s and[W], are denoted’ (i). The sequences( s(1), ..., s(n) ) and
(s¢(1),...,s° (n)) are permutations of each other. Therefore, it follows frbem $ymmetry
of ® that

O(s(2),...,s(n)) = (s’ (2),...,5%).
Consequentlyd e AY©(r;, W) if and only if Ae A%O([11] 5, [W]5). O

4.6 Adherence to majority

In Chapter 2 we already introduced one relational propéhny,majority-preservation. A
judgment aggregation rule satisfies majority-presermafia judgment aggregation rule al-
ways selects as a collective set the issue-majoritariantsebever this set exists and is con-
sistent, with respect t@&.

There are two possible ways of qualifying a collective judginset in terms of majority

in individual judgments. The first way is to look at the indival judgment sets as atomic
information. In this case, a collective judgment set adhé&sehe majority if more than half

of the agents have this judgment set as their individuallsehe literature of distance-based
belief merging (Konieczny and Pino-Pérez, 1999, 20025280ch majority-adherence rules
are calledmajoritarian. More-precisely, an operator is defined to be majoritariaemthere

is a numbek, such that whelk agents have the same belief base, the result of the merging
includes that belief base.

The second approach is to consider the judgment set as #bivénd the individual judg-
ments as the atomic information. In this case, a collectidginent set adheres to the majority
if, for each judgment in it, there are more than half agents vamdered that judgment. This
is how we defined the property of majority-preservation iotiom 2.1.1.

The majority-preservation property in binary judgment @ggtion, as we define it in Sec-
tion2.1.1, corresponds to a well-known property in votimgdry, theCondorcet winner prop-
erty. In this section we begin with a discussion on the relatigre/ben majority-preservation
in binary judgment aggregation and the Condorcet winnepguty in voting theory.
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In the presence of abstentions there are many differerdm®df majority on a single issue.
For each of these notions we can define an issue-majoritaetaand study if a distance-
judgment aggregation rule selects it as a collective judgrset. In this section we dis-
cuss different majority notions and consider two majorithherence properties, majority-
preservation and majoritarianism, for a rule aggregatéinde in Definition 50. We study
which of the rules from Chapter 3 are adherent to majority.

4.6.1 Condorcet winner property and judgment aggregation

A voting rule satisfies the Condorcet winner property if iies¢és as a winner the candidate
that defeats every other candidate in a pairwise comparishenever such candidate ex-
its (Condorcet, 1785; Young and Levenglick, 1978). Whahis ¢ounterpart of Condorcet
winner in judgment aggregation?

In a judgment aggregation context, the Condorcet winnepgmty cannot be directly consid-
ered since no preferences between judgments or judgmaenaesupplied. However, the
translation of a voting problem to a judgment aggregatiatf@m used in (Dietrich and List,
20074a) can be used to “translate” the Condorcet winner ptppEhis translation is for judg-
ment aggregation in which only binary judgments are allawest each pair of optionsand

b we use a propositiop that is true whera is preferred td and false whetb is preferred to
a. In this manner only strict preference orders can be tréedla

Votes Votes

Pair Pair
Agent 1 *>.>. *>. 2 *>. 1
el @ >H>W |O>H 2 | @>W
Agent 3 .>*>. .>* 2 >0 :

No Condorcet Winner Exists

Pair | Votes Pair
Agent 1 *>.>. *>. 3 *>. 2
sgentz| @ >*>. >N - .>* 1
asgents| [ >*>. .>* 1 H>Q :

* is a Condorcet Winner

Votes

Figure 4.2: lllustration of a Condorcet winner.

Consider as an example three agents that choose from amggdptions: the star, the
square and the circle. In this case we need three propasitidhe agendap; to denote that
the star is preferred to the squapg,to denote that the star is preferred to the circle pgtb
denote that the square is preferred to the circle. For instahe rejection op, denotes that
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the circle is preferred to the star. In color (on the left-thaide), is the profile of individual
preferences. Figure 4.3 illustrates how the preferencas figure 4.2 are transformed into
a judgment aggregation profile using this translation. &/fof the top profile no Condorcet
winner exists, the Condorcet winner of the bottom profilehis $tar. In gray, on the right-
hand side we give the pairwise comparisons. As it can be vbdén the figure, the judgment
set that contains all the majority-supported judgmentsesponds to a preference order in
which the top ranked alternative is the Condorcet winner.

Voting Problems Judgment Aggregation Problems

Agenda: D o} T

Agent 1 * > . > . Agent 1 + +
Agent 2 . > . > * Agent 2
agents| [ > * > @ Agent3 | + | - | +

Magjority | +

Agenda: P q r

Agent 1 * >@®>HB Agentl | + | +
Agent 2 . > * > . Agent 2 - +
Agent 3 . > * > . Agent 3 + = +

Majority + +
p:*>. q:*>. r:.>.

Figure 4.3: Transforming the voting problem into a judgmaggregation problem. The
Condorcet winner corresponds to the proposition majaaitgudgment set.

The majority-preservation property in Definition 6 is thelgiment aggregation counterpart,
for binary judgment aggregation problems, of the Condoréener property, as it was also
observed by Nehring et al. (2011).

4.6.2 Majoritarian rules

Let us consider a judgment sequence to be an indivisibleavifotule aggregator is majori-
tarian when it necessarily selects, as a collective judgisesguence, the sequence supported
by the majority of agents, when such a sequence exists. Wedafine the majoritarian
property for underweighted judgments, namely wkiés- U. WhenW = U then the notion

of majoritarian rule is difficult to define if the weights aretragent-associated. To define
when a rule is majoritarian for weighted judgments, the Wiighould be associated with
an agent. When weights are associated with issues or wignjedts, then these should be
transformed into agent associated weights. It is not dithigvard how this transformation
should be done. Simply summing up the weights on the judgmreon the issue could be
one way. Another way is to find the average of the judgment ksifpr one agent. Yet a
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third way is to consider the maximum weight assigned to afjuelgt made by an agent. The
minimum of the judgment weights can also be considered a gandidate, etc.

We can consider at least two notions of a sequence being gegdxy a majority in a profile.
The first is theabsolutemajority and the second is tlsmple majority

A sequencd\ is supported by an absolute majority, in a profilericagents, if there are more
than half of the agents that selec#&than any other sequencedn We define this formally.

Definition 59. Let me A". An absolute majority is a partial functionM A" — A defined
as

_[A iff #{i|m>i = A} > 5] +1
Ma(T) = {undefined otherwise

A sequencé is supported by a simple majority, when there are more agerte profile
supportingA when compared to any other sequericd in the profile.

Definition 60. Letre A". A simple majority is a partial function M A" — A defined as

Ms(71) A iff #{ijm>i = A} >#{i|m>i=A}forall AeAst A=A
SV'W ) undefined otherwise

If a sequence is supported by an absolute majority, thendtsis supported by a simple
majority, but the reverse does not hold.

Example 4.6.1. Consider the profilesr;, > and 713 on Figure 4.4.

EEaia(Z)%oafis a1 @ ag & as a1 @ ag & as
E200011 E,E,[0 0 1 0 1 Ei,E5,E3[0 0 1 0 1
nlejOlllln2=E3,E400011n3=E4 00011
2 2 Es ([0 1 111 Es o111

Es [0 01 00 2 2 2 2

Figure 4.4: Examples for different notions of majority.

The sequencél,0,0,1, 1) is supported by a simple majority i, while the absolute major-
ity is undefined for this profile. For the profife both majorities are undefined. The sequence
{0,0,1,0,1)is supported by both the simple and the absolute majorityztor

From Example 4.6/1 we can observe that it does not take magytador a sequence to
be supported by a simple majority, in fact two are enough. Jilple majority is a very
weak notion when the number of available sequences is cablydarger than the number
of agents. Therefore we define the property of majoritasianiising the absolute majority
notion.

Intuitively, a judgment aggregation rule is majoritaridriar every profilert it selects as a
collective sequence the sequemdg 1) wheneveiM, () is defined. Consider the property
of majority-preservation we give in Chapter 2. If a rieis majority-preserving, then it is
necessarily majoritarian. Therefore we give the formalrdidin of majoritarianism for the
distance-based judgment aggregation rules.
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Definition 61. A judgment aggregation rula®® is majoritarian when for allire A", if
Ma(77) exists, then M(71) € A%©,

A weaker form of majoritarianism can also be defined by réqgiM,(mm) = A%C instead of
Ma(11) € A%O,

Not all aggregation function® give rise to majoritarian rules.

Proposition 4.6.2. If d is a metric, them\%X is majoritarian.

Proof. Assume, without loss of generality, sin3&is symmetric, that for the firdt= 5 + 1

agentd it is the case thatr>i = A = A, while Aj # Afor j # i. We need to show that, for all
A e A,

i d(A,A@)<(g+1)-d(A’,A)+ i d(A',A). 4.1)
i—k+1 i=k+1
3 d(A,A@)<2d(A’,A)+(g—1)-d(A’,A)+ 3T d(ALA). 4.2)
i—k+1 i=k+1

Sinced is a metric, for every it holds that

d(AA) < d(A',A) +d(A',A), and consequently

n

D1 dAA) < 2 d(A,A) + ] d(ALA).

i=k+1 i=k+1 i=k+1
The inequality 4.2 can be rewritten as follows:

n n
3 d(AA) <2d(A’,A)+(g—1)-d(A/,A)+ 3 d(ALA). 4.3)
i=k+1 i=k+1
Observe that
(é ~1)- 2 d(A,A) for k =
i=k+1
Sinced(A',A) > 0, the inequality 4.3 is satisfied. O

Proposition 4.6.3. If d is a metric, them\ 4™ is majoritarian.

Proof. Whenx,y,ze R™, if x<y+z thenx+ 1< (y+1) +(z+1) andx+ 1< (y+1)-(z+1).
Therefore, the proof of Proposition 4.5.2 can be used togptioie proposition as well.

Assume, without loss of generality sinfe* is symmetric, that for the firdt = 3 + 1 agents
i it is the case thaly = A, while Aj # Afor j # i. We need to show that, for & € A,

ﬁ (1+d(AA)) <-(1+d(A,A)EHD. ﬁ (1+d(A,A)) (4.9)
i=k+1 i=k+1

Sinced is a metric, for every it holds that

d(AA) < d(A',A) +d(A',A),but also, since the metrics are positive non-null numbers
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1+d(AA)) < (1+d(A,A) - (1+d(A,A)),and

[] @+dAam) < [] @+d@,A)- [] @+dA.A)).
i=k+1 i=k+1 i=k+1

The inequality 4.4 can be rewritten as follows:

[T @+dAA) <-1+dAA)? [ @+dA,A)- ] @+dA,A))  (45)
i=k+1 i=k+1 i=k+1

O

Proposition 4.6.4. A%™Ma{s not majoritarian.

Proof. Consider the profile in the proof of Proposition 3/4.4. Twa olthree agents select
the sequencél, 1,0, howeverA%-"X(,U) = {(1,0,0)}. O

Corollary 4.6.5. A%CMaXjs not majoritarian.
Proof. A consequence ak® ™M1, W) < AY™M3X( 1, W). O

The propositions we show are unsurprising since they hage bleown to hold for distance-
based belief merging operators, see for instance (Konyegzd Pino-Pérez, 2002).

4.6.3 Majority-preservation

It is straightforward to extend the majority-preservatwaperty from unweight to weighted
binary judgments. Instead of counting how many agents stijppgiven judgment, we need
to consider the sum of the weights of the agent who supporpéntcular judgment. The
challenge is in defining the majority-preservation propést ternary, and in principle multi-

valued, judgment profiles. The reason for this challengeiliethe many possible ways in
which majority on an issue can be defined in the multi-valussbc

Consider for instance the judgmentsifia; andnvay in Figure 4.5. Two judgment majority
functions we define in Section 3.5. The finsty: is the biased-majority from Definiticn 44.
This majority considers only the number of agents who acaegtreject an issue but not
those who abstain on an issue. Itis defined for everyternary vector of judgments. Using
this majority on the issuea; anda, from Figure 4.5, one accepts both anda,. This
majority is biased against the judgmelntAnother way to define judgment majority s,
from Definition 45%: a majority supports a judgment on an isétieere are more agents that
select this judgment then any other for that issue. Usirgjjtidgment majority on the issues
a; anday from Figure 4.5, one accepés but abstains regardingy. This majority is not
biased against the judgme%ﬁ but it can be considered biased in favor—%oﬁince both the
judgment% and 1 foray are supported by an equal number of agents. This majoritigds a
defined for everytvi vector of ternary judgments.

More versions of total judgment majority functions can basteucted. For instance, a func-
tion can be defined to combine the biased and unbiased nyaj@sied on the numbé&rof
agents that abstain on the issue in question:
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a; as
MY R
2 1111 1 #{ilme =1} > #{ilm, = 0}
3011 ma(nva) = § 0 #{ilmia = 1} < #{ilma =0}
41110 5 #{i|mi,e = 0} = #{i|mio = 1}
510 1L 1 #{ilmg =1} > #{ilmi e = 0} + #{ilm o = }}
6 |0 | mova)={ 0 #ilrio =0} > #{ilmi, = 1} + #{ilmeq = 1}
2 3 #{i|mi,0 = 0} = ##{ilmi,a = 1}
|0 3
mi(nrva) 1 1
ma(mva) 1 3

Figure 4.5: lllustration of the different ways to define mé#joon a single issue.

my(rva) iff #{i|ma= 3} <k

Mg(1va) = {mz(r[va) iff #{ijma=3}>k

Themg can also be considered to be a quota rule (Dietrich and LOS7R).

We can also define the simple and the absolute majority fayrehts on an issue. The
intuition behind these two majority functions is the sam@dke previous section, where we
define them for judgment sequences. A judgment is suppoxtedsimple majority when it
is supported by more agents than any other judgment in aypsércomparison. A judgment
is supported by an absolute majority when there are striotlye than half of the agents
supporting it. The un-biased majority can be obtained fromabsolute majority Wheé

is assigned to all profiles for which the absolute majoritynsiefined. The simple majority
supported judgment is the same as the absolute majorityostgaijudgment, whenever both
are defined. All these different notions of majority collajsto one when the judgments are
binary.

If a judgment is supported by a simple majority, then it isggonped by an absolute majority,
and also by an un-biased majority. The judgment majoritgfioms are voting rules applied
to choose from the set of optioK, %, 1}. The judgment supported by a simple majority is
in fact a Condorcet winner. For these reasons we use, andhgiviefinition of, the weighted
simple majority on a judgment.
Definition 62. Letme A", N a set of agents4 an agenda, a set of values=T {0, %, 1} and
xe {0,3,1}. We define the set§) = {i | 1,j = x} and the value ¥(j) = Dieng(jy Wi, )-
The simple judgment majority, o a A, is a function g: A x A" x (R*)™M {0, %,1}
defined as:

_ _[x iff V(i) > Vy(j) for any ye {0, 3,1}, x#y

Ms(3y, W) = { undefined otherwise

For each judgment majority function, we can define a cormedjpg issue-majoritarian se-
quence and also a majority-preservation property.
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Definition 63. Let m be a judgment majority function. Given a profilefor an agendad
and weight matrix W, the issue majority set MajW) = (m(a, ;W) | ae A). If there is
nv j such that nfa;, T, W) is undefined, then M&jt, W) does not exist.

We can further distinguish between strong and weak majpiriggservation. A rule is strongly
majority-preserving when it selects the M j(77, W) as a unique collective judgment set for
rmandW, wheneveMa j(71,W) is consistent and exists. A rule is weakly majority-presegv

if itincludesMa j(1T,W) among the collective judgment sets, whenévesj(7r, W) is consis-
tent and exists.

Definition 64 (Weak and strong majority-preservation) A judgment aggregation
rule F: §' x (RT)™M— §; is strongly majority-preservingthen, if Maj 7, W) exists and
Maj(mr,W) € Sy, then {m,W) = Maj(r,W). The rule F isweakly majority-preserving
when, if MajmT,W) exists and Ma(r, W) € S, then Majm,W) e F(r,W).

As implied from their definitions, the weak majority-pregation is satisfied whenever the
strong majority-preservation is satisfied, but the revemgglication does not hold. The
rules we defined in Chapter 2, with the exceptionRIf ™ satisfy the strong majority-
preservation property. In this section we show which off@ aggregators satisfy the weak
and strong, majority-preservation, with respect to thesthgle judgment majority function.
From the specific aggregation functions and metrics we densd, we obtain rules that are
either strongly majority-preserving or do not satisfy thisperty at all.

We first prove thaf\%-2 andAdT-2 are strongly majority-preserving. The proof presented is
more detailed than needed, but we construct it in this matorige able to use it later to build
a conjecture regarding what characteristico&andd give rise majority-preserving®®.

Proposition 4.6.6.1f ©® = ® = 3 thenA%© satisfies the simple strong majority preservation

for &4 and or.

Proof. We first prove that simple strong majority-preservatiordsdbr single issue agendas
and than generalize to arbitrary large agendas.

Let us first consider an agenda with one isslie {ay}. Letx,y,ze {0, 3,1} such thak # y,
y # zandX # z

If (x) = AX9(71,W) then (4.6) holds.
DI =1"w(i, i) 8(x i j)) 221—1"‘ j)-8(y,pij) (4.6)
i-1

Note that (4.5) holds also wheris used instead of. We can simplify (4.6) as (4.7).

2 O(X, pig Z o(Y, pia)) (4.7)

i=1

Since} is an associative function, we can rewrite (4.7) as (4.8).
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2 (W(i, 1) 8(x%)), > (w(i, 1) 8(xY)), Y (w(i, 1) 8(x,2))) <

ieNy ieNy ieN;

ieNy ieNy ieN;

We can rewrite (4.8) as (4.9).

Wy(ap) Vz(a1) Vx(az) Vz(a1)
10,8(xy) - D Iw(i,1),8(x,2)- D w(i, 1)) < »,(0,8(xy)- >, w(i,1),8(,2)- > w(i,1)) (4.9)
ieNy ieN; ieNy ieN;

If & =0, thend(x,y) = d(y,2) = d(x,2) = 1 and (4.9) becomes (4.10).
(0, Vy(a1), Va(a)) < ¥ (0,Vx(aa), Va(an)) (4.10)

From (4.10) (and non-decreasingXf) follows (4.11).
Vy(a1) < Vx(as) (4.12)
Since (4.10) holds if we swapandy, (4.12) also follows from (4.1.0).

Vz(al) < Vx(al) (4.12)

If the inequalities'(4.11) and (4.12) hold, theta (T, W) exists andMaj(r, W) = {X).
Considerd = ér. We have the following cases:

(casel.l)x=0,y= 3 andz=1

(casel.2)x=0,y=1andz= 3}

(case2.1)x=1,y=1andz=0

(case2.2)x=1,y=0andz=1

(case3.1)x=0,y=1andz= }

(case3.2)x=0,y= 3 andz=1

We apply each of these cases on (4.10), obtaining (4.13) &z corresponding to each
case.
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1 1 1

Vy(ag) + % Vy(a1)) < Vk(ag) + % ‘Vy(a1)

Vyfar) + 5 Val@)) < 5 (@) + Vefaa)

Vyfar) + 5 Val@n)) < 5 @) + Vefaa)

Vy(ag) + % Vy(a1)) < Vg(ag) + % ‘Vyz(a1)

NI NI =

% -Vy(al) +Vz(a1)) < } ~Vx(a1) + } ~Vz(a1)

2 2
(4.13)
We can simplify (4.13) inta (4.14).
Vy(a1) < Vx(a1) —Vz(a1)
Vy(al) < Vx(al)
Wy(an) <W(aq) + Vz(a1)
V(&) < Vx(ag) +Vz(as)
Vy(al) < Vx(al)
W(a1) +Vz(a1)) < W(a)
(4.14)

In all cases except (case2.1) and (case2.2), we can usenlegsasoning as in the casedpf
to conclude thax is supported by a simple majority mif defined.

The case (case2.1) gives the same inequality as (case2nZe \Be can swap andz, for
(case2.1) and (case2.2) we obtain that

Vy(ag) < Vx(ag) +Vz(ag)
Vz(a1) < Vx(ar) +Vy(as)
(4.15)

The (4.15) are possible whafi(a;) = Vy(a1). We can havéd/(a1) > Vx(ag) or Vy(ag) <
V(ar). If W(a1) = Wx(a1) thenmg(ag, ,W) is undefined and/(1r,W) does not exist. If
Vy(a1) < Vx(ar) then alsd/y(a1) < Vi(a1) andms(ay, 1, W) = x. ConsequentiMaj(r,W) =
0

Now let us assume that hasm elements. Assume th&t(m, W) exists andM (1T, W) = A*,
A* e A. From the proofs foA| = 1 we obtain that, for anyA € A, A # A*, and every
j€{1,...,m}, (4.16) holds.

ZW(i,j)- ) i) ZW ),pij) (4.16)
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From (4.16) and the non-decreasingness pfve obtain (4.17).
n
D=1 "w(i, j)- 6(A*(j), pij) <21—1m2w ),pij)  (4.17)
i=1
Inequality (4.17) is equivalent to (4.18).

D005 = 1w 0) - S(A% (1), pig) < D) = 1MW, ) S(AG).piy)  (4.18)
i—1 =1

From (4.18) we can conclude thatM(r,W) € A, thenA%X — M(,W), for d = dy and
d=dy. O

We show that the rest of the examples of distance-basedwelesnsidered do no satisfy the
weak, and with that neither the strong, majority-preséovgtroperty. For the non majoritar-
ian rules this result is implied.

Proposition 4.6.7. A& and Ad-CMaxgre not (weakly) majority-preserving.

Proof. It is sufficient to observe that if a sequence in the profilaugp®rted by an absolute
majority of agents then each judgment in that sequence isrgagpby a simple majority.
Therefore, the counter-examples that show fk&F2* and A% M gre not majoritarian, are
also counter-examples that show that these rules are notitggjreserving. O

More interesting is the case gf = M* andA%-~. These rules are majoritarian, but not
majority-preserving.

Proposition 4.6.8. A% andAdT T are not (weakly) majority-preserving.

Proof. One binary counter-example suffices for bdthanddr. Let A = {a;,a»,a3,a4} and

(1,1,1,1, (0,0,0,0, (1,1,0,0),
A= {<0011> (1,0,1,0) }

Consider the profile

[1111]
1111
0000
m=(0000].
1100
0011
1010

We have thaMaj(m,U) = {(1,0,1,0)}. However there exists anA € A such that

n n
[+ dn(A m>1),... 1+ du(A m>n)) < [ [(1+du(A™, m>1),... 1+ dn (A, 71>n)).
i=1 i=1
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Namely

(1+dH(Am,m>1),...1+dH(Am,m>7)) ~3.3.3:3.3:3-1= 729 but

L]~

7
[ J@+du(m>1,m>1),... 14 du(m>1,m>7)) = 1-1-1.5-3-3-3= 675 and
i=1

7
[ [(1+ dn(m>3,/m>1),... 1+ dn (>3, m>7)) = 675.
i=1

Proposition 4.6.9. A%-X js not (weakly) majority-preserving.

Proof. We show that there is a profile such thaMa (7, W) ¢ A%-X(7,W)  maj(m) but
Maj(mm,W) e A. Let A = {a,a— (b c),b,c}. The setA for A is

A (0,1,0,0),¢0,1,0,1), (0,1,1,0), (1,0,1,0),
~140,1,1,1),(1,0,0,0),¢1,0,0,1), (1,1,1,1)

Consider the following profileg; denotes the expressian— (b A ¢):

aabc

110100
m=2|0111].

311111

TheMaj(mU) = {<0,1,1,1)} is an element of\, however it is not among the outputs of
A%-2(1,U), as shown on Table 4.1. O

Ae A dD(
{0,1,0,0)
{0,1,0,1)
{0,1,1,0)
0,1,1,1)
{1,0,0,0)
(1,0,0,1)
(1,0,1,0)
1,1,1,1)

>
>
2

dp(

>
€

dp(

>
3

N w|w|lw| | w|w| DM

N =)

RlRlPr|lPr|lo|kr| kR

olr|lr|lr|lkr| k| krF

Table 4.1: The sum of Hamming metrics from an elemeniito each of the judgment
sequences\®-X(r,U) = {(0,1,0,0),0,1,1,1),(1,1,1,1)} .

The simple judgment majority function is not defined for gueslumnrv j in a profile. How
can we define a total judgment majority function and not t®lkle majority-preservation
of the distance-based rules that satisfy it? To form thisstjoe differently, which default
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judgment should be assigned when the majority is undefinede& distance-based merging
rule selects the judgment that minimizes distances, theultgidgment should be the one in
the set of valuation$ which is at a minimal distance from each other judgment.inn the
case ofdr the default judgment should b% while in the case ofly, both 0 and 1 together
should be the default judgment.

Example 4.6.10.Consider for exampfethe single-issue profile and weight matrix W .

-k

The simple majority is undefined for tiis We obtaimy%T-> (11, W) = (3, while A% (W) =
{(1),{0}.

ONIR =

We can define the median ®fwith respect to a distana®

Definition 65. Let T be a set of values and I8t T x T — R be a metric. The median of
T with respect t@ is the set meglT) = {x| xe T and for all yze T,3(x,2) < &(y,2)}.

We can now define a total simple judgment majonity function as:

mis(ay, TW) — {x iff V(i) > Vy(j) for anyx,y e {0, 3,1}, x;éy)

meg;(T) otherwise

An inevitable question to ask at this point is what are thepprties of®, @ and d that
give rise to a majority-preservird® 9. It can be conjectured that all majority-preserving
distance-based rul@s’-© are such thah?© = A%X for some product metrid constructed
using® = > ..

Let us start with an associative aggregation functipthat satisfies minimality. We obtain
(4.19) by re-writing/(4.8) usin@® instead of} .

© (@iENx(W(ia 1)-5(x, X))vGiENy(W(iv 1)-5(x, y))7®i€Nz(W(iv 1)-6(x,2))) <
O(Oieny (Wi, 1) - (Y, %)), Oien, (W(i, 1) - 3(¥,Y)), Oien, (W(i, 1) - 6(y, 7)) (4.19)

Inequality (4.19) is equivalent to (4.20).

O (Oieny (W(i, 1) - 5(x,Y)), Oien, (W(i, 1) - 6(x,2))) <
O(Oien (W(i, 1) - (X)), Oien, (W(i, 1) - 5(y, 2))) (4.20)

To derive any relation between (4.20) and the simple mgjotitere must be a relation
between® and .. More precisely, there must be an order-preserving mappétgeen
O(x) and > (x). If such an order-preserving map exists, thefx) < ©(y) if and only if

3 (x) < D(y). Butin this caseA® selects the same judgment, on an single-issue agenda,

2| thank an anonymous reviewer for providing me with this egem
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asAX9. As an example, consider the distamag(x,x’) = MM, 2%04X) we defined in Sec-
tion/3.4. This function hag = IN. Selecting® = N we do obtain a majority-preserving rule
A = A% (T W),

To do the extension from a single-agenda to an arbitraritydagenda, namely to go from
(4.17) to (4.13), we need tha commutes with®. The only functions® that commute
with Y’ are such tha@®(x) is a linear transform op(x). Such a function, for instance, is
the arithmetic meaM. In principle, we can always take = © to ensure tha® and®
commute.

The conjecture can be proved by showing the following: tliger® majority-preserving%-©
for not commuting® and®.

Although the search for majority-preserving rules is diseging, the observation made here
can be used to construct other distance-based rules. dnstemgregating row by row, we
can design a distance-based rule to aggregate column bhynolthis is what we accomplish
when we swap the order betwegrand®, when they commute. The judgment majority rules
use thed_ to aggregate the judgments in the column. For instancegiptisence of weights
we can use® = maxto obtain the judgment on an issue that is associated withititeest
weight. Using® = sumthe distance-based rule aggregator will return the secuwith the
highest weighted judgments, whenever such sequence arigis consistent.

4.7 Unanimity adherence

Unanimity is one of the most natural relational propertiesocial choice stating that if
all agents submit the same individual information to be aggted, then the aggregate is
precisely that information. As in the case of majority-acimee, the judgment sequence can
be seen as a whole and agents are unanimous when every dgetd #e same judgment
sequence. For instance, a sequence-unanimous profile isethse is:

1001
m=(1001].
1001

Unanimity is a property satisfied by a function aggregatdesined ine.g, (List and Puppe,
2009), when for every profile sequence-unanimous éq f (1) = A.

The judgment sequence can also be seen as a partitionaleletionl of judgments and una-
nimity can be considered in the case of profiles in which thenégare unanimous in their
judgments on a given issue. For instance, a judgment-urtusiprofile in this sense is:

1101
m=10001].
1001

The judgment-unanimous profiles are considered by a pippatted unanimity principle
(Dietrich and List, 200€b). The unanimity principle coresisl whether the unanimously se-
lected judgment is included in the collective judgment séter function aggregators, the
unanimity principle is defined in (Dietrich and List, 2008b)the following way. For every
profile (Aq,...,An) in the domain of the aggregation functiérand all¢ € A, if ¢ € A for

all individualsi, theng¢ € f(Aq,...,An).
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The unanimity principle is a stronger property than unatypsince all functions that sat-
isfy the unanimity-principle are also unanimous. We lifttbbthe unanimity and unanimity
principle and study when they are satisfied by the rules wediniced.

4.7.1  Unanimity

Unanimity is a relatively weak property in voting theory amekference aggregation, satis-
fied by virtually all rules. In judgment aggregation, thioperty is still weak enough to be
satisfied by all the rules we introduce.

Definition 66. A judgment aggregation rule F (Definition 50) is unanimougwfor every
W e (RT)™Mif rris such thatm>1 = --- = m>n = A, then [, W) = {A}.

A profile such that>1 = --- = >n = A is majority-consistent, therefore all the majority-
preserving rules defined in Chapter 2 are unanimous as wedlrileR Mjs a special case
of the rule aggregatak® M2 This aggregator is unanimous as a corollary of the follgwin
proposition.

Proposition 4.7.1. If

1. ® satisfies minimality (Definition 32);

2. inf ®=0(x) =kifand only ifx = 0;
thenA%.® is unanimous.

Proof. Recall that if® satisfies minimality, then it has a unique minimdms= 0 for x; =

Xp =+ =X%n=0. WhenA; = Ay = --- = A, = Aand® satisfies minimalityd(A,A) = 0. If

© satisfies minimality, the(d(A,A1),...,d(A,Ay)) = 0 . Every other judgment sequence
will have a score higher than 0. The aggregation fundfiérhas a unique minimum ik= 1,
but since the only values for whidi* (x) = 1 whenx e (R*)" arex; = ---x = 0, the rule
A%T* is unanimous as well. O

4.7.2  Unanimity principle

We lift the unanimity principle of (Dietrich and List, 2008tw two properties which we call
theweakand thestrong unanimity principle

Definition 67. Let W be some weight matrix. A judgment aggregation rule Kfsas:

o weak unanimityfWU) when, for everyrsuch thatry j = - = 1 j = x fora g € A,
there exists a & F (1, W) such that 4j) = x;

¢ strong unanimitySU) when, for everyrsuch thatrmy j = --- = m, j = x fora g € A,
forall Ae F(,W), A(j) = x.
If (SU) is satisfied byF, then so is (WU).

We show which of the rules based on minimization from ChaBtand the distance based
rules from Chapter 3 satisfy (WU) and (SU). We consider tHesiuRysa (Definition 11),
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Rvicsa (Definition 12), Ruwa (Definition 15), Rra (Definition 16), Ry (Definition 17), Rry
(Definition 19) andRunac (Definition 23). The ruleR%-MaX (defined in Section 2.2.4) we
consider as part of the distance based rules. We do not anthlgzulesRyy (Definition 18)
andRyr (Definition 21) since these rules are very weak. Namely thekss select a very
large number of collective judgment sets and are more (wipect to their theories) general
than most rules.

Proposition 4.7.2. Rysa satisfies weak unanimity but not strong unanimity.

Proof. LetP be a profile on an agendd, and¢ € A on which all agents give the same judg-
mentx. There always exists a maximal consistent sub-agenda esthect to set inclusion,
that containgy. Consequently there exists a judgment séRjjga(P) that contains.

As a counter-example fdRusa(P) satisfying strong unanimity, consider the profief the
proof of Proposition 2.3 SRvsa does not satisfy strong unanimity, becaaseTr,,c,(P).

O

Proposition 4.7.3. Rycsadoes not satisfy weak (or strong) unanimity.

Proof. Consider again the profilE of the proof of Proposition 2.3.5. The only maxcard
consistent sub-agendaBfcontains—a (and does not conta@). ConsequentlfRycsadoes
not even satisfy weak unanimity.

O

Proposition 4.7.4. Rywa does not satisfy weak (or strong) unanimity.

Proof. See again the counterexample that can be found in (Pigoati &009), which we
presented in the proof of Proposition 2.3.8.

O

Proposition 4.7.5. Rra satisfies strong (and weak) unanimity.

Proof. LetP be a profile andp = A be the subset of the agenda consisting of all elements on
which there is unanimity among the agents. Because indivjddgment sets are consistent,
the conjunction of all elements &f is consistent. Now, when computifRga(P), the ele-
ments ofY are considered first, and whatever the order in which theg@msidered, they are
included ind because no inconsistency arises. Therefore, far allyp and allAe Rra(P),

we haveq € A, O

Proposition 4.7.6. Ry satisfies strong (and weak) unanimity.

Proof. Observe that itr is unanimously accepted by all agents in theNsdt is consequently
unanimously selected by all consistent subsets.of O

Proposition 4.7.7. Rgy satisfies strong (and weak) unanimity.

Proof. Similar as the proof of Propositions 4.7.6.dfis in all judgment sets for a profile,
thena isin all judgment sets for any super-profile®€onstructed by repeating the judgment
sets fromP. O
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Proposition 4.7.8. Rynac does not satisfy weak (nor strong) unanimity.

Proof. Again consider the agenda and profitein the proof of Proposition 2.3.8. Since
Runac(P) = Ruwa(P), this example of a profile is a counter-example Rarnac Satisfying
weak unanimity as well. O

Not all A%© satisfy unanimity. We consider tltegiven in Section 3.3/2 and th@ given in
Section 3.3.1.

Proposition 4.7.9. A%-© satisfies the strong unanimity principle.

Proof. Recall that the drastic metric is definedd{#\, A’) = 0 if A="andd(A,A’) = 1 oth-
erwise. As a consequence of this definition and the non-dsitrg of®, Ae ADO (1, W), if
and only if there exists ainsuch thatA = 11, i.e., Ais necessarily in the profile.

O

Proposition 4.7.10.A%2 does not satisfy the weak unanimity principle far (o, dy }.

Proof. It is sufficient to give a counter-example fdf = U. We consider the same example
as in the proof of Propositicn 3.4.5. As it can be observedinld 3.8, although the agents
are unanimous oA;Vai 3 = 1, the only value fom;z is Aysvai3= 0. O

Proposition 4.7.11. A%M does not satisfy the weak unanimity principle far ¢dr,dy }.

Proof. As we did in the proof of Theorem 4.7.10, here also it sufficegite the counter-
example foW =U. Consider the agendé= {a;,ay, a3, a4, 8s,85,87}. The set of consistent
judgment sets\ is given in Table: 4.2, first column. Let the profile consisttod judgment
sets:

A, = {aq, ~ap, —ag, a4, —as, —as, ~ar};

Ay = {—~ay,ap, —ag, —~ay, a5, ~as, ~ar};

Ag = {—ay, ~ap,as, ~as, ~as, 86, —a7}.

It is the case that-a; € Ay, —ay € A, and—ay € As. However, as it can be observed from
Table 4.2, the ruld% M selects a unique judgment set that does not cortain

Ae A dy (AA]_) dy (AAZ) dy (A,Ag) max|
{aq, ~ap, —a3, a4, —as, ~a, —az}| O 4 4 4
{—a;, a, —az, ~as, as, —a8s, —ay}| 4 0 4 4
{—a1, ~ap, ag, —a4, —as, ap, —az}| 4 4 0 4
{—ay, ~ap, —a3, ~a4, —~as, —a, ay}| 3 3 3 3

Table 4.2: Themaxof Hamming metrics from an element in the geto each of the agent’s
judgment sets. The judgment set chosen by theAfHé"@ does not contain the unanimously
selected—ay.

O

Proposition 4.7.12. A% does not satisfy the weak unanimity principle far ¢dr,dy }.
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Proof. We give a counter-example fax™-"* whenW = U. Consider an agenda. The
set of all consistent judgment sequences,Aors given in the first column (from the left) in
Table 4.3.

Ae A
A = (1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1)
A, =(0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1)
Az = (0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1)
A, = (0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1)
As = (0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1)
As = (0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1)
A; = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Table 4.3: The set of consistent judgment sentence4 for

Consider the profilet whererm>i = A; for i € [1,...,6]. All the judgment sequences are
unanimous on the last issue, assigning it a judgment 1. Heryves it can be observed from
Table 4.4, the judgment sequence selecteddﬂy_'* is A7 which assigns a judgment O to the
last sequence.

A€ A |dy(A A1) |dH (A A2) |dH (A Ag) |dH (A Ag) |0k (A As) |dH (A As) | TT*
A1 0 8 8 8 8 8 59 049
A 8 0 8 8 8 8 59 049
Az 8 8 0 8 8 8 59 049
Aq 8 8 8 0 8 8 59 049
As 8 8 8 8 0 8 59 049
As 8 8 8 8 8 0 59 049
A7 5 5 5 5 5 5 46 656

Table 4.4: Thd1* of Hamming metrics from an element in the deto each of the agent’s
judgment sequences. The judgment sequence chosen by enadnefl™ is A; for which
AzVags = 1 although in the profilé\; vays = 0 for all i.

We can observe that in general, whether the unanimity-jplieés satisfied by a distance-
based rule does not depend on the propertied afd©®, but rather on the ratio between
the cardinality of the agenda on one side, and the numberasftagind associated weights
for each judgment, on the other side. bkelbe the judgment supported by all agents dor
in a profile . Unanimity-preservation will be satisfied always when thieimal value of
O W(i, J)o(y, ) fory # X, is larger than the minimal value of]’ 1®a 2aW(i, ])O(y, m).
These conditions for unanimity-preserving are very stthmerefore they are not included as
a proposition.
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4.8 Monotonicity properties

In voting theory monotonicity is a standard property coaséd for voting rules. When a
voting rule is monotonic, an improvement in the ranking o thinning alternativeceteris
paribus does not diminish that alternative’s likelihood of beingrianer. When the purpose
of aggregation is to select an alternative that is reprasigetof the individual input, then it
is desirable that additional support for an input shouldmake that input less likely to be
the aggregate (Nurmi, 2004).

In judgment aggregation monotonicity has also been coresities a desirable relational prop-
erty. There are three versions of monotonicity defined facfion aggregatorsnonotonicity
on an agenda issugs a property imposed on an aggregation function (List ami2009),
monotonicityas a property imposed on a subset of the agenda (to addregsuhadiity is-
sues) (Dietrich and List, 2005), amdonotonicity on a judgment sby (Dietrich and List,
2008a). The first property is the strongest, subsuming ther dévo.

The monotonicity property defined for function aggregatoi(kist and Puppe, 2009) can be
lifted to monotonicity for rule aggregators in the followgimvay.

Definition 68 (Monotonicity) A profile P is called an i-variant of profile P when for all
i#j,1,je[1,m],AjePifandonlyifAje P’. A judgmentaggregation rule F is monotonic
when, for every PP’ € ' suchthat P= (Ag,...,A,...,A)) and P = (Ag,...,Al,..., An)

its i-variant, and a We (R™)"™™M if there is an & .A such that

o agA;
° aeAi/;

e acTg(P);
then ac Te (P') and F(P',W) = F(P,W).

The monotonicity property defined as above is a very strooggnty. There are no con-
straints imposed oﬁi’ with respect toA;, therefore it can happen théim&i = ¢ and for
rules that do not satisfy independence the collective juslgrset can be affected on more
issues than jusp. We can define a weaker monotonicity property and we consgitiether
our rules satisfy it. The intuition behind our new propesgyioser to the intuition behind the
monotonicity property as studied in voting theory. Nam#igceteris paribusmprovement
in the support for a judgment that is already included in allective judgment sets, should
not diminish that judgment’s likelihood of being in all cetitive judgment sets. This is the
property of insensitivity to reinforcement of collective judgments

First we cljefine when a profile is ana-improvement of another profile for the case of
T < {0,3,1}.

Definition 69. Given two profilest, ' € A", a € {0,1} and g € A, the profilert’ is called
an a-improvementf rwhen

o forallk #iandforallr # j m, = 1 ,;

o TTj# 0,
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For binary judgments, the conditiam ; # a implies thatri j = —a. We do not consider
reinforcements for the judgmeét

Consider for example the agenda= {a;,ay,a3}, R = {(a1 A a2) < az}, =31 (Lukasiewicz
logic) andN = {1,2,3}. The profiles’ and i’ are correspondingly a O-improvement and
1-improvement oft for a;.

300 000 100 300
m= 01! m=1010 n=[010 n = 01!
111 111 111 111
22 22 22 22

The profiler” is not a improvement oft since it is not inA3,

As with the other relational properties, many versions eéimsitivity to reinforcement prop-
erty can be defined. We construct two versions.

Definition 70 (IR-s). Let a be a judgment for & A. F satisfiesstrict insensitivity to
reinforcement of collective judgements for all a-improvement profiles’ € §' of rre §' if
[forall A € F(mr,W), A(a) = a] then F(rr, W) = F (17, W).

Definition 71 (IR). Leta be ajudgment for a A. F satisfiesnsensitivity to reinforcement
of collective judgementsif for all a-improvement profilest € §' of me §' if [for all A €
F(m,W), A(a) = a]then [for all A’ e F(,W), A'(a) = a] .

If a rule F is monotonic, then it satisfies (IR-s).Hfsatisfies (IR-s), then it satisfies (IR).

We show which of the rules based on minimization from Che2tsatisfy (IR-s). We do not
consideRyy andRyr. The rules from Chapter 3 we analyze with respect to (IR).

Proposition 4.8.1. Rysa and Rycsasatisfy (IR-s).

Proof. We consideRysa Assume thatr € Tg,,.,(P) andP” ana — reinforcemenof P.

LetY < A be a maximal agenda for whi¢h" is majority-consistent. Becauses Tr,,c,(P),
we must havexr € Y. P'YY must be majority-consistent as well due to the conditions of
Definition/69. Moreover

M(PYY) = M(PHY). (4.21)

From (4.21) itis infered that

all maximal majority-consistent sub-agendasmPbcontain some maximal
majority-consistent sub-agendaf®r  (4.22)

LetY < A be a maximal agenda for whi¢H'" is majority-consistent. l&r ¢ M(P'*Y) thena
fortiori a ¢ M(PY), which contradicts (4.22). Thereforee M(P'*Y), and because cf (4.22),
it is also a maximal majority-consistent sub-agendafowWe have shown that the maximal
majority-consistent sub-agendas ®andP’ coincide, therefor®usa(P) = Rusa(P’). The
proof for Rycsacan be generated in exactly the same way. O

Proposition 4.8.2. Rra satisfies (IR-s).
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Proof. Let a € A and assume that € Tg.,(P). Then all sub-agendas Rsa(P) contain
a. Let P’ be ana-improvement ofP. ThenN(P’,a) > N(P,a), N(P',—a) < N(P,—a),
whereas for alyp # a,—a, N(P',¢) = N(P,¢). Note that in>p/, o appears either at an
earlier position or in the same position assip. Therefore, if>' is an order refiningzp/,
whena is considered in-, otherwise there would be an orderrefining >p resulting in a
sub-agenda not containimg Thereforen belongs to all sub-agendasRA(P’).

O

Proposition 4.8.3. Ruwa i.e., A%-2 satisfies (IR-s).

Proof. LetP be a profile® = (Aq,...,A,...,Ay). Let thea-reinforcement of be a profile
P = (An...Aq. . A) = (A,... A...,Ay). Let A be the set of all consistent and
complete judgment sets over an agerida et us defineD(A,P) = 3" | dy (A A).

We have the following assumptions:

o ag¢A
e ach;,
o forall e A,y ¢ {a,—a}itholdsy e A iff e A,

e acA forallAc R#HZ(P),

We first show that all the judgment séts R%>(P) are such thah e R%Z(P') and that there
exists nAA’ € A such thata e A’ A ¢ R&Z(P), butA' € R (P").

Let the score of the winner judgment sétfor P be ¢, namely let = Y, du(AA), forall
Ae RIZ(P). We have that, for alk’ € A, when the cardinality of the pre-agendaris
dr (A, A) = m— [Acn A,
dn (A, AF) = m— A A A
LetA' € A be such thatr € A Sincedy (A, Af) = 1, we have thaidy n A'| — |A; nA| = 1.
Hencedy (A", A) = 1+ du (A, Af) and

D(A,P) =1+D(A,P). (4.23)

For all the winnersA for P, we obtain thaD(A,P) = 1+ D(A,P'), hence

D(A,P) =c—1. (4.24)

If an A" ¢ Roh-= ( ) thenD(A P) > cand due to 4.23D(A’, P/) > c—1. We can conclude
that there is nd\' € A such thatr € A" andA’ ¢ R&Z(P) butA' e RbhZ(P).

We now show that there exists A0 € A such thatr ¢ A" andA” ¢ R (P) butA” e Rt (P").
We construct a proof by contradiction, starting with theuasgtion that there exists such a

A" e RhZ (P,
SinceA” ¢ RAZ(P), we obtain
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~N

D(A",P) >c. (4.25)
Sincea € A; anda ¢ A, we obtaindy (A7, A) < dy (A”,Af) and consequently
DA",P) <DA",P). (4.26)
Putting together inequalities 4.25 and 4.26 we obtain
DA".P)>c (4.27)
However, the inequality 4.27 and inequality 4.24 are calittary with the assumption that

A’ ¢ R%Z(P). This completes the proof thRth* is insensitive to reinforcement of collective
judgements.

O

Proposition 4.8.4. Ry does not satisfy (IR-s).

\Votergp q pAQr \Votergp q pAqQr

2x[++ + + 2x[++ + +
2x|+ - - 4+ 2x|+ - -+
Ix|+- - + Ix|- - - +
4x|-+ - - 4x|-+ -

MP)|++ - + M(P)|- + - ;

Table 4.5:P on the left, and the~p-reinforcemen®’ on the right used to show thRy does
not satisfy (IR-s).

Proof. We use a proof by counter-example. Let the agend4 be{p,q,p A q,r}. Consider
the profileP in Table 4.5.P is not majority-consistent, but removing any voter who pas
her judgment set suffices to restore consistency, ther&gde) = {g,—~(p ~ q)}.

Consider the-~p-reinforcement profil®’, Table 4.5 right-mos®Ry (P') = {—p,q,—~(p A q),r}.
Observe that althoughp e Ty (P) and—pe Ty (P'), Ry(P) #T1 Ry(P').

O

Proposition 4.8.5. Rry does not satisfy (IR-s).

Proof. Consider again the profile given on Table 4.5. We obtaiRry(P) by adding the
fourth judgment set once, so that it appears five times in thafilg instead of four.
Rry(P) = {a,—(p A~ q)}, henceTr,, (P) = —p and Try (P) ¥ t. Consider the
—p-reinforcemenP’ given on Table 4.5Rry(P’) = M(P') = {—p.q,—(p A 0),t}. ltcanbe
observed thaRzy(P) # Rry(P). O

Proposition 4.8.6. Rynac does not satisfy (IR-s).
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Votersp q pAqpPArpas Votersp q pAqQpPArpas
IxA|++ + — — IxA|++ + — —
IxA+— — ar — IxAy+— — — —
1><A3—+ - - + 1><A3—+ - - +
MP)|++ - — - MP)|++ — - -

Table 4.6: The profile® (left) andP’ (right), an example thaRynac is not insensitive to
reinforcement of collective judgements.

Proof. Consider the agendé&= {p,q,p A g, p A T,q A s} and the profile® given in Table 4.6.

There are 6 profileB suchthaD(P,R) = 2, see Table 4 Runac(P) = {{p,aq,p A a,—(p A I),
ﬁ(p A s)}a{pvﬁ qa_'(p A q)vﬁ(p A r)vﬁ(p A S)}v{_' paqvﬁ(p A q)7ﬁ(p A r),_‘(p A S)}}
We have thaflr,,,(P) E —(pAT).

P'isa—(p~ r)-reinforcementoP, butRunac(P’) = {{—p,0,—(p A q),—~(p A T),—(p A S)}},
sinceD(P',P3) = 1.

Votersp q pAqQ pPArpas Votersp q pAqQ pArpas
x|+ - — = = Ix|++ + - -
Ix|[+—- — + = Ixi++ + + -
Ix|—+ — -  + Ix|—+ —  —  +

M(Pl) + - - — — M(Py)|+ + + — —

Votersp q pAqQ pPArpas Votersp q pAqQpArpas
Ix|—+ — — — Ix{++ + — —
Ixf+- — + - Ixl+- — + -
Ix|—+ — — 4+ Ix|—— — — -

MBI+ — - - MBI - - - -

Votergp q pAQ pPArpAs Votersp q pAqQpPArpas
Ix(++ + — - Ix|++ + - -
Ix|—m— - - - Ixl+- — + -
Ix|—+ — — + Ix{++ + — +

M(Ps)|— + — - = M(Ps) [+ + + — —

Table 4.7: The profileB, i € [1, 6] for whichD(P,R) = 2. Note thaD(P’,P;) = 1.

Proposition 4.8.7. R&-MaX does not satisfy (IR-S).

Proof. Consider the agendé = {p A1,p A q,0,t}, the profileP for three agents:
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Voter§pArpaqq t

Ix | = + —+
Ix | + - —=
Ix | = — ++

and its—(p A g)-reinforcement (in the first voter’s judgment sBt)

voter§pArpaqgq t

I[- - —+
2 |+ - —-
3 |- - ++

As it can be observed from Table 4:8(p A q) € Ty max(P), SiNCeRHMX(P) =
{{=(p A 1),=(pAq),—a,—t},{=(pAT),~(pPAQ), =0t} {pAr,~(pAq),—q,t}}.
However, as it can be observed from Table R@';maX(P’) = {{=(pAr),—(p~rQ),—q,—t},
{ﬁ(p N r)7 ﬁ(p A q)7 ﬁq’t}’ {p AT,y ﬁ(p A q)7 ﬁqﬂt}7 {_'(p A r)7 ﬁ(p A q)7q7 ﬁt}} ThUS,
=(pAQ) € Traymax(P') andRAH-MaX(Py -« RAwmaX Py Fyrthermore, sincege Ty max(P),
bUtﬁq ¢ TRdH,max(P/), we obtain thaRdemaX(P) #T RdHymaX(P/).

AG A dH (A7 A5) dH (A7A8) dH (A7A4) max
Al {_'(p/\r)a_'(p/\q)a_'qaﬁt} 2 1 2 2
A, {=(par),—(prq),—qt} 1 2 1 2
A3 {ﬁ(p/\r)vﬁ(p/\q)vqaﬁt} 3 2 1 3
Aq {—=(pAr),—(prq),qt}] 2 3 0 3
As {-(pAr),prg,—qt}| O 3 2 3
As {=(pAar),prg,q,—t}| 2 3 2 3
A7 {-(pAr),prq,qt} 1 4 1 4
As {par,—(prQ),—q,—t}] 3 0 3 3
Ag {par,—(prQ),—qt} 2 1 2 2
A1o {par,prq,q,—t}| 3 2 3 3
A1l {par,prqqt} 2 3 2 3

Table 4.8: The max of Hamming metrics from an element in théige each of the agent's
judgment sets in profile.

We now consider thA rules.

Proposition 4.8.8.1f d € {dr,dn } thenA%© satisfies (IR).

Proof. Consider a profilet for A, a € A, a profiler” which is aB-reinforcement ofr.
Thek-th row is the row on whichtand 7’ differ. Observe that, fop € {b,—b} orb=—f3
(m'>k)vb = v(b), v(b) € {0,1} and (rm>k)vb e {0,3,1}. LetAe AYO(T, W), Avb = v(b).
We need to show that all' € A%O (77, W) are such thal'vb = v(b). We construct a proof
by contradiction.
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Ac A du (A, A2)|dr (A, Ag) [dH (A, Ag) |[max
AL {—=(par),—(PrQ),—q,—t}] 2 1 2 2
Ao {=(pAn),~(prq),—gt} 1 2 il 2
Az {=(pArr),~(pPr9),q -t} 1 2 1 2
Aq {=(par),~(prg)at}| O 3 0 3
As {ﬁ(p/\r)vp/\qa_'qvt} 2 3 2 3
As {=(par),praq—t}] 1 3 2 3
A7 {—=(pAr),prq,q,t} 1 4 1 4
A8 {p/\rvﬁ(p/\q)vﬁqa_'t} 3 0 3 3
Ag {parr,—~(prQq),—q,t} 2 1 2 2
A1 {pAar,pArq,q,—t} 2 2 3 3
A1 {pArr,pArQq,q,t} 1 3 2 3

Table 4.9: The max of Hamming metrics from an element in thége each of the agent’s
judgment sets in profile”’.

We use the notation
m

dw(AA) = Y W(i, ) 8(Avaj, Ava;),
j=1

whered € {d4,0r}.
FromA e A%O(7,W) it follows that

O dw(A, Tm>i) < O 10w(A, T>i). (4.28)
Sincedy (A, >k) > dw(A, m'>K) it follows, from the non-decreasingnessof
O, dw(A, Tm>i) = O 1dw(A, TT>1). (4.29)

It follows from (4.28) and (4.29) that:

O du(A, i) < O 1Ow(A, T>1). (4.30)

Assume that there isA € A%O (77, W) such that’ vb # v(b), and as such’ ¢ A%®(,W).
It follows that

Oy (A, TT>1) < Oy (A, ). (4.31)

From (4.30) and (4.31), it follows that

O dw(A, M) < O 0w(A, Tr>i). (4.32)
From (4.32), sincer't>i = m>i, for all i # k, it follows that

du(A, 1K) < dw(A, T>K). (4.33)
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Recall that

NgE]

du(A, TK) = Y w(k, |)- S(A'vay, )

1

and

M=

du(A, TiK) = > wi(k, ) - S(A'Vay, )

1

Sincen{(,j = pk,j, for all aj # b It follows that (4.33) holds, if and only if

S(A'Vb, L p) < S(A'Vb, i) (4.34)

For du, the inequality (4.34) holds only wheX(A'vb, i, ,;) = 0, however that would imply
thatA’vb = m, , which is a contradiction with the assumption téavb = v(b).

For or, the inequality (4.34) holds only when it is possible t@'vb, 1 ) = % or
S(A'Vb,mp) = 1. If S(A'Vb,m ) = 3, thenA'vb = 3 due tov(b) € {0,1}. How-
ever, ifA'vb = % thend(A'vb, (rm>k)vb) € {0, %} and we reach a contradiction again]

Proposition 4.8.9. A%:© satisfies (IR).

Proof. We make the same assumptions as in Proposition 4.8.8. Goresjurofilert for A,
ap € A, a profile i which is af3-reinforcement ofrt. The k-th row is the row on which
mand differ. Observe that, fof3 € {b,—b} orb = = (17>k)vb = v(b), v(b) € {0,1}

and (r>k)vb e {O,%,l}. Let Ae ADO(,W), Avb = v(b). We need to show that all

A e A%O(1T W) are such that'vb = v(b). We construct a proof by contradiction.
We use the notation
dw(AA) = max(wi 1 - on(A(1),Ai(1)),...,Wim- h(A(mM),Ai(m))).
FromA e AD:O () it follows that
O dw(A i) < OL1dw(A, TTVi). (4.35)
Sincedp (A, TvK) > dp (A, 7 VK) it follows, from the non-decreasingnessof
O 1 dw(A, Vi) = OfL1dw(A, TT'Vi). (4.36)

It follows from (4.35) and (4.36) that:

O du(A, TTVH) < O dw(A, TIVi). (4.37)

Assume that\' e AD-O (17, W) andA’ ¢ A%D-O (7, W). It follows that

O, (A, 7T Vi) < Oy ch(A, V). (4.38)

From (4.37) and (4.38), it follows that
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O dw(A, T Vi) < O dw(A, V). (4.39)
From (4.39), sincetr Vi = ntvi, for all i # k, it follows that

dp (A, T VK) < dp(A', TvK). (4.40)

The inequality (4.40) is only possible whdp(A’, ' vk) = 0, however that would imply that
A'vb = (k) vb which is a contradiction with the assumption théavb = v(b). O

4.9 Separability

In addition to the relational properties that are consid@rgudgment aggregation, and which
we lifted in the previous sections, we can also introducati@hal properties inspired by
properties of interest studied in voting theory.

In voting theory, the separability property states thatrifedternative is a winner under a
voting rule, for two distinct profiles under the same set afdidates, then that alternative
is a winner, under the same voting rule, for the profile oladiby combining the two pro-
files. The property of separability is defined in (Smith, 19&8so defined as consistency in
(Young, 1975), and it is sometimes called reinforcementel Whis property is best known
as one of the conditions, together with neutrality and angty used by Young in his char-
acterization of scoring social choice rulzs (Young, 1915 voting rules that do not satisfy
the separability property are subject to occurrence&imipson’s paradofBlyth, 1972).

In judgment aggregation, the separability property is tériast as well. One reason is that
the separability property is a natural requirement to mékejudgment set is among the col-

lective judgment sets for profilg, and for profilers,, then it should be among the judgment
sets for the combined profile.

Since the judgment aggregation sequence can be consideeesiadid piece of information
or as divisible collection of judgments, we can define attleas versions of a separability
property in judgment aggregation: sequence-separafffiis) and issue-separability (S-i).

Definition 72 (Horizontal merge) Let My be an x m matrix and M a n, x m matrix. The
matrix M is called a horizontal merge of Mand M, if M>i = Myr>i for all i € [1,n4] and
Mp>(j+ng) = Mg>jforall j €[1,ny].

Definition 73 (S-i). A rule F satisfies issue-separabilitywhen for every me S‘l,
W, e (RY)"*Mandm e §2%, We e (R*)™2*™ and their horizontal merger e §%*"™,
W e (RY)Mm+m)xMif [forall A € F(m, W), A(j) = a]and [for all A’ € F(mp,Ws),
A(j) = a], then[forall A” € F(,W), A’(j) = a].

Definition 74 (S-s) A rule F satisfiessequence-separabilityvhen for everyme S‘l,
W, e (RY)"*Mandme §2, Wy e (RT)2*M and their horizontal mergetr € §"*"™,
W e (RY)MH+n2)xXmif B Wh) A F (T, W) # F, then F(mm,Wa) N F (T2, We) € F (W),

The issue-separability states that if a judgment is in tle@th of the rule on a profiler;

and it is in the theory of profiler,, both being profiles on the same agenda and constraints,
then the same judgment is in the theory of the horizontal mefgr, andrm,. The sequence-
separability looks at whole sequences instead of judgmeélita sequence is selected as
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collective by a rule forrr; and the same sequence is selected as collectivafathen that
sequence is among the collective sequence selected byldferrthe horizontal merge ofy
andr.

Unlike with unanimity and unanimity principle, majoritariism and majority-preservation,
and (IR-s) and (IR), one of the separability properties dogsimply the other. We study
issue-separability for the rules based on minimizatioraif@got consideringRy andRyR)
and sequence-separability for the weighted distancedbases.

For the rules in Chapter 2 we study (S-i) by establishing a&ganmesuft which shows that
majority-preservation and rule (S-i) are incompatibleisTesult can be seen as the judgment
aggregation counterpart of the result that states thayyé¥endorcet-consistent voting rule
violates reinforcement, see Theorem 9.2 (Moulin, 1991230).

Proposition 4.9.1.1f a rule aggregator is majority-preserving then it violatissue-separability.

Proof. Let Rbe a majority-preserving rule, and assume furthermoreRksatisfies (S-i). Let
A ={p,q,p v q}, andP the 10-voter profile as follows:

voters |p g pvq

12 |++ +
34 |-+ +
56 [+— +

7,8,9,10— — —

Consider the two sub-profildy consisting of voterg1,3,4,7,8} andP, consisting of vot-
ers{2,5,6,9,10}. P, andP, are majority-consistent, witM(P,) = {—p,q,pv g} and
M(P,) = {p,—q,pv q}. SinceRis majority-preserving, we hawR(P;) = {{p,—q,pv q}}
andR(P) = {{g,—p,pv q}}; thereforep < — g € Tr(P1) andp < —q € Tr(P,), from
which, by (S-i),

P —Qe TR(P]_ U Pz) = TR(P). (4.41)

Consider now the two sub-profil&5 consisting of voter§1,2,3} andP4 consisting of vot-
ers 4 to 10. The profileB; and P, are majority-consistent, witM(P;) = {p,q,p A q}
andM(P;) = {—p,—q,— p A — q}. SinceR is majority-preserving, we have(P;) =
{p,a,p A q} andR(P4) = {—p,—0,— p A — q}. As a consequence
p< g€ Tr(P3) andp < —qe Tr(Ps). (4.42)
From (4.42), by separability,
Pp<—Qqe TR(P]_ ) Pz) = TR(P). (4.43)

The equation (4.43) is in contradiction with (4.41). O

As a corollary, all the rules based on minimization exd@pt™2 violate issue-separability.

Corollary 4.9.2. The aggregation rules\R Rusa Rucsa Ruwa Rra, Rry, and Runac do
not satisfy (S-i).

3This theorem was proved by Jeréme Lang.
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The only one of our rules which is not majority-preservindifs'™®. However, this one
does not satisfy (S-i) either, which shows that it seemsexéty difficult to find a reasonable
judgment aggregation rule that satisfies (S-i).

Proposition 4.9.3. R&H-M¥ does not satisfy (S-i).

Proof. Let A = {p,q,r,p— (g A r)}, and the 5-voter profil®:

votergp g r p— (qAr)
123+ +- -
45 |+ + + +

Consider also the two sub-profil® consisting of voters 1, 2 and 3, aid consisting of
voters 4 and 5. Observe thatH ™(Py) = {{p,q,—r,—~(p — (q A T))}} andRHMX(P,) =
{{paqarap_’ (q/\ I')}}, thus p e TRdH,max(Pl) and p e TRdH,max(Pz). However,
RHM(P) = {{p,q,~r,~(p — (@ A N} {P,arP = (A N}{=p.G,~r,p = (G A1)},
{p,—a,r,—(p — (q A 1))}}, thereforep ¢ Tea, max(P). O

Regarding sequence-separability and the weighted distaased rules, there are more posi-
tive results.

Proposition 4.9.4. If ® is associative (see Definition 31), thaf® satisfies (S-s).
Proof. Lets(A A)) = ®L (i, j)3(A(j),Ai()). Due to associativity
O(S(AAL), -, S(A Ay ), S(A A ) - S(A An)) = O(O(X(A)), O(Y(A)))-

X(A) y(A)

Due to the non-decreasing @f, if
X(A) < x(A') andy(A) < y(A"), (4.44)

then®(x(A),y(A)) < O(X(A),y, (A)).

Letrme A™, e A", Wy e (RT)™ andWs e (RH)™. If A € AYO (111, W), A € AYO (11, Wb),
then (4.44) holds for eadN € A and consequenth e A%® (711, W) for the horizontal merges
mandw. O

The function* is not associative, however it satisfies sequence-sefigrabi

Proposition 4.9.5. A% satisfies (S-9).

Proof. The proof can be constructed similarly as the proof of Thex4ed.4. Observe that
[ [(s(A m>1)+1,...,s(A m>ny) + 1, S(A, 0> (g + 1)) + 1,....S(A, 71>n2) + 1)

can be written as

[[sAme1)+1,... s(A men)+1)- ] [(SA m>1) +1,... (A mnp) +1). (4.45)

Forxy,Xo,y1,¥2 € RY if X < % and y; < yp, then x;-y; < x2-y2. Consequently,
if A e AST* (7, Wh) andA € AT (115, Wb), thenA e AT (7T, W). O
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4.10 Other properties for judgment aggregation rules

In addition to separability, we can construct other prapsrthat might be desirable for an
aggregation rule to satisfy, inspired by properties stldievoting theory. In this section we
give their definitions.

Tideman (1987) introduced tleone independence criteridor voting rules. This property
states that when a candidate is added to the set of candidatbthis candidate is identical
to a candidate already in the set, the winner of the electiimet change.

There are no candidates in judgment aggregation, but treperttience of clones can be
defined for agenda items. Indeed, if two agenda issues areallygequivalent, then the
collective judgment on the both should be the same. An ickedltle rule should be insensitive
to agenda clones already appears in (Dietrich, 2006b),evasimilar property is defined as
logical agenda manipulatianT he difference between our definition and the one in (Diktri
2006D) is that in (Dietrich, 2006b) one speakseftled issugsamely issues whose truth-
value is determined by any judgment set (consistent and lste)p

Cariani et al. (2008) define a property for function aggregatalledranslation invariance

A function aggregator is translation invariant if the cotiee judgment set does not depend
on the particular language used to model the agenda. Naihehg agendas are semanti-
cally equivalent and two equal profiles, each for one of thendgs, are aggregated, then the
collective judgment sets selected for each profile shoulthbesame. Cariani et al. (2008)
prove that whether a function is translation invariant aefseon the atoms in the agenda.

We define clones as issues in the agenda that are logicaliyadent. All clones are settled
issues, but not all settled issues are clones.

Definition 75 (Clones) Given an agendal, issues aa’ € A are cloneswhenforall & S,
A(a) = x if and only if A&') = x.

Let M be an x mmatrix andY c [1,m] a set of columns. The sub-matrixM‘Y s
the n x (m-—|Y|) matrix obtained by removing the columnsYrfrom M. Consider as an
example the % 3 matrixM , Y = {2} andM!Y:

100 00
M=1]010 MY =110
111 11

Definition 76 (IAC). LetA be an agenda containing the clones a apdand let Y= {k}. A
judgment aggregation rule F isdependent of agenda clonghen for every profiler € §',
ifA e F(mU)and K e F(p*Y,W!Y), then for all g # ax A(j) = A'(j).

Example 4.10.1.Let A = {p,q,p A q,p A p}. We can observe that p and~pp are clones.
Consider the profiles P and the reducedli Table/4.10. On this profile the ruleyRs
insensitive to clones, while the rulg,Bsais not.

There are aggregation contexts in which a group of agentisneemake judgments on the
same agenda in various moments in time.

Example 4.10.2. Consider a group of agents that develops and maintains acftwThe
group needs to make decisions regarding the resources spatgveloping and maintaining
the software. Let the issues be:
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paprgprp  ——AP2A

- - +

-+ - - -t

++ o+ o+ = 7+I *
R, | +

+ + * )
RucsA+ + " RMCSA:"’

+ - + N :

Table 4.10: The profil® containing the judgments on the clones (left) and the swffilpiP’
without the judgments op A p.

release new version (p),

fix known bugs (q),

improve the user interface (s) ,

advertise the product (t).

Let the relations between these issues be p q— p and qv .

As long as the software is maintained, the group would needaie decisions on the same
or some of the agenda issues. At a given moment, after efjditie group opinions on the

full agenda, the group might need to use the decisions réggrd, g and t but determines

that s is not really of interest.

In Example: 4.10.2, how should a collective judgmentoarhange if the agenda, and profile,
is reduced bys? It is intuitively undesirable that the decision prshould change since. We
call this propertyinsensitivity to agenda shrinking

Definition 77 (IAS). LetA be anagenda,ace A andY= {k}. A judgment aggregation rule
F satisfies thestrong insensitivity to agenda shrinkimgen for allr € §, W € (R*)™™M

if [forall A e F(rr,W) and for all k# j, A(j) = X], then [for all A’ ¢ F(ri*¥ , W!Y) and for
allk = j, A(j) =x.

Example 4.10.3.ConsiderA = {p,q,9 — p,p — t,s,qx s} , the profile P for it, and the
profile P for A shrunk for s, given on Table 4.11. As we can observe from thie,ta
Truesa(P) & P but Trycs2(P') # p, hence the rule fiResadoes not satisfy the property.

When a rule is based on minimization, we can expect that itbeikensitive to the shrinking
of the agenda for an arbitrary issue, since the removed isggiet share sub-formulas with
other issues, as it was the case in Example 4.10.3. We caiteoti®e insensitivity to agenda
shrinking when the issues removed are atomic and not pathef ssues. This property we
call insensitivity to atomic agenda shrinking

4The connective is the exclusive or, defined gsv Y = (—¢ A ) v (¢ A —).
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Pgd—pp—tgys
pPgg—pp—tsqys -+ +  +
-+ + + + -+ - + -
-+ - + - - ++ -+
++ o+ - -+ R, | +

R/ | + - + +
+ + - +
- +
Rvcsd + + + o+
Rvcsa + + + - + -+ + 4+
- + + 4+

Table 4.11: The profil® containing the judgments on the full agenda and the sublpRfi
without the judgments on

Definition 78 (IAAS). LetA be an agenda and let ¥ A be the set of the indexes of each
atomic formula pe A thatis not a sub-formulafor any formufae A\Y. Ajudgment aggre-
gation rule F is insensitive to atomic agenda shrinking wfarall 77 € §', W ¢ (R*)"™M

if [forall A e F(r,W) and for all k# j, A(j) = X], then [for all A' € F(ri¥,W!Y) and for
allk = j, A(j) =x].

Another aggregation property regarding the agenda iageada separatianiVe first define
what it means for an issue to be independent in an agenda.

Definition 79 (Independence of an issue)An issue a isndependenin an agendad, when
for any consistent judgment setAA andé € {a,—a}, A\{a} # aand A{a} i —a.

Another way to define independent agenda issues is as cefndlicta does not belong to any
minimal inconsistent subset ¢f. When an agenda contains an independent iastheen it

is reasonable to expect that, regardless of what the judgroarthe other agenda issues are,
the collective judgment oa always coincides with the majority of the judgments regagdi
a.

Definition 80 (AS). LetA be an agenda, andjae A an independent issue. A judgment
aggregation rule F satisfiesgenda separatiomhen for everyt € §,W € (R*)™™M if for
allA € F(r,W), A(j) = m(ntv j,W).

Example 4.10.4.Consider the agenda = {p,q,p » q,r} and the profile for this agenda
given in Table 4.12.

Although this example satisfies the agenda separabilitpgnty for both the R and Rynac
rules, this is not always the case. Finding a counter-exarfgul R, is fairly simple.

The agenda separation property is desirable since it allowsrofiles to be split into a part
of judgments on dependent and part of judgments on indep¢rebeies, with only the judg-
ments on dependent issues to be aggregated.

One property considered in voting theory is the propertynetilnerability to a no-show
paradox Fishburn and Brams (1983) define the no-show paradox astitli¢ion of identical
ballots with candidat& ranked last may change the winner from another candidate Tthe
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pgpaqr

- -+

-+ -+

4+ o+ -
R | +
+

-

Rvnac|- + -+

- -+

Table 4.12: The profilé® containing the judgments oA = {p,q,p A g,r} and the corre-
sponding outputs froRy andRynac.

no-show paradox occurs when a group of voters is better ofidiyvoting than by voting
according to its preferences (Nurmi, 2004). Moulin (1988)ws that when there are at least
four options (candidates), every voting rule that eleces@ondorcet winner must generate
the no-show paradox.

Are judgment aggregation rules susceptible to the no-staradox as well? We can define
when a rule is invulnerable by the no-show paradox.

Definition 81 (INS). A judgment aggregation rule F satisfies the invulnerabtlitghe no-
show paradox when, for everye §', W € (R*)™Mand A* € S,V € (R")™ such that
A*(j) =xifforall A € F(,W), A(j) = x, then forall A € F(r',W’). The profilerr and
weights W are the horizontal merge af with A* and W with VV correspondingly.

Example 4.10.5.Consider the agendd = {p,q, p A g} and the profiles P and’Rjiven in
Table 4.13. We can observe thatp A ) € Tryyac(P) @and—(p A q) € Tryuac(P’), hence
for this profile Rynac is invulnerable to the no-show paradox.

PgpaqQ PgpaqQ
- - +- -
-+ - -+ -
++ o+ ++ o+
Runac|* - - - - -
-+ - Runac -

Table 4.13: The profil® (left) and an its extensioR’ (right) with {—p,—q,—=(p A q)}.

4.11 Conclusions

In this chapter designed rule aggregator properties arlgzath with respect to these proper-
ties, the rules we defined in Chapters 2 and 3. We intend tchese properties to distinguish
among the rules from Chapters 2 and 3 correspondingly.

Properties in judgment aggregation have been defined fatitmaggregators and binary
unweight judgments. We first defined the correspondencedegtyon one side, a property
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defined for weighted rule aggregators and ternary judgmantson the other side, a prop-
erty defined for an unweight binary function aggregator. Bu¢he irresoluteness of the
rule aggregators, there are multiple rule aggregator pti@gecorrespond to each function
aggregator property.

There are not many properties considered in judgment aggoegtheory. For each of the
known property we defined at least one corresponding rulpgstg and analyzed which of
our rules satisfies it. The following rule aggregation pmbigs have been included: universal
domain, anonymity, neutrality, independence of irreléwaformation, collective rationality,
majority-preservation, majoritarianism, unanimity, nimaity preservation and monotonic-
ity. In addition we considered separability, a rule aggtiegeproperty corresponding to a
(separability) property in voting theory.

All the families of judgment aggregation rules we introddisatisfy the structural properties
of universal domain, anonymity, neutrality, and colleetiationality. None of the introduced
rules satisfies the independence of irrelevant alterreafimeany of the defined versions). The
relational properties we considered were majority adher@noperties, unanimity properties,
monotonicity properties and separability properties. Témults are summarized in Table
4.1,

Majority Weak Strong IR-s SAi
Preservation |Unanimity  |Unanimity
Ry |V v v no no
Rwvsa [V v no v no
Rvcsal|v’ no no v no
Rvwa |v/ no no v no
Rra |V v v v no
RAH-maXIn g no no no no
Rry |V v v no no
Rvinac | v/ no no no no

Table 4.14: Summary of the results for the social theoretperties of the judgment aggre-
gation rules.

We considered the same properties for the examples of desteand aggregation functions
we introduced. In Table 4.15 we summarize the results. Wjitthen no index is specified,
we denote any product metric and withany aggregation function.

Whether a property holds for a distance-based rule somgtitapends on the properties of
the choserd and(®, as was the case with anonymity and separability. On ther dited,
e.g, whether unanimity-principle is satisfied depends on thio taetween the cardinality
of the agenda and the number of agents. Unanimity holds wieegis a function that
satisfies minimality. Majority-preservation holds only #+~ andA%-X. The sequence-
separability (S-s) holds for all aggregation funct®mwhich are associative, however, as the
example with the non-associativeshows, there exist non-associative arithmetic aggregatio
functions that satisfy (S-s).

The literature of judgment aggregation, see for examplgt @nd Polak, 2010; Pigozzi, 2006),
discusses the anonymity and independence of irrelevaoriivation for distance-based rules,
but does not formally define or prove these properties siniserather simple to show that
they hold, and not hold respectively. The belief-mergingrapors are analyzed with re-
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Property Satisfied Not satisfied
Unanimity (d,%)
(d,max
(d,Gmay)
(d,11%)
Weak unanimity principle(dp,®) (di,%)
(di,max
(di,Gmax
(di,M*)
di € {dH,dT}
Strong unanimity principlg¢dp, ®)
Majoritarian (d,2) (d,max)
(d,n*) (d,Gmax
Majority-preserving |(dn,Z) (dp,X)
(dr,%) (d,max)
(d,Gmay
(d,11%)
IR (d,0)
S-s (d,)
(d,max
(d,Gmay)
(d,11*)

Table 4.15The summary of the properties which holds for thand® examples we introduced.

spect to unanimity and majoritarianism (Konieczny and Hagéoez, 1999). In addition to the
aggregation functions and distances considered therdseé@roduce thé&l*, which is ma-
joritarian but not majority-preserving. The rest of theedies, to the best of our knowledge,
have not been previously considered for judgment agg@yaties or functions.

Which properties should a rule aggregator satisfy? Thewtral properties are desirable in
all the settings, as is the property of unanimity. In all ;mmsual groups it is required that
the adherence to majority properties are satisfied, as weleunanimity principle at least
in its weak version. The properties of insensitivity to feilcement are particularly desirable
in contexts in which the agents give judgments on the sanuessseveral times, irrelevant
of weather the group is consensual or hierarchical. A rudenssitive to reinforcement can
save the agents from executing unnecessary aggregatibagprdperties of separability are
particularly desirable for aggregators used by distribuidensensual sub-groups. If a rule
satisfies separability, then the smaller sub-group of agesm aggregate its judgments and
send the result. The whole group may not need to aggregatehbke profile, but just
consider these sub-results.

For group decision problems, ideally one would prefer nétsotules. However, from the

impossibility results in judgment aggregation, see (Lisd olak, 2010) for an overview,

and social choice theory in general, we can conclude thgtfontestricted domains resolute
aggregators can be constructed. If the domain cannot bected{ and usually this is the

case, then irresoluteness must be dealt with by tie-brgakiachanisms. If resoluteness
is not feasible, then the rules should at least select a smaiber of collective judgment

sequences as possible. For this reason, rules suRk A8vr andA% ™2 are undesirable.



4.11 Conclusions 129

The rules we consider are in principle all desirable ruless we can observe from Ta-
bles 4.14 and 4.15, the properties we considered are insaffio fully distinguish among
the rules. To this end more properties need to be developedndde the initial efforts along
this path in Section 4...0 where we discussed and defined fiveule aggregator properties.
The family of interesting rule aggregator properties i stit large enough and the search
for these properties is an open question in judgment agtioegheory.

In the third part of the thesis we consider instances of hitieal and consensual groups
in multi-agent systems and give judgment aggregation basmtels of decision-making for

these groups. We pair rules from Chapters 2 end 3 with eadtesétdecision-making prob-
lems using the properties we developed in this chapter.
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3

Recognition-primed group decisions
for hierarchical teams

Abstract. In this chapter we give an example of a hierarchical group de-
cision problem in a multi-agent system context. When ojrggah uncertain
environments, agents cannot rely on negotiation to reackeagents since the
state of the world might change while they negotiate. We psepa model for
reaching a group decision without negotiation. Our modis the Recognition-
Primed Decision (RPD) model, constructed in an experini@siechology, from
a single agent to an agent group. The lifting is executed Hyeslding judgment
aggregation as a tool for amalgamating individual infoiovatThe RPD model
models adaptive behavior. While it executes its actioresgtioup may adapt the
decisions it acts upon in light of new information. We comsickvision strategies
for our group.

5.1 Introduction

Groups of agents need to be able to reach collectively bindigtisions in order to coordinate
and cooperate. We consider a hierarchical team of agentsucima team, there exists one
agent that is responsible for producing the group decislianteach the group decision this
agent needs to consider and combine the opinions of thefrdst team members. How can
a hierarchical team reach collectively binding decisignan uncertain environment?

According to traditional theory of decision-making, seedgample (Peterson, 2009, Chap-
ter 1), making decisions is driven by the concept of ratibpalssociated with the decision-
maker. A rational agent chooses, given his knowledge abeuwbrld, those options that are
optimal in the sense that they maximize the agent’s expadtity. Optimizing is difficult
when the agents’ resources are limited, as initially pairtet by (Simon, 1955, 1956). Fur-
thermore, rationality is a concept associated with a decisiaker (an individual) and it is not
simple to apply this concept to groups, see for instanceribbyais of (Stirling and Nokleby,
2009).

People are not good rationalizers (Hardy-Vallee, 2007,ix)g however groups of people
are able to function successfully even when all adequaterimtion is not available, when
their goals are unclear and the procedures they have taMalie poorly defined, consider
for instance firefighters and other emergency rescue teantife-threatening situations and
dangerous environments it is desirable to replace humanstedth artificial agents. Can

133
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artificial agents be endowed with such skills of decision imgland adaptation that people
possess? This question begets another question. How d¢epeage collectively binding
decisions under time pressure, in dynamic conditions anthagrtain environments? Can
we use a model of human decision-making to build a procedhatecin be used by artificial
agents?

Using computational modelinge., multiagent based simulation of group-decision making
theories built and studied in experimental psychology,seduto validate and analyze hu-
man decision-making models (llgen et al., 2005; Hulin agénl, 2000). The less explored
direction is the use of experimental psychology models titdlecision-making or agree-
ment reaching procedures for artificial agents. One reaspthfs might be found in the
non-simplicity and high non-determinism of the experinaéntodels.

Compared to studies of consensual groups, the hierardkaal decision-making is far less
studied in experimental psychology and social sciencesptuey et al., 2002). A summary
of theories on how hierarchical team-decision making isejam should be done, is given
in (Humphrey et al., 2002). A well known model is thaulti-level theory of team decision-
makingof (Hollenbeck et al., 1995). This theory however is ratimdri¢ate and it would be
difficult to translate into a group-decision making modelddtificial agents.

How firefighter commanders make decisions under extreme piragsure was studied by
Klein et al. (2010). They found that, when a commander has pxperience with a problem,
which is usually the case, he acts according tad¢ivegnition-primed decisio(RPD) model,
summarized on Figure 5.1.

Goals
Implement
- Perceptual Cues R c
G :Pro.toty'pe » Evaluation >:Mod1fy
Causal Factors g
: Reject
-------- » Expectations
[EERERRRRES » Action Queue

Figure 5.1: The recognition-primed decision model (Klgialg 2010, pg. 203).

According to the RPD model, a commander tasked with a prolfiesthassess the current
situation and then matches the current situation to a pnoitdl solution based on similarity
of goals, perceptual clues, causal factors and informatiimut them.

As arunning example we consider the overpass rescue exgimpiein [Klein, 1999, pg. 18).

Example 5.1.1. The overpass rescue(Klzin, 1999, pg. 18).

“A lieutenant is called out to rescue a woman who either fefumped off a
highway overpass. She is drunk or on drugs and is probabilydrp kill herself.
Instead of falling to her death, she lands on the metal sugpafra highway sign
and is dangling there when the rescue team arrives.

The lieutenant recognizes the danger of the situation. Téraam is semi-
conscious and lying bent over one of the metal struts. At asmpamt, she could
fall to her death on the pavement below. If he orders any ofdam out to help
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her, they will be endangered because there is no way to gedd lg@ace against
the struts, so he issues an order not to climb out to secure her

Two of his crew ignore his order and climb out away. One hold®der
shoulders and the other to her legs.

A hook-and-ladder truck arrives. The lieutenant doesn&déheir help in
making the rescue, so tells them to drive down to the highwéymnband block
traffic in case the woman does fall. He does not want to chadmttetihe young
woman will fall on a moving car.

Now the question is how to pull the woman to safety.

First, the lieutenant considers using a rescue harnessstaedard way of
raising victims. It snaps onto a person’s shoulders andthign imagining its
use, he realizes that it requires the person to be in a sifpiagjtion or face up.
He thinks about how they would shift her to sit up and realthes she might
slide off the support.

Second, he considers attaching the rescue harness fromattie blowever,
he imagines that by lifting the woman, they would create gdgressure on her
back, almost bending her double. He does not want to riskirautter.

Third, the lieutenant considers using a rescue strap-agiottay to secure
victims, but making use of a strap rather than a snap-on hesnélowever, it
creates the same problems as the rescue harness, requiahghe be sitting up
or that it be attached from behind. He rejects that too.

Now he comes up with a novel idea: using a ladder belt - a stioely
that firefighters buckle on over their coats when they climiadgers to rescue
people. When they get to the top, they can snap an attachmehédelt to the
top rung of the ladder. If they lose their footing during tlescue, they are still
attached to the ladder so they won't plunge to their death.

The lieutenant’s idea is to get a ladder belt, slide it under voman, buckle
it from behind (it only needs one buckle), tie a rope to thepsaad lift her up to
the overpass. He thinks it through again and likes the idediesorders one of
his crew to fetch the ladder belt and a rope, and they tie ibdrer.

In the meantime, the hook-and-ladder truck has moved toigienay below
the overpass, and the truck’s crew members raise the laddwe.firefighter on
the platform at the top of the ladder is directly under the vamnshouting, ‘I've
got her. I've got her’ The lieutenant ignores him and ordeis men to lift her
up.

At this time, he makes an unwanted discovery: ladder be#sbailt for
sturdy firefighters, to be worn over their coats. This is ag@&rwoman wearing
a thin sweater. In addition, she is essentially unconscidiren they lift her up,
they realize the problem. As the lieutenant put it, “Shénsliéd through the belt
like a slippery strand of spaghetti”’

Fortunately, the hook-and-ladder man is right below her.dd&ches her and
makes the rescue. There is a happy ending.

Now the lieutenant and his crew go back to their station torégaut what
had gone wrong. They try the rescue harness and find out tkdightenant’s
instincts were right: neither is usable.

Eventually they discover how they should have made theee3diey should
have used the rope they had tied to the ladder belt. They dwaid tied it to
the woman and lifter her up. With all the technology avaiéatd them, they had
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forgotten that you could use a rope to pull someone.”

The recognition-primed decision model captures the behafithe lieutenant in Example
5.1.1. After arriving to the scene, the lieutenant first ases the situation. He observes that
the problem is .. a woman who either fell or jumped off a highway overpas® iS drunk

or on drugs and is probably trying to kill herself. Insteadfafling to her death, she lands
on the metal supports of a highway sign and is dangling therg and “...The woman is
semiconscious and lying bent over one of the metal strutanpmoment, she could fall to
her death on the pavement belbdw.

The lieutenant matches the current situation to a protdgsed on similarity of goals, per-
ceptual cues, causal factors and information about themrmeWa he is ‘talled out to rescue
awomari, “ he does not want to chance that the young woman will fall onamgacar” The
matched prototype genera@gectancieand a set of options for a course of action. The ex-
pectancies are a mean of confirming that the selected ppsdgyadequate. The options are
generated sequentially, with the most typical option ba&jagerated first and other options
only being generated if the previous one is rejected. In theeass rescue example, the first
generated option by the lieutenant is to use a rescue hamestsandard manner. The second
generated option is to attach the rescue harness to thenficim the back. Once a course of
action is generated, the commander proceeds to evaluateifusibility and implements it,
modifies it, or rejects it. In the overpass rescue exampéelj¢litenant evaluated the use of a
rescue harness and rejected it becaitseuires the person to be in a sitting position or face
up and that is not the case. If an option is rejected, the next en@slable, representative,
and similar one is selected for evaluation.

The RPD model is a relatively simple model and it was develdpe@lescribe the behavior of
human resource limited teams. Decisions in conditionsthieeones in which the firefighters
operate must be made fast. Furthermore, the team that nitadmsrhust be able to adapt
easily. This is precise the quality of group decision-mgkhat we search for and that cannot
be accomplished by traditional optimization based denisiaking. However, there are two
problems in using the RPD model to build a group decisionintagrocedure for artificial
agents. The first problem is that the commander in the RPD husds his experience and
associations to match a possible solution and cues thdiyvedas an adequate solution.
This task is more difficult to perform by an artificial agenathpeople since people can
use a small number of cases and associations to find soldftorss given problem. The
second problem is that although firefighters operate as tahmRPD is a model of a single
agent. Consequently, a team decision-making proceduer@s the RPD model will be
only applicable to groups that solve problems on which treelprior experience.

We want to replace the agents on the ground with artificiahtmlike robots and drones, but
we can use a person, let us call this peraninitiator, to perform the task of the commander.
This way we circumvent the first problem. Since the initiasono longer on the scene of the
event, he or she would not be able to assess the situationeaifd the expectancies. We
need to lift the RPD model from a single agent to a hierardlgcaup model. In this chapter
we address this lifting problem.

We consider a mixed human-robot team in which there is onealmyallednitiator, which
has a role similar to the firefighter commander’s role. Thé oéshe agents are artificial
agents, calleéxecutors Unlike the commander, the initiator is not on the ground lasl to
fully rely on the executors for the following processes:
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1. situation assessment,
2. verifying expectancies, and

3. evaluating potential courses of action.

The challenge in raising the recognition-primed decisicakimg model to the team level
lies in raising these processes to the team level. An ade@wdiective decision process, or
processes, needs to be specified to accomplish this task.

The recognition-primed decision approach is very fastjiKestimated that the fire-ground
commanders make around 80 percent of their decisions irthassa minute (Klein, 1999,
pg.4). Inevitably, the decision-making can be expectedike tonger when there are opin-
ions from various sources to be merged. Collective decisianmultiagent systems can
be reached by argumentation supported negotiation (Rabtan 2003) and social choice
(Chevaleyre et al., 2007). Negotiation requires sevenahas of exchanges (of arguments)
between the agents before a decision is reached. It can dénusaftware agents, but not yet
for robotics. Unlike software agents, embodied agents me@dsess the environment, pro-
cess their sensor input and form an opinion. A robot thatdésrim the opinion, not just pull

it out of his knowledge base, would find itself in “no time tartk”. The agreements reached
by embodied agents under time pressure must be done wittl@#liormation exchange as
possible. The executor needs to be able to get all, or atteast, of the information from
the agents at once and deduce the courses of action from it.

Social choice methods such as voting (Nurmi, 2010) and jueddmggregation (List and Puppe,
2009) require only one round of exchange of information. Tigator can apply a social
choice rule to aggregate the executors’ opinions. In the céshe situational assessment,
the agents need to express a judgment whether the cue isypoegeot. However, not all
executors would be in a position to make a judgment on all.clibe opinions on the cues
entail the opinions on the solution that can be applied, iieijddgment made on some cues
may logically constrain the judgments that can be made optthers. Therefore the initiator
should use judgment aggregation rules, in particular weidjihules for ternary judgments
like the ones we developed in Chapter 3.

This chapter is structured as follows. In Section 5.2 we psepa group decision-making
model based on the recognition-primed decision model. tti&@&5.3 we focus on the prob-
lem of reaching collective decisions by judgment aggregatiithin our model. In Section
5.4 we revisit the overpass rescue example and show how adelroan be applied to it. In
Section 5.5 we study the problem of revising the emerginggstaith new information. In
Sectior: 5.6 we present our conclusions and discuss posgghkralizations of the proposed
model to teams with no initiator.

5.2 A conceptual model of reaching recognition-primed grop decisions

We construct a conceptual model of recognition-primed gaecisions for the mixed human-
robots team. The model works under the assumption that elitagire able to communicate
with each other. We begin by describing the possible rolehénteam and the presumed
capabilities of each role.

The model we present here is a prescriptive model for a teaggration-primed reason-
ing for collaborative problem solving in uncertain envinoents. The recognition-primed
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decision-making model of (Klein et al., 2010) is a presavipmodel of a single agent decision-
making in uncertain environments.

5.2.1 The team
The initiator

We define the initiator as an agent who is able to use his expegiin matching a given
problem to a pair of sets: set of goals and a set of correspgmrdies for each goal. The cues,
corresponding to one matched goal, identify when this gogbiod enough to be adopted in
response to the given problem. For example, given the pmobferescuing the unconscious
woman, the goal to lift her to safety using a rescue harnessldtbe pursued if the woman
is facing up or is in a sitting position. It is not sufficientdaly enlist the cues for a matched
goal. The relational structure between the cues and thengeals to be specified as well.

The initiator is able to match a problem with the triglgoal, cues relational structure. In
the remainder of this chapter we will mean both cues and tla¢iaeal structure when we
speak of a set of cues.

Once a goal is matched, and verified as good enough by evajudige cues, the initiator
constructs a plan for that goal. We assume that the initiat@n agent able to generate plans.

The executors

An executor is an agent who is able to generate an opinion fiiven cue based on his
own knowledge, beliefs and percepts. He is able to evalhateale assigned to him by the
initiator’s plan and identifies the constraints that woullibit the successful execution of the
tasks assigned to him. The executors are able to pass medsgtgeen each other in order
to successfully execute a plan. For instance, during thpdtietical) execution of the plan
for rescuing the woman by a rescue harness the agent thas si@harness needs to signal
the agent that lifts the woman that he can start lifting.

5.2.2 The process

The left side of Figura 5.2 represents the recognition-pdigroup decisions (RPgD) model
for the initiator. The right side depicts the model for thegess for the executor agent.

The process begins once the initiator recognizes a prolaeisitasked with one. He contacts
the executor agents who are already on site or on stand-ligtewmine who is available
to participate. If the initiator finds sufficient agents, hgeeds to establish a course of
action. He first identifies the team goal(s) by using his eigpee to find the closest match
of the problem at hand with a goal. The initiator also matdhesrelational structure and
corresponding cues to the proposed goal.

Situational assessment

The next step is the situational assessment with the puigfogeal verification. This step
comes only after the executors arrive at the problem sitihely are not already there. The
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initiator assesses the situation by eliciting the exe&itipinions on whether the cues are true
or false, present or not. The cues are thus treated as ptiopssd which an executor assigns
true or false. The executor can also abstain from assigniajue. Based on the reported

cue value assignments, the initiator assigns correspgralie true/false values which he

uses to establish whether the corresponding goal is goaagénar not and adopted or not

correspondingly. We propose that the initiator uses a juglgraggregation rule to aggregate
the reported information. If negotiation were to be useddseas the situation, then the
executors would first reach the agreement of each cue vatwebe them and then report

this agreement to the initiator.

The initiator verifies the adequacy of the matched goal,dasehe corresponding cue values
obtained by aggregation. He can request only the opinionth®cues to be aggregated, or
he can consider also the aggregation of the individual emimhs on whether the goal should
be adopted.

Example 5.2.1. Consider the problem of to pulling the woman, from the ovespascue
example, to safety. Assume that there are five exec{ler&,, E3, E4, Es}. The initiator first
considers the goal

$: use arescue harness.

Based on his experience, the initiator deemsa satisfactory solution if and only if at least
one of the following cues are the case:

c2: the victim is in a sitting position,
c3: the victim is in a face-up position,
c4: the victim can safely be shifted in a sitting up positionmoaiface-up position,

¢s: the harness can be attached from the back without hurtiegsttim.

The initiator further specifies that the cues are subjech®donstrain{c; v ¢z) — c4. The
constraints encodes the “obvious” information that if atic is already sitting or facing
up, then g is trivially the case. The judgments of the executors, migarthe cues, and the
individually entailed judgments regarding are given in Table 5.2.1. The “?” denotes the
case in which the agent has not provided a judgment.

Agentg|c, C3 C4 C5|p
{Ej,E>}||no no no nono
{E3,E4}|lnono ? 2 ?

{Es}|lnonono 7 ?

Table 5.1: Contributed judgments regarding cueson

In Example 5.2.1 the individual judgments regarding thel gdaquacy can be deduced. An
opinion of a goal given explicitly by an executor carries iiddal information. Assume,
for example, that in the situational assessment for gnahgents{Es, E4} give an explicit
opinion “yes” ons,. The relation structure is still verified. However, addita information
is conveyed. Namely these agents are of the opinion thaastt éme of, andcs must be the
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Figure 5.2: The process of making recognition-primed grdegisions.

case, but they are unsure which one. If the initiator wantadude these “unsupported by
cues” opinions, then he should elicit opinionsrexplicitly.

If a goal is not adopted, then the executor generates angttadi(and corresponding cues)
and elicits the opinions of the agents for this set. If the m@al shares cues with a goal
previously considered, then there is no need to elicit tdgfoents of the executors on these
cues anew. The initiator keeps generating goals and cairgidbem one by one until a goal
is adopted, as long as the problem persists. If the initiatos out of ideas for a possible
solution, then the project can be abandoned, or the iniatan remain on scene expecting
for the situation to change. In the firefighter examples ctdié by Klein, the commander
always has an all-contingency solution. Thus, for examipéefire cannot be extinguished,
and no rescue is deemed possible, then the firefighters ttikast ensure that the fire can
be left to burn itself out safely. Similar all-contingenayligtions can be designed for each

problem domain.
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Plan evaluation

Once a goal is deemed adequate, the initiator proceeds o dgplan. The initiator has

information about the scope of capabilities of an execuiot,he does not know the exact
position or state of every executor at a given point in timens2quently, the initiator makes
a tentative plan based on the information of executor céipabe has. He proposes this
tentative plan to each executor.

An executor has two options. One option is to acknowledgelée, and the role assigned to
him in that plan. By this action he commits himself to exengtiis assignments. The second
option is to object to the plan. An executor objects by infngthe initiator of the constraints
due to which the proposed plan cannot be executed. We obisetvihe mental simulation,
which is done by the commander in the model of Klein, is, in madel, externalized from
the initiator to the executors.

The initiator considers all constrains given as an objediioa plan in order to devise a new
plan. A plan is approved if and only if there are no objectifnosn any of the executors.
If the constraints are such that no plan can be devised fogahéin question, the initiator
attempts to matches a new goal to the problem.

During plan evaluation, an agent evaluates the portioneeptan, which he is expected to
execute. The plan may contain both individual and jointadithat are to be executed. When
the action is individual, no conflict of constraints can eyisince the agent who is intended
to execute the action is taken to have a veto on evaluatingl#mefor that point.

When the action is joint, all agents involved need to apptbeeentative plan, for the plan
to adopt. An agent is allowed to objects on an action that tserecuted by him. There
are two types of objections that can be raised. The first @ibjecs due to a conflict in the
execution of the assigned actions. The second is an ohjectihe abilities of another agent.
In the case of the latter objection type, the initiator caprapch the objection acting an
cautious moder on aa brave mode In a cautious mode he will never approve a plan as
long as there is an objection to it. In a brave mode, the toitiean consider the agent who
executes the action to be the ultimate authority regardia@bilities, and disregard these
types of objections.

Once a plan is approved, the executors proceed with the thaksre assigned to them.

After the plan is executed, if the problem still persistgrttihe initiator attempts to match

the problem with another goal, and verify it based on itsesponding cues. A decision to

adopt or refute a goal, values assigned to cues, or a plamecegconsidered as long as the
problem persists.

5.2.3 Group recognition-primed decision-making and satificing

Simon (1955, 1956) addressed the question of how a resooaedbd agent makes de-
cisions. He argued that a resource-bounded agent shoulthardmize expected utilities,

but select the first option that is good enough. An option isdgenough when a sufficient
number of indicative criteria are satisfied. This processadécting the first good enough
option he called “satisficing”. In contrast to satisficingditional decision-making, see for
example (Peterson, 2009, Chapter 1), is the process offfiusberating all possible solutions
for a problem and then selecting from them that solution Wiécoptimal in the sense that
it maximizes the expected utility of the decision-makemcsi its inception, satisficing has
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gathered considerable attention and many variations efdbncept have been developed
(Radner, 1975; Matsuda and Takatsu, 1.979; Shinzo and Take®80; Wierzbicki, 1982;
Haller, 1985; Kaufmen, 1990; Brown, 1990; J. and L., 1.99hekistein, 199€&; Greiner et al.,
2006; Gitn, 2010). There is not much study on satisficinggimups, an exception be-
ing (Stirling and Nokleby, 2009). It is not our intention toayze all these models and
approaches, but highlight the advantages of satisficingicp&arly for decision-making in
groups, and the satisficing aspects of the recognitiongaimodel.

A satisficing solution is not necessarily an optimal solafiothe utilitarian sensee.g. there

is no evidence that suggests that the solution to use thetodethe victim into safety, in
the overpass rescue example, is necessarily the fastesipest, or safest solution possible.
The lieutenant did not exhaust all the options for savinguheonscious victim; she could
have been pushed on an inflatable trampoline, lifted by abeler, etc. The advantages
of pursuing optimal decisions are evident, however in sibug in which there is no time
to generate all options and evaluate them, satisficing istartstrategy. Because a course
of action is determined fast, satisficing allows the teamdartore adaptive to changes in
its environment. Simon proposed the concept of satisficiridhb did not propose a formal
model.

Another argument for using satisficing instead of optingaimsome multi-agent systems set-
tings is that of problems that arise with the concept of relity. Decision-making is driven
by the concept of rationality associated with the decigitaker. Rationality is a property
of an individual, regardless of whether that individualaken to be one agent or one team
of agents. In the case of group decision-making, it might fedlematic to identify how to
apply the concept of rationality (Stirling and Nokleby, 200For the concept of rationality
to be successfully applied to the team members as indi\g¢dired agents must be assumed to
be perfectly competitive. As Arrow (Arrow, 1986, pg. S38Bkerved:

“rationality in application is not merely a property of thedividual. Its use-
ful and powerful implications derive from the conjunctidfimdividual rational-
ity and the other basic concepts of neoclassical theoryililegum, competition,
and completeness of markets. [...] we need not merely putepdafect com-
petition before the rationality hypotheses has their follvpr. [...] When these
assumptions fail, the very concept of rationality beconteedtened, because
perceptions of others and, in particular, of their ratidtigddecome part of one’s
own rationality.”

For the concept of rationality to be applied to the team asita tine agents in the team must
be in perfect cooperation, in the sense that none of them dwls that are not goals of the
team. Observe, for instance, that the safest way of resgubdovictim is not necessarily
the safest way of rescuing the victim for the firefighters. Lkiie team is cooperative, the
members of the team must maintain some level of self-intevesn it comes to ensuring
their own safety.

Satisficing, as a concept, can be seen as predominantlyiassbwith the course of action
itself, rather than with the agent who selects the coursetidra The solution for the prob-
lem of rescuing the unconscious woman is the one that meetsithimal conditions to be
adopted: it gets the job done and it can be done by the firefghl@e rescue solution that is
optimal needs to maximize both the utility of the team, wiieln be seen as predominantly
cooperative, and the utility of the unconscious woman, whdagity can be seen as competi-
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tive with respect to the firefighter. Applying satisficing tmgps, regardless of whether they
are cooperative or competitive, is not more problematia thpplying it to individuals, as
long as the groups have a way of determining what are the mufficonditions and whether
they are satisfied. In a hierarchical group, such as the firifig team, the initiator makes
this decision.

5.2.4 Team adaptation and recognition-primed reasoning

The main characteristic of the firefighters studied by Klsithat they constitute highly adap-
tive teams. Being adaptive is a necessary property of tehatoperate in an uncertain en-
vironment. Burke et al. (2006) define team adaptation as ageha team performance, in
response to salient cues, that leads to a functional outéonthe team. It is further spec-
ified that “team adaptation is manifested in the innovatibnew or modification of exist-
ing structures, capacities, and/or behavioral or cognijival-directed actions” (Burke et al.,
2006, pg.1190).

The adaptive cycle of the team adaptation model present{®Lirke et al., 2006) is charac-
terized by four core constructs:

1. situation assessment;
2. plan formulation;
3. plan execution, via adaptive interaction processes;

4. team learning.

The adaptive cycle is further characterizeddoyerging cognitive statesuch as shared men-
tal models, “which serve as both proximal outcomes and mputhis cycle”, (Burke et al.,
2006, pg. 1192).

The recognition-primed agreement model we propose vetifieseam adaptation model
of Burke et al. (2006). The emerging states in the case of mdeinare the agreements
regarding goals, value of cues and the adopted/refuted pldre verification of expectancies
and the valuation of plans are the way in which the emergiaigstare reconsidered. In the
context of our recognition-primed model, the actions oftdwm are based on the emergent
states and the team adaptation is a result of the adaptatimgonsideration, of the emergent
states. In Section 5.5 we discus the reconsideration ofrttegging states.

The process we do not explicitly consider in our model isr@ay, since we focus on giving

a conceptual model of reasoning and not of learning. Howewecan observe that from the
aspect of improving team performance, learning is an ingmirocess both for the initiator

and the executors. The initiator can improve his accuracyatching a problem with a goal

and cues, while the initiators can learn to improve theinpaaluation and cue observation
accuracy.

The recognition-primed decision model of Klein does notlieitty include the process of
learning either, as it can be observed even on the more e @épiction of the model given
on Figure 5.3.

However, in the original overpass rescue example, aftquriblglem is solved, e.,the woman
is rescued, the lieutenant analyzes the situation anewt¢ordime that the best course of ac-
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Figure 5.3: The recognition-primed decision model as gingilein, 1999, pg. 27).
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tion was to use a rope to lift the victim. This is when the lendantearnsfrom the experience
by accommodating this new experience with the old ones.

5.3 Collective decision-making problems in the RPgD model

In this section we consider the collective decision-malpgngplems that occur in the scope
of the group recognition-primed decision-making model.e Tasult of the group-decision
making are the emerging states which are the decisions otheite adopt a given plan and
the decision regarding the situation assessment.

5.3.1 Emerging states and reaching agreement on a plan

In our model the initiator depends on the perceptions andiops of the executors to assess
the situation, verify the expectancies and evaluate atteatplan. Each executor can have
different knowledge, beliefs and perceptions of the wonltich give rise to the possibility
that the executors will give different values to differents, different opinions on whether a
goal is to be pursued and different views regarding whetlpdairais executable. The initiator
needs to “reconcile” the different opinions to be able tordamate the activity of the team.
The emerging statese.,, the presently established collective cue values, adaypiats and
approved plans, are obtained as an end product of this “cdl@iion” process.

The information requested and submitted regarding the @aneshe goals is of different na-
ture than the information exchange regarding a plan. The,@rel the goal they correspond
to, are binary questions to which an executor answers wigs™ywhen he thinks the cue
is present, “no”, when he thinks that a cue is not present,ithr abstaining from giving a
“yes” or “no”. The tentative plan evaluation is an infornmatirequest to which two types of
reply are possible: either an approval of the plan or a caimtwhich indicates the plan’s
unsuitability.

All agents who are tasked with giving a cue, or opinion on a,ga@ expected to produce
an answer, and “yes” and “no” have different meanings frostaihing to reply. Even if the
agents are divided regarding whether a goal should be adiofpte initiator may conclude
to adopt the goal. In contrast, the plan evaluation operatesrding toqui tacet consentire
videtur®. The constraints from all the agents are taken into accobetwhe initiator forms
the next plan. As long as there is at least one person whotsb@plan cannot be approved.
Due to the latter, the decision to approve a plan is rathepleimA decision on a situation
assessment poses more of a challenge. In the next sectiatugedn the problem of reaching
these group decisions.

5.3.2 Situation assessment as a judgment aggregation preinh

How can the initiator form the decision on whether a goal iscachte or not? The initiator
can first inform the agents of the relational structure thais how an opinion on a goal
can be deducted and then ask the agents to deduct their ogmgmds on the goal instead
of assessing the situation by eliciting judgments on the clibe judgments on the goals can

1A legal expression used to state the convention that in r&igots, the one who has noting to say is taken to be
in agreement with what is proposed.
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then be pooled to determine whether a goal is to be pursueat oHowever, this approach is
not an option for adaptable teams. If agreements on the cae®areached, or known, then
it is difficult to update the goal when the state of the worldmges.

When the world changes, it may not be obvious how that affénissgoal adequacy. The
cues act as criteria for evaluating the adequacy of the gexpgoal for the problem at hand.
When the decisions on cues are reached, the changes intthefdtiae world can be deemed
relevant when the decisions on the cues are inconsistenttirém. Not only do the cues
show when a goal should be reconsidered, but also how to besigered. This is why it is
important to reach decisions on the cues as well as on the godlwhy we use judgment
aggregation to determine them.

A judgment aggregation problem is specified by an agenda, @f senstraints and a finite
set of agent namds. The representation of the situation assessment agregqmudsiém in
judgment aggregation is straightforward.

The judgment aggregation problem is represented usingi@4ognd an entailment relation
for that logicl=c £ x £. The agenda and the constraints are sets of well formed fasmu
from this logic.

Since the goals are considered for adequacy sequenttayadenda will contain one goal

and arbitrarily many cues. An exception is the case when tlaésgyenerated are concurrent
and non-conflicting, in which case they will be generatechatdame time and considered
both in the same agenda.

For example, the agreement problem for ggatan be represented in propositional logic
with agendad = {cp,c3,Cs,C5,5} Where the cues and goal are represented by propositions,
andR = {(cz v ez v e v cs) — S} We need a ternary logic to represent the judgments. The
profile T of individual judgments for, according to Example 5.2.1, are

C2 C3 &4 C
E1,Eo[0 0 O
Es,E4[0 O 3
Es ([0 0 O

Which ternary logic semantics should we use for represgraggregation problems in the
RPgD model? Many ternary logics have been presented intdratlire, see for example
(Urauhart, 2001) for an overview of the ones considereddbasia ternary logic, in addition
to the values assigned to “true” and “false” there is a thatlig between them. The differ-
ence between the different ternary logics is in the mathiealaind philosophical semantics
attached to the intermediately value. In representingmelgs on cues, we use the third
value to represent the following cases:

e when an agent abstains from making a judgment on a cue,

e when an agent abstains from sending an opinion whether aspoald be adopted or
such opinion is not deducible from his judgments on the eelaues,

e when a collective judgment on a cue, or goal adoption canaatdiermined by the
aggregation rule used.

We consider the basic ternary logics and discuss their aagdor use as a representational
language for judgment aggregation for situation awarengss logics we consider are:
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e the logic of Post (1921),
¢ the logic of Bochvar (1938),
o the logic of tukasiewicz (1928) and

o the logic of Kleene (1938).

Post (1921) was one of the first to introduce a many-valueid.ldg hist-valued system, the
propositions are assigned values frdm= {0,...,t — 1}. The lowest value corresponds to
the lowest degree of truth and the highest to the highesegeanfrtruth. Post constructed his
logic in a purely mathematical manner and did not attributehilosophical analysis to any
of the intermediate values. The semantics of the propaositiogic operators is given as:

V(=) = V() + L(mod 1)
V(A ) = min(v(@), V().

For the case of = 3 we obtain a ternary logic in which, 0 denotes “false”, 2 desdtrue”
and 1 is assigned to the intermediary value.

Post’s is not a good logic for representing judgments in theason assessment context.
Observe that a negated intermediate proposition is agitpeevalue “true” and the negation
of a “false” proposition is assigned the value “intermeeliaConsider the Example 5.3.1.

Example 5.3.1. An executor is asked to give judgments on the propositions:

a; the victim is conscious,

a, the victim is in a safe location,

and then, based on these judgments, u8ing {(—a; A a2) < s} the initiator deduces this
executor’s opinion on

s send for a ladder-truck.

Assume that the executor from Example 5.3.1 reported thgmesht sequenck = 0,2,1),
namely that he finds the victim unconscious and in a stabdgilme. According to the seman-
tics of Post, the value assigneddds 1, meaning that the executor recommends abstaining
from a course of action even though he did not abstain on athegéidgments that determine

if a course of action is to be adopted.

Recall that a judgment sequence is consistent in propoaitlogic, if for the corresponding
A it holdsAU R 1~ L. We can extend the definition of consistency for a classealary
logic entailment operatde3 (Cadoli and Schaerf, 1996), straightforwardly. Obsena th
an agent assigned a value 1 to an issaighena ¢ A and—a¢ A.

In ternary logic, we can havd U R =3 L being true, false or undecided. A judgment se-
quence is inconsistent if and onlyu R |=3 L is false. This means that, if such=g; is
used, the executor could have submitted the judgmert sef0, 2,0) as well, since it would

2See (Borkowski, 1970) for an English translation end (Uary2001) for a summary.
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be consistent. This possibility makes it difficult for theeextor to determine what is the
decision regarding the goal.

The negation semantics according to Post is incompatitite e intuitive meaning of ab-
stention, and as consequence, all ternary logics that his/edgation semantic are unsuitable
for the representation of judgment aggregation problems.

Bochvar (1938) defended the stance that the intuitive nmggassigned to the third, or inter-
mediate, value is “meaningless”.

According to the Bochvar logic semantics, a value “mearsgjl is assigned to every formula
that contains a proposition that is assigned the value “ingéss”. Consequently, when the
executors are not asked to explicitly state their opinioth@ngoal, Bochvar logic cannot be
used. Consider again Example 5.3.1, but now assume thaté¢leater reported the sequence
A =0, %}. According to the semantics of the Bochvar logic, the seqeénis consistent
regardless of which value is assignedtsince the value assignedt@; A ay is % For any
value assigned tsthe value assigned {o-a; A ap) < Sis % When opinions about the goal
are not directly elicited by the executors, the agents catadewhichever value for the goal.

Bochvar logic may still be used to represent the individudgment sets, in the case when
the initiator does not care about the individual valuesgaesi to the goal and the cues are
logically not related between themselves, as is the case@mile 5.3.1. However, using
Bochvar logic to represent the collective judgment set-adlvised since, as soon as there is
an abstention in the collective values of the cues, theatoitiwill not be able to determine
whether a goal should be adopted.

t ukasiewicz (1920) proposed his ternary logic indepengiérdm Post and unlike Post took
the philosophical approach to developing it. Accordinglte semantics he proposed, the
formulas are assigned values frdm= {0, 3,1} with v(T) = 1,v(L) = 0 and the intermediate
value% assigned to propositions whose truth state is “possiblétoone determined later”.

Unlike in the logic of Post, here the negation of the interratdvalue is the intermediate
value, while the negations of and L are as in classical logic. This is adequate for repre-
senting “true”/“false” judgments and abstentions. Unlike logic of Bochvar, a value of an
expression that contains a proposition assigned a v%';llisenot necessarily}. E.g.,if that

the collective judgments on the cues for Example 5.3.¥@g = 0 andv(ay) = % then the
consistent collective judgment setAs= {0, %,O>. An initiator can decide on a adopting a
goal in some cases, even if the collective judgment on sortieeatues i%.

Using the ternary logic of tukasiewicz is adequate for repnting abstentions that occur
when an agent is undecided regarding a cue or a goal. Corisidetample the case when a
robot has to make a judgment on whether an object is red ofToado so he has to sample
several readings from his wave length sensor and make a prldyes” if the average value
of the readings is greater than 628 It can happen that his sensors give contradictory
readings in the samples taken and as a consequence therbttecannot set a judgment
(without making further analysis). However, if after someripd he is asked again for a
judgment on the same cue, the robot might be able to produmganent.

The ternary logic proposed by (Kleene, 1938) is another gmaodlidate for representing
judgments in the situation assessment context. Kleengress the meaning of “unknown”
to the intermediate value. The difference between the stoafihe Kleene logic and that of
tukasiewicz is in the interpretation of the implicatien: while Lukasiewicz deem% — % to
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be an expression that is evaluated to 1, according to Klékasame expression is evaluated
tol.

Using the ternary logic of Kleene is adequate for represgrabstentions that occur when
an agent has no means to determine the judgment regardirgg@ eugoal. For instance, a
robot that has no microphone cannot determine the valuedoe dsound is coming from the
room” and will report a vaIu%. If after some period the need for a judgment on the same
cue arises, provided he repaired his sensors, the robdbevidble to produce a judgment.

It is not strictly necessary that all the agents use the sammary logic semantics, but the
k=3 for the collective judgment sequence must be set so thatethefall consistent judg-
ment sequences(A, R, =3) can be determined. However, using different semantics smake
the reasoning process more complex since the agents haspdrd the semantics they use.
Furthermore, for different cues the agents may have difteasons for abstaining.

In many scenarios it can be expected that an executor is dentpeith respect to some

cues and not so competent with respect to others. For irstamobot can be better able to
determine the position of the victim if he is closer to thetmc The added accuracy can be
due to some particular expertise of the executor. A roboipggad with an infrared vision can

be more precise in estimating whether an immobile victirreiadlor alive that a robot making

the same opinion based on movement recognition. A weighbeaassigned by an initiator,

or it can be provided by the executors themselves. In additidhe profile of judgments, a

profile of weights is also going to be available to the indgrat

5.3.3 Rules for aggregating judgments for situation assesgnt

Which judgment aggregation rules should the initiator usaggregate the individual judg-
ments on the cues and the goal?

The situational assessment aggregation problem is sutlathaighted ternary judgment
aggregation rule is necessary, such as the ones we devélofdwpter 3. Since different
goals, cues and relational structure can be specified, dgejant aggregation rule needs to be
able to handle all agendas without constraints. Also, tlemegcan submit any combination
of judgments, thus the rule needs to satisfy the universalailo property. Coordinating the
input of the agents towards certain types of profiles reguadditional communication thus
slowing down the agreement process.

Based on these requirements, the initiator needs to uselts\-© specified by Definition
43 for thisX as a constraint for the co-domain. The best choicalfand® aredt and} |
correspondingly, since these choices allow for many delsirparoperties to be satisfied by
the resulting\9m-2 andA%-X, see Table 4.15.

The unanimity-principle is not satisfied BT~ andA%-X however this is not a bad thing
in this context. If the unanimity on an issue is not respettgthe collective decision, this
is due to the rest of the judgments. It is more important thatinitiator selects the “right”
decision than preserve unanimity. For the same reasonrityapoeservationis not a required
property either. However, one nice feature of this propisrtizat it allows the initiator to fast
determine, in linear time with respect to number of agentsrarmber of cues, the collective
decision by checking if the majority is consistent. In audiif thedy /dr and}; selection
has good computational-theoretic properties, partibulahen no weights are given to the
judgments, which we showed in Secton 3.6.
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Although the agents may abstain on any of the agenda istigesplective set of judgments
must contains as little abstentions as possible. In pdaticihe collective judgment regarding
the goal should not bé, because this judgment leaves the initiator with no decigibether
the goal is an adequate solution for the problem or not. Gpresgly, the judgment aggrega-
tion rule used must be such that all the sequences thatd@tsalee from the restricted domain
X < Ain which the judgment assigned to the goal is either 0 or 1.chieave this, the initiator
can use the rulea?-2 andA%X constraining the co-domain .

If the initiator does not elicit judgments on the goal, he edsp use one of the premise-
based procedures of Definition 46. The biased procedureciguade for the brave initiator

mode or when time constraints to reach a decision are pktiggevere, while the unbiased
procedure is for the cautious initiator. The premise-bgsededures cannot be applied to
every agenda, and for some profiles they will generate a \éahegarding the goal decision.

However, the premise-based procedures do have the low eaityio their advantage.

5.4 The overpass rescue scenario revisited

In this section we revisit the overpass rescue example aod klow our team can reason
when faced with the same problems following the recognifomed group decision model.
We use tukasiewicz logic for the judgment aggregation motd.

5.4.1 The sub-goal of securing the victim

The initiator is called to rescue a woman who either fell anjued off a highway overpass,
and instead of falling to her death, had landed on the mefgias of a highway sign and
is dangling there when five executor agents arrive on theesc&he initiator is in remote

communication with the executors. There are two execukarandE, on the overpass, and
three in a hook-and-ladder trudks, E4, andEs. From the description the initiator got when
called to the rescue, he determines that the team has twaoiicentgoals:

g1: save the woman and
g2: prevent the woman’s body from falling on a moving car on tlghtvay below her.

Example 5.4.1. As a first sub-goal the lieutenant considers:
s1: team members climbing up to the woman to secure her.

The initiator will have the team adopt sub-goalithe cue, (g), at least two agents can get
a good brace against the strigspresent, and if the agents think that-e s; is the case.
The cue ¢ — s is the opinion that the;scan be accomplished if ds present. The initiator
assesses the situation, by requesting information fronexeeutorsj.e., their opinions on
whether{c;,c; — s} are the case or not. The replies of the executors are givealie.2.

The initiator uses the profila and the weight matrix W in which each each agent is assigned
the weight w= 9.3—d fv, where d fv is the distance from the victim. We do not ass&ghts

for the judgments omssince these are deduced. The rationale is, the closer thetag)éo

the victim, the more reliable his judgment is.
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Agentg ¢; ¢1 — 51| 51 ||Distance from victim
{E1,Ex}|lyes vyes |yeg|1m, 1.3m
{Es,E4,Es}| no ? ? ||7m, 8m, 8.3m

Table 5.2: Contributed opinions and deduced goal opiniegarding cues og.

111 83831
111 8 81
m=|011 W= (23231
oﬁ 13131
o§§ 111

The following collective decisions are obtained, with exsto the different rules used. X is
the set of all consistent sequences in which the decision sresther 0 or 1.

AITZ(TW,X) = (1,1,1)
b— pbqn—aw) = <17 17 1>
u— pbqn—aw) = <17 17 1>

Therefore the goalisis adopted.

The tentative plan fog; the executer proposes is tHat grabs the legs of the victim arig
her shoulders, while the rest of the agents execute a traffakimg procedure. He informs
the agents about this plan. All of the agents approve it aadritiator informs all that this
is the plan to be executed. The agents execute their comdsmgpactions and inform the
initiator when they are done.

5.4.2 The sub-goal of extracting the victim

As a another sub-goal, the initiator considers how to pudl woman to safety. He first
considers the solution

Sp: use arescue harness.

Based on his experience, the initiator deesna satisfactory solution if and only if at least
one of the following cues are the case:

c2: the victim is in a sitting position,
c3: the victim is in a face-up position,
c4: the victim can safely be shifted in a sitting up positionmaiface-up position,

cs: the harness can be attached from the back without hurtegittim.

The initiator requests the executors opinions regardiegditues, and he further specifies that
the cues are subject to the constrgmtyv c3) — c4. The constraints encodes the “obvious”
information that if a victim is already sitting or facing ugyenc, is trivially the case. The
opinions of the executors are given in Table 5.2.1.
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The initiator uses the profile and the weight matriiJ .

00000
00000

m=00333
00
00

O NN
NNl NI
NN NI

The following collective decisions are obtaineX.is the set of all consistent sequences in
which the decision 0., is either 0 or 1. For the premise-based proceddtas used as well.

AYTX (W, X) = (0,0,0,0,0),(0,0,0,1,1)

b— pbp(r W) = (0,0,0,0,0)

u— pbp(m,W) = (0,0,0,3, 3
If the initiator used the rulé\%"-%(71,W, X) he needs to break the tie between the decisions
{0,0,0,0,0> and{0,0,0,1,1). Since the tie is essentially between adopting the goal gr no
he can do so by looking at how many of the deduced judgmentbéogoal are for and how
many are against this goal. In this case he will proceed @t0,0,0,0). Using the rule
u— pbp(rr,W) it can be deduced that the initiator cannot decid® i a good solution. Let
us assume that the initiator does not want to risk the victith @oncludes thad, is not a
satisfying solution. He generates another possible sw@nd now considers

S3. Use arescue strap.

The necessary and sufficient conclusionsdpto be adopted are, v ¢s. He already has
the group decision regarding these two cues and does nottaeesk for them again. He
uses the constraimp v c; and determines thag is an unsatisfactory solution and proceeds
to generate another one. He now considers to

s4: use aladder belt.

This new sub-goal is a good solution when all of the followgs are present:

Cs. an agent can climb up the ladder (of the hook-and-laddekjru
c7: the ladder belt can be sledded under the woman and buckledifehind,
Cg: arope can be tied to the snap,

Cy: the woman can be lifted by two agents.

The initiator elicits the opinions of the agents regardimgse cues. For the cueg c; and

cg he only needs the opinion of the ageRts E4 andEs, since these are the ones that can
operate the hook-and-ladder truck equipment. The opirfiengets are presented in Table
5.4.2.

The initiator uses the profile and the weight matrixV .
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Agent§cs C7 Cg Co |4
{Ea}| - - - no| _
{E2}| - - - yeg -

{Es,Es}|yes yes yes yeges
{Es}|lyes yesyes 7 ?

Table 5.3: Contributed opinions and deduced goal opinieganding cues os;.

11103 00010
1111 00010
2222

m=[11111 W=[11111
11111 11111
11133 11111

The following collective decisions are obtaineX.is the set of all consistent sequences in
which the decision on, is either 0 or 1.

ATX (W, X) = (1,1,11,1)
b_ pbmn—aw) = <17 17 17 17 1>
u— pbmn’aw) = <1a 1a 1a 1a 1>

The initiator announces that is adopted. He proceeds to formulate the tentative plagfor
His plan is to ordeEj to fetch the ladder belt and the rope, and both himEsxtb position
himself on the ladder platform. Afterwardts is to lift the ladder. Once the belt is attached
to the woman byEz or Es, the agent'ss; andE; lift the woman. (This way, if the woman
falls he will be attached to the ladder). The initiator pregethis plan to the agents.

AgentE4 object the plan stating that he is not able to operate thesladthe initiator takes

this constraint into account and proposes another teatptan, same as the previous, except
now the roles ok, andEs are switched. The new plan is announced to the agents and they
confirm their agreement to it.

The initiator issues the orders with respect to the apprplet and sets the moment after
the belt is clasped and the rope tied and the woman had beshfiifr couple of centimeters,
as the time to re-evaluate the goal, cues and plan.

5.4.3 Verifying expectancies

At t;, the agent&; andE;, have relinquished holding the woman and attempted to lift he
by pulling the rope. The agents need to report any perceiifeatehce with respect to the
estimate for the sub-goal they are currently pursuimg, . All agents signal that all cues
are present, but the sub-goal is not being accomplisheéd sirecbelt slips from the woman.
The initiator revises his cue-goal pattern and includes, ascessary condition for adopting
4, the cue

c10: the beltis tightly clasped around the victim.

The agents are unanimous tltgg is not the case and the initiator announces thds no
longer pursued.
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He now comes up with another solution
S5: use arope tied around the waste of the victim.
The goalss is a good solution if, apart from cues andcg, also the cue;;
C11: arope can be tied to the victim,

is the case. The initiator asks ageBts E4 andEs for their opinions on whether is the
case. They unanimously judgg; as true and the initiators announces tias adopted (all
of the rulesA%T b — pbp andu — pbp satisfy unanimity). He now devises a plan f&r
which consists of the agents on the ladder platform tyingemmof the rope to the waist of
the victim and throw the other end to the agdaisandE,. The agents accept this plan and
proceed with its execution.

5.5 Revision of emerging states

“Members of adaptive teams utilize their pooled resourcesknowledge gained from learn-

ing) to adjust their actions according to situation requieats” (Burke et al., 2006, pg. 1190).
The adaptation in our model is executed through verifyingeexancies and through revising
the situation assessment agreements when new informagaumies available.

The collective values assigned to the cues are an estimatdhalf the state of the world
is, hence the value can be confirmed or refuted by later obSens. For instance, as the
executors proceed with executing the plan for gaathey confirm the estimate an, namely
they can get a good brace against the struts. If instead thesfind that; is impossible, the
agreement oig; would be in contradiction with the observation. Informatimontradicting
the agreed value of a cue may lead to the change in the detispannsue a goal.

After a plan is adopted and execution starts, an agent maytragonstraint regarding the
plan. This initiator uses the constraint to adapt the pldhth& executors are informed of the
change. A cause for a plan revision is also the revision irsifuation assessment., after
the adopted judgment sequerfchad been revised.

Regardless of whether the update is schedwdagl,, after a task is executed, or caused by
a new observation, there are two types of information thatlmcause for revisiora new
constrainton an agreed plan, oraacue value being determinethe revision of agreements
depends on whether the opinions regarding the goal(s) weliely elicited or reached as a
deduction from the cue judgments. We first consider the casmvhe opinions on the goals
were deduced.

Assume that the agendas= A° U AY, whereAC is the set of cues and? a set of, corre-
sponding, accepted goal(s). Lebe the sequence of agreed valuesApaccording to which
A(g) =1, and letv(a) be the observed value af The initiator needs to revise the sequence
A so that it contains the observed val@) while remaining consistent.

The valuev(a) can be established in two ways.alfs subject to a scheduled verification, then
the executors have an opportunity to re-state their judgemema. The initiator elicits these
judgments and obtainga) by comparingnj; (a) with n; (a). Recall thaty;(a) denotes the
sum of weights of agents who judge an issueA to be true, with respect to some profile
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T and weight matriXV; n;, (a) denotes the sum of the weights of the agents who judge
to be false. Observe that the weight of an agent regardingsare ican change between two
elicitations. The second way to establigla) is when an executor directly observes it. A
revision ofA follows.

The revision is a rulg] that assigns a consistent judgment set to a judgmewt geten the
new value of an agenda issue,,[#: A(A,R, =) x A x T — P(A(A,R,|=)). We can state
the desirable properties f@d, motivated by the need to minimize the resources spent en thi
process.

The first property is that a revision should be done only whetessary. LeT = {0, %, 1}

be the set of values wit% denoting the abstention. The revision does not need to be iflon
A(a) =v(a).

e [#(Av(a)) = AwhenA(a) = v(a). (Estimates verified)

The revision should berioritized, namely after the revisiomd*(a) = v(a), whereA* is
the revised judgment sequence. The observed value can emap= 0 orv(a) = 1, but
v(a) = % can be obtained by pooling the agent’s opinions. In the casécp = % revision

is not needed sincgc) = % does not increase the knowledge of the initiator and a seguen
cannot be made inconsistent by replacing a judgment in i %\zitOn the contrary, the more
abstentions there are in the agreement, the more diffidglfdt the initiator to establish the
course of action.

e F(AVv(a) = %) = A. (No increase of information)
e IfE(Av(a)) = A, thenA'(a) = v(a) for v(a) # 3. (Success)

A potentially desirable property of revision can stability. If the new information can be

consistently embedded in the old agreed judgment sequéharethe reset of the judgment
sequence should not be changed. This is the property oflistabiet & denote the set

corresponding te(a): 4 = {a} if v(a) = 1,4 = {—a} if v(a) = 0 anda’= & if v(a) = 3.

o If (A\{a,—a}) uau R L thenm(A,v(a)) = (A\{a,—a}) U & (Stability)

However, this property can lead to the initiator revisintpia sequence that is not construc-
tive, as it can be illustrated through an example.

Example 5.5.1(Revising an agreementjConsider the goal.sand assume that this is the
one the agents agreed on pursuing. The agendb-is{cy,C3C4,Cs5,5} andR = {(c2 v C3 v
CaV Cs5) — S, (C2 v C3) — Cs}; with agreement reachedA(1,0,0,1,1). Let\(cy) =0be an
observed new value. If the initiator revises with a rule thetisfies stability, then the obtained
revision is A =(0,0,0,1,1). However, recall thatc, v c3) — ¢s hence it cannot be known
whether the agents, withoup e« 1 would have the opinionsc= 1. This information will
surface once the initiator alters the plan and the agentsdrgxecute the specified actions.

Stability is still desirable if the cua on which new information is observed is logically
independent from the other cues. This propertgtibility of independent cueslet A°
denote the sub-sequenceftontaining the judgments on the cues. A eus independent
from the rest of the cues iA® if and only if A%\ {a, —a} i & s true.
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Assume that the initiator in Example 5.5.2, asked the opimaf the agents regardigonly.
The question is how are these new opinions to be integratdd i@ne way is to compare
ny; (cs) with ny; (cs) and embed the resulting valueA Another is to ask the agents to apply
the rulei=] individually and report their revised judgment sequentéisen the opinions of the
agents regarding the goal are not deduced, but elicitedo#iplthe agents should be given
a chance to revise them individually as well. The initiatggeegates the new sequences,
using the same aggregation rule as in the first aggregatisma @donsequence of the stability
of independent cues property, the agents whose initiaimedds were confirmed by the new
information do not revise their sequence.

Example 5.5.2(Revising by re-aggregationAssume that the original profile of judgments
for goal $ was . Applying the revision individually, agents E Es do not change their
judgments since they had already judgeds false. A possible new profile is tha.

C2 C3 C C & C2 CG3 C C S
Ei,Ex{1 0 0 1 1 Ei,E2 ([0 O 1 0 1
m=E3E4|0 0O 0 1 1 m =E3E4({0 O O 1 1
Es |0 2 1 3 1 Es |0 3 1 31

Figure 5.4: The profilerand a possible revision*.

The revision is a rule that can select several judgment se@saas an outcome. In this case,
the A’ that contain a value of the goAlg) = 1 are preferred, since in this case the initiator
does not need to generate a new goal.

5.6 Conclusions

In this chapter we study decision-making for a hierarchieain in an uncertain environment.
We construct a model by lifting the recognition-primed d&m (RPD) model from an indi-
vidual agent model to a group model. According to the RPD rhaddisficing decisions are
identified by identifying a set of relevant cues and verifyimhether these cues are present
or absent. The RPD model and our extension are applicabferdrén the agent responsible
for the decision is familiar with the problem to which the tan is related.

In our team, the agent responsible for making the group iecises a judgment aggregation
rule to aggregate the opinions of the members without cenisig his own. We considered
as an illustration a case scenario collected by (Klein, 1999

Given the hierarchical nature of the team, the ternary valpe of the aggregated judgments
and the presence of weights we propose that the rules of @hajire used for aggregation
within the scope of the recognition-primed group decisiamueal we propose, in particular the
A% X andA%T-X. In the cases when the initiator only considers the judgeith respect to
cues, but not regarding the goal, he can use the extendedsprbased rules. Due to the time
constraints posed on the initiator, the rulés -~ andA%-X are a good choice as well, since
they allow the initiator to constrain the domain to permilydsinary judgment sequences as
the result of the aggregation.
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In Section 3.5 we studied the winner determination problernttie rulesA%-X andAdT-X.
The winner determination problem is a decision problem,niydells us how efficiently
can we confirm, for the worst-case scenario of a profile angtenatrix, that a particular
judgment sequence is a result of the aggregation for a p&tiaggregation rule. How-
ever, the important efficiency analysis in the case of resoaonstrained agents that use the
recognition-primed group decision model is the searchioersf the winner determination
problem: how efficiently can a sequence that is the resul@figgregation for a particular
rule be foun® To answer this question we need to analyze the functiomaptxity of the
winner determination problem, particularly for the rulis - andA%T 2.

Chapter 4 we studied the properties of X and A% X, however we did include the

extended premise-based rules and the domain-restiétédrules in our analysis. Which of

the social-theoretic properties defined and studied in @nalpcontinue to apply when the
co-domain is restricted? For which co-domain restrictiaresproperties restored or fail? We
encountered a counter example, the decision on goial Section 5.4.2, that confirms that
althoughA%T-2 is majority-preserving, its counterpakf™-2 is not.

We considered a mixed human-robot team in which there is angh, the initiator, which
has the role of a leader. The initiator is not on the groundrevttee problem is and coordi-
nates remotely with the ground agerits,, the executors. The model we developed heavily
depends on the experience and creativity of the initiatbiclvis why this agent is human. It
is the initiator who matches the problem with the corresprogpndoal and the goal with corre-
sponding cues. He elicits and aggregates the opinionsraesehe plan and implements the
revision. An executor only needs to be able to form a judgmegerding a cue when asked
for one, and evaluate whether a given action sequence igwhith capacities.

How difficult would it be for a group of purely artificial agento reason according to the
team recognition-primed decision model? We can abstraexpearience of a human initiator
to acase A case is the product of learning. The case that the lieatec@nstructs after
he considers the events of the overpass rescue example candsded as on Figure 5.5.
Each case can be modeled as a quadregde= (p,G,C,R), consisting of the encountered
problemp, the set of goal& pursued to solve it, the set of cu@svhich identified the goal(s)
as adequate and the relational structRier the goal and cues.

A human commander gathers cases from personal experiemcalsb by exchanging ex-
periences with colleagues. A set of cases can be supplied (artficial) initiator agent.
However, the power of the human commander is in the abilitgtmgnize cases as similar.
A successful non-human initiator must be able to do the sperorm a swift search through
the cases and identify the case most similar to the currerdten. The similarities can be
found between problem characteristics, but also in cues.
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CASE

problem cues
Unconscious victim trapped c1: victim can be lifted by
in a high unsafe place available agents

c2: rope can be tied safely
around the victim
c3: agents can reach the
Lift using a rope tied around victim (to tie the rope)
viciim

solution (goal)

relational structure

all cues must be present for the goal to be applicable

Figure 5.5: The case constructed from the overpass resemepds.
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Group intentions are social choice
with commitment

Abstract. In this chapter we consider the problem of forming grouprinte
tions as an example of a consensual group decision-makaidemn. An agent
intendsg if it has chosen to pursue gogiand is committed to pursuirg. How
do groups decide on a common goal? Social epistemologysaffier views on
collective attitudes: according to the summative apprpagmoup has attitude
if all of the group members have the attitupleaccording to the non-summative
approach, for a group to have attitugét is required that the members together
agree that they have attituge The summative approach is used extensively
in multi-agent systems. The main advantage of this appr@attie simplicity
of determining if all group members have the same attitudiee Main disad-
vantage is that it does not allow for groups that can reacheagent to act to-
gether, which is why it has been heavily criticized in theiabepistemology
literature. We propose a formalization of non-summativ@ugrintentions, us-
ing judgment to determine the group goals. We use judgmegreggtion as a
decision-making mechanism and a multi-modal multi-agegtd to represent
the collective attitudes, as well as the commitment andsienistrategies for the
groups intentions.

6.1 Introduction

An intelligent agent interacts with its environment andesthgents. This interaction includes
cooperation. In order for the agents to cooperate they reeedtablish what are their group
goals, and subsequently intentions. Of all the collectitieudes, the formation of group in-
tentions is possibly both most interesting and challenginge an intention is inevitably re-
lated to other attitudes. Cohen and Levesque (1990) argiidihintention of an agent is the
goal that he chooses to pursue and is committed to pursuidgt bas been argued since that
the goals of an agent are intricately linked with the ageléefs (Castelfranchi and Pagl eri,
2007; Boella et &l', 2007).

How collective attitudes are formed and what is their naisistudied bysocial epistemology
There are two predominant views, the summative and the nonrstive view, regarding the
relation between the attitude of the group and the corredipgrattitudes individually held
by the members. According to tlsrmmative vieya group has attitudp if all or most of
the group members have the attitygl¢Quinton, 1975; Hakli, 2006). According to tmen-
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summative vieva group has an attitude if the membergogether agre¢hat they have that
attitudep (Meijers, 2002; Gilbert, 20022, 2009).

Within the context of multi-agent systems, the concept dfective intentions is studied

and formalized in (Dunin-Keplicz and Verbrugae, 2010, Gkaf) and also ir (Singh, 1990;
Jennings, 1995; Grosz and Hunsberger, 2007). In (Duniri¢eand Verbrugge, 2010, Sec-
tion 3.9), we find a detailed overview of the various formatians of group intentions. It can
be observed that all these formalizations follow the sunmreatiew on collective intention-

ality. As observed in (Dunin-Keplicz and Verbrugge, 2016¢t®n 3.9), collective intentions
and collective commitments appear as central in the workafgdret Gilbert (Gilbert, 1937,

2002, 2007, 2009), who upholds the non-summative view @hnibns, but whose work is
predominately philosophical.

The advantage of the summative approach is that it is verny teadetermine when a group
goal exists, particularly in hierarchical groups. In thése the agent responsible for produc-
ing the group decision only needs to confirm that no-one isdiffarent opinion. However, if

a group acts only when everyone in the group is in unanimoreeagent, then the situations
in which the group can act are limited. For one, it is not fkat a very large number of
agents, or a group of heterogeneous agents, would be alwaysnimous agreement. This
forces the size of feasible groups to be kept small and/ogttbep to be kept homogenous.

Under the summative approach, when the goal of the groupébleshed there is no am-
biguity regarding what the individual goals of the agents, amplying that the agents are
perfectly cooperative regarding each goal they undertdké all groups are perfectly coop-
erative since often agents undertake group goals whileimgéndividual goals of their own.
According to the non-summative approach, from the exigai@ group goad it cannot be
deduced what the individual goals of the agents are. Thogvalhot only purely cooperative
groups to be modeled.

We can use the concepts devised by the work of Gilbert to fbhzmaollective attentions in
a new way. In this chapter we formalize non-summative grotgntions and joint commit-
ments.

How can a group agree on what its intentions are?

Following the paradigm of “intention is choice with comménit” we need to discover how
a group can decide which goals to pursue and also how can inddmpursuing them?

A rational agent makes decisions based on what he believes, lve knows and what he
desires. Each group member can express whether he is foragrsa@ candidate group
goal, but also how his opinions and knowledge support arttfyjuss goal choice. We need
a mechanism for generating group goals that aggregatesdunédl opinions into collective
attitudes. A group that jointly decided on a course of acisojointly committed to uphold
that decision (Gilbert, 2007).

In practical reasoning, the roles of intentions can be surimeéas: intentions drive means-
end-reasoning, intentions constrain future deliberatiotentions persist long enough, ac-
cording to a reconsideration strategy, and intentions émite beliefs upon which future
practical reasoning is based (Dunin-Keplicz and Verbrug&0). A formalization of group
intentions should be completed with a formalization of grantention persistence and re-
consideration strategies. These strategies are difficaketelop when the decision to pursue
(or not) a goal is devoid from the knowledge and beliefs thibnalize and justify it. There-
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fore we need a group agreement on not only whether to pursaaldgt also why to pursue
or reject it. In consequence we need the agents to expressilyof they want the goal to
be pursued, but also the reasons, stemming from their shakibeliefs and knowledge, that
justify their view on the goal.

Our research question thus breaks down into the followitigcpuestions:

1. How to aggregate the individual opinions into group dslend goals?

2. How to represent individual opinions and non-summatieeig attitudes?
3. How can groups persist in their intentions?

4. How can groups reconsider their attitudes?

The relation between individual goals and beliefs can beifpd and analyzed in modal
agent logics likeBDI 1. (Schild, 2000). The challenge is to find an adequate reptaisem
for the individual opinions and the non-summative beligfzals and intentions into multi-
agent logic. We give an extension logAGHE 1| that fuses existing modal logics to provide
the adequate modalities. We use this logic to representrthggntention and reconsidera-
tion strategies.

We require that the group has a set of candidate group goad\aance order over this set,
as well as a set of constraints, one for each candidate go#ieiform of logic formulas,
that express what is the relation between a goal and a giveri smsons. The members are
required to have the ability to form and communicate “yes"r@” judgments regarding a
candidate goal and associated reasons.

We need a mechanism for generating group beliefs and gadlagigregates individual opin-
ions into collective attitudes. Since the agents expresis tipinions regarding a set of log-
ically related issues, beliefs and opinions on whether d igo@ be pursued, a judgment
aggregation rule, such as the ones we considered in Ch2xdecs3 is an adequate bases for
such a mechanism.

A non-summative goal needs the agreement of all agents tstablished. Consequently,
there is no one agent that can be responsible for the grougiai®ecand it can be consistently
assumed that the agents’ opinions are all considered asuaf egight in the aggregation.
An agreement must be responsive to the opinions of the graupbars and satisfy such
properties as majority-preservation and unanimity whiehpresented in Chapter 4.

Cohen and Levesgue (1990), proclaim that intentions arieelfof a goal) with commitment.
Judgment aggregation is a social choice mechanism. Foltpttie intuition of Cohen and
Levesque, (a non-summative) group intention is (a group det@rmined by) social choice
with commitment.

The layout of the chapter is as follows. In Section 2 we dis¢usv to choose group goals.
We first summarize the non-summative view on collectiveiatés. We then exter8DI, 1
with the necessary modalities for representing these gattitpndes and the concepts from
judgment aggregation. We introduce a judgment aggregtaomework using this logic
extension and, in Section 6.3, show how it can be used. 3c€al and 6.5 respectively
study the commitment and reconsideration strategies t&keork, conclusions and outlines
for future work are in Section 6.6.
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6.2 Non-summative group attitudes formalized

First we discuss how non-summative goals and beliefs asgrdated and then introduce the
logic AGHE 1| which is used for representing these attitudes. The fornealehof judgment
aggregation, using this logic, is given in Section 6.2.3.

6.2.1 From individual opinions to group attitudes

The intention of the group is formalized using the summadipproach, according to exist-
ing theories such as (Levesgue etal., 1990; Jennings, &iin-Keplicz and Verbrugge,
2010), following (Bratman, 1993) and (Rao et al., 1992):i$ the intention of the group”
is equivalent to § is the individual intention of all the group members”. Umikhe joint
intention of, for example (Dunin-Keplicz and Verbrugge 18 our group intention is not
necessarily decomposable into individual intentions: 4dequate account of shared inten-
tion is such that it is not necessarily the case that for eshayed intention, on that account,
there be correlative personal intentions of the indivichaties” (Gilbert, 2009, pg.172).

Example 6.2.1. Let C= {wy,w,, w3} be a crew of cleaning robots. We denote the group
goal to clean the meeting room with,gand the reasons to adopt this goal with: there are no
people in the room (3), the room is dirty (p), the garbage bin in it is full (§).

The individual beliefs of the robots on whethersiould be the group goal are justified by
individual beliefs on p, p,, ps using the constraintp; A (p2 v p3)) < 01

The group goalGg; is not necessarily decomposable into individual gealsipheld indi-
vidually by the agents. Assume that rolvatin Example 6.2.1 is a mopper, the rohvat is

a garbage collector and the rolwej sprays adequate cleaning chemicals. It can be that the
individual goals ofw; andw, are to clean the room. The goalw§ may be others, but the
group agreed to pursur and it, being committed tg; as part of the group, will spray the
cleaner as an act towards accomplishing

We formalize only goals that can be achieved by the group asadewWhether these goals
can be achieved by joint actions or by a combination of irdiiai actions is out of the scope.
We define group intention to be the goal, which the memberseahjon, and by that, are
committed to pursuing.

The robots in Example 6.2.1 can disagree on various issues vdaching a decision for a
group goal. Assume that one robot believes the room is oedugmd thus, according to it,
the group should not pursug. According to the other two robots, the group should pursue
g1. The second robot is of the opinion that the garbage bin isfd the floor is clean, while
the third believes that the floor is dirty. According to thenreummative view of collective
beliefs, a group believegif the group members together agree that as a group theywbelie
p. The question is: how can a judgment aggregation rule be tosagigregate the beliefs of
the robots?

To use judgment aggregation for aggregating the opiniortk@fobots, one needs to rep-
resent the individual and collective judgments as logierfalas. A logic of belief-desire-
intention, a modal logic with modal operatdss for belief of agent, D; for desire and;

for intention, is insufficient to model these doxastic adi#s. According to Gilbert, “it is
not logically sufficient for a group belief thgteither that most group members believe that
p, or that there be common knowledge within the group that nm@sthbers believe that’
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(Gilbert, 1987, pg.189). Furthermore, “it is not necesshgt any members of the group
personally believe” (Gilbert, 1987, pg.191). Aw; robots judgment “yes” on-p; is not
implied by nor it implies that robot's beliéy, —p;.

Hakli (2006) summarizes the difference between beliefsamugptances as: (1) beliefs are
involuntary and acceptances are voluntary; (2) beliefs atitnuth and acceptances depend
on goals; (3) beliefs are shaped by evidence and acceptareésnot be; (4) beliefs are
independent of context and acceptances are context-deperahd (5) beliefs come in de-
grees and acceptances are categorical. We find that andodhjudgment is closer to an
acceptance than to a belief because like acceptances, @dg@re voluntary, they depend
on goals and are context-depend. Like beliefs, judgmeetslso are shaped by evidence.
For these reasons we choose to represent judgments assamspt

There is a debate among social epistemologists on whethecthee beliefs are proper be-
liefs or they are in essence acceptances (Giloert, 2Z002ehe2002; Hakli, 2006). Since
we use acceptances for individual judgments, we deem mesjuade to use acceptances to
represent the collective judgments as well.

The set of collective acceptances is the agreed upon groaipagd group beliefs. Having
group beliefs in support of group goals is in line with (Céstechi and Paglieri, 2007) who
argue that the goals should be considered together with shpporting belief structuré.
In Example 6.2.1, the constraifp; A (p2 v p3)) < 01 is nothing else but thebelief
structure for g;. We use the group beliefs to define commitment strategiesdtich 6.4.

6.2.2 The logicAGE 1|

The logic we introduce to represent non-summative groujudés is a fusion of twd-
modal logics (Chellas, 1980), the logic of acceptance fli@i al., 2009) and the linear tem-
poral logic (Pnueli, 1977). As such, it inherits the decitibbproperties of the fused logics
(Wolter, 1993). The syntax &GE_t__ is presented in Definition 82. The semantics is as that
given by (Schild, 2000) foBDlc.

To model the considered group goals we use a sikgigodal operatoG. ThusGg, whereg

is a propositional formula, is to be interpreted gds a group godl. Since we are interested
in modeling the change upon new information, we also needadetthese observations of
new information. To this end we add tkemodal operatoE, readingE¢ as “it is observed
that¢”.

To model the individual and collective judgments we use tloelah operator of acceptance
As, whereSis a subset of some set of agehtsAsg allows us to represent both individual
judgmentsS= {i}, fori € N and collective judgments witB= N.

Definition 82 (Syntax) Let N be a non-empty set of agent names, with!$, and Lp be a
set of atomic propositions. The admissible formulae of AG&e formulaeyy, Y1 and y»

of languagesL prop, L and Lag, ;, correspondingly, given here in BNF form:

o= p| (Yo to)| —o

Y1 = o | GYo

Yo = Yo | Asgn | Ei | XY | (YUYn)

The p ranges overd.and S ovefP(N). Moreover,0¢ = TU¢, [ = —~0—¢, andpR¢’' =
—(—¢U—¢’). X, U andR are standard operators of LTL. We recall the reader of the
semantic of th&X andU later on in this section when we introduce the semantics d,AG
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Example 6.2.2. Consider Example 6.2.1. Ggepresents that cleaning the room is a group
goal. AcGg; represents that the group C accepts cleaning the room asatggyoal. Ay, 1
represents that agentaws of the opinion that the group should adopt ¢ p1 represents
the observation that there are no people in the meeting ro&@mnl—p; denotes that it is
impossible to clean the meeting room.

We use the linear temporal logic to model the change of grttitp@des. By usind-TL we do
not need to distinguish between path formulas and stateulasTBDI, 1| uses, for example
B[Ja to quantify over traces. We can uBdor that purpose.

We define the intention of the group of age®ito be their acceptance of a goal, wh&e
ranges over as

IsY =det ASGY.

Semantics ofAGE 1.

As mentioned, the semanticsAGH 1 follows the semantics &DI_t_ presented in (Schild,
2000). A Kripke structure is defined as a tuple= (W, R, G, &, A,L). The seW is a set of
possible situations. The sg is a set of pairs identifying the temporal relation over situ
ationsR < W x W. The setg is a set of pairs identifying the goal relation over situatio
G < W x W. Lastly, the set is a set of pairs identifying the observation relation over-s
ations€ € W x W. The elemen# is a mapA : 2N W xW. The mappingA assigns to
every set of agentSe 2N a relationAs between possible situationis.is a truth assignment
to the primitive propositions dfp for each situatiomve W, i.e.,L(w) : Prop— {true, false}.

Given a structurél = (W, R, G, €, A,L) andse W, the truth conditions for the formulas of
AGE_1(in a situatiors) are:

o M St 1;

e M,sk pifandonlyif pe L(p);

e M,sk= —¢ if and only if M, SH —¢;

e M,;sk=¢ A yifandonly if M;s|= ¢ andM,s = y;

e M,sk=Ag¢ ifand only if M, s |= ¢ forall (s,s) € A(S);
e M,s=G¢ ifand only if M,s' = ¢ forall (s,s) € G;

e M,sE=E¢ ifand only if M,s |= ¢ forall (s,s') € &;

e M,sk=X¢ ifand only if M,s' |= ¢ for thes, (s,5) e R

e M,sk= ¢Uy if and only if M,s|=¢ ; M,s = ¢ forall s, i e {1,2,...,k} such
that {(s,s!), (s},8%),...(8°1,9)} € R and fors*! such that(s¢,§¢+1) € R it holds
M, b g andM, s = .

A formula ¢ is true in aAGE_ r . modelM if and only if M,s|= ¢ for every situatiorse W.
The formulag¢ is valid (noted=agg, ) if and only if ¢ is true in all AGE r_models. The
formula¢ is AGE 1 -satisfiable if and only if the formula¢ is notAGH 1 valid.
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For the purposes of constructing the formal judgment aggreg model, we emphasize that
a set of sentencéd < AGE T is called consistent 1 1 | and inconsistent otherwise. The
logic AGE T satisfies: for each pa{p,—¢} € AGETL, {¢,—¢} = L, andz ¥ L.

(C1) For each sefa, —a} € AGE 1 itholds{a,—a} = L.
(Cy) GivenaseM < AGE 1| suchthaAGE 1 # 1, it holds thatM’ & | for everyM’ c M.
(C3) Forthe empty sefy it holds thatys H L.

(C4) For each seM such thatM < AGE T, there exists a supersEte AGE 1| such that
T L and eitheme T or —a€e T for every pair{a, —a} € AGE 1.

Axiomatization of AGE 1|

In our logic we model only acceptances since the private aiatates, such as beliefs, are
modeled by thé&DI 1 logic which we extend. We include the axioms and the semsfdic
LTL, since we us&TL to define the commitment strategies of the agents in Sectin 6

The modal operatoths¢g we use is equivalent to the modal operadgy¢ of theacceptance
logic of (Lorini et al., 2009) with one syntactic and one semantiception. These excep-
tions do not infringe on the decidability properties of thgit, as it can be observed by the
decidability proof for acceptance logic provided in (Lo al., 2009).

The operatoAgy¢ usesxranging over a set of labels to describe the context undestwthie
acceptance is made. In our case the context is that of the gadi since we deal with only
one group, we have no use of these labels. The context lalagla@role in the semantics of
the acceptance logic formulas.

On the semantic level, the axioms ¢ are all the axioms of\gx¢ except two: the axiom
inclusion (nc.) and the axiom unanimity{n.). Dropping Un.) and (nc.) does not affect
the decidability of the logic of acceptancélr()! states that AN @, thenVi e N, Agy.x0.

In our case, it is the aggregation of individual acceptarthas determines the collective
acceptance and we do not require that the group acceptimgails that all the members
acceptp, a property of non-summative collective belief indicatgd(Bilber:, 1987). The
opposite property,e., all the agents acceptingimplies that the group acceppsis ensured
via the judgment aggregation mechanisrnc() states that if a grou® acceptsp, so will
any subgroug®B < C. In our case, the judgment aggregation over the input fraoogB can
produce different group attitudes than the judgment aggieg over the input from a larger
groupC.

The axiomatization of th&GHE 1 logic is thus:
(ProTau) All principles of propositional calculus
(LTLTau ) All axioms and derivation rules of LTL
(K-G) G(¢—y)—(Gp —Gy)

(K-E) E(¢9—y)—(E¢ —EyY)

INot to be confused with unanimity introduced in judgmentraggtion in Section 6.3
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(K-A) A9 — ) — (Ash — Asy)
(PAcces} Asp — AvAsp if M S

(NAcces3y —Asp — Au—Aspif Mc S

(Mon) —Asl —» —AyLifMcS

(MP) From — ¢ and - (¢ — y) infer - ¢
(Nec-A) From - ¢ infer - Ag¢

(Nec-G) From + ¢ infer - G¢

(Nec-B From - ¢ infer - E¢

6.2.3 Agreeing on group intentions as a judgment aggregatiproblem

Our judgment aggregation model&AGE 1| follows the judgment aggregation (JA) modelin
general logics of (Dietrich and List, 2007a) and Chapter 2.

We presume that all the goals which the group considers tptade given in a set of candi-
date group goal§ = {Gg| g€ L prop}. The decision problem of choosing or not a given group
goal is specified by an agenda. The agendas here are preebedimgstent sets of formulas
representing an issue on which an agent casts his judgminiggenda igruth-functional

if it can be partitioned into premises and conclusions. Inaase, the agendas consist of one
conclusion, which is the group gogle § being considered. The relevant reasons for this
group goal are premises.

Definition 83 (Agenda) An agendaA < L¢ is a consistent set of formulas, such that
AP U AC. The setsAP and A° are such thatAP < Lyop, A° S Le and AP n AC = .

We remark that in judgment aggregation models, as the origiefrich and List, 2007a), the
distinction between conclusions and premises is only atditt by the partition but not for-
malized in the language of the agenda. The reason why we naedaage more expressive
than propositional logic to represent the agenda issubsiisme want to explicitly formalize
this distinction trough the modal operater

For a given agendd, each agent in the grouy expresses his judgments by accepting (or
not) the agenda issues. We define judgments formally in Diefin@4.

Definition 84 (Judgment) Given a set of agents N and an agen@igor each issue a A the
individual judgment of agentd N is one element of the spA¢,a, Ay —a}. The collective
judgment of N is one element of the §&fja, Ay —a}.

The formulaAg,a is interpreted as agentudgesa to be true, while the formulé;, —a

is interpreted as agenfudgesa to be false. Since the judgments are acceptances, we can
assume that each agent is able to determine whether he silacdapsue or not. Consequently,

a judgment-Ag,a is taken to be the same as judgmént —a, and the judgments:Aya

the same as judgmenig;—a. In theory, an agent, or a group can also express the judgment
of “do not know whether to accet’ via the formula—Ag,a A —A;—a, or respectively
ﬁANa/\ —'AN—'a.
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The goal and the reasons are logically related. Theseartatre represented by a set of
constraints. In our model, we assume that the constraiata aet of formulag < Lg. For
each goalGge G there is, provided together with the agenda, a set of cantdfey = R. The
setR contains all the constraints that the agent should obsemeawasting judgments. These
constraints contain three types of information: rules dbsw how the goal depends on
the reasons (justification rulé%é”g), rules describing the constraints of the world inhabited

by the agents (domain knowledglg'() and rules that describe hogvinteracts with other
candidate goals of the group (coordination rLIRggord). Hence, the constrains for a group
goalg areRg = RSt U RP L REPO,

We want the reasons for a goal to rationalize, not only thecehof a goal, but also its
rejection. Having collective justifications for rejectingjoal enables the agents to re-consider
adopting a previously rejected group goal. To this end, weire that the justification rules
have the schemé&g < I', where{Gg} = Ag andl e Lprop is a formula such that all the
non-logical symbols of occur inflg as well.

The agents express their judgments on the agenda issuahgluaccept the constrairits

totc?.

Example 6.2.3(Example 1 revisited)Consider the cleaning crew from Example 6.2}3@;‘;St
is (p1A (P2v P3)) « Gor and Ag, = {p1, P2, P3,Go1}. Suppose that the crew has the fol-
lowing candidate group goals as well: place the furnitureit® designated location ¢
and collect recyclables from garbage binsjgThe agendas arég, = {pa, ps, Ps, P7, G},
Ags = {P3, P8, Po, Gga}. The justification rules ar&}> = (ps A ps A (Ps v pr)) < Gg and
RS = (pg A Po A P3) « Ggs. The formulas p— pg are: the furniture is out of place @,
the designated location for the furniture is empty)(phe furniture has wheels gp, the fur-
niture has handles (), the agents can get revenue for recyclableg (there is a container
for the recyclables (§).

An example of a domain knowledge couldﬂk&l< = —ps — —Ps, Since it cannot happen
that the designated location for the furniture is empty wihiile furniture is not out of place.
Group goal Gg can be pursued at the same time as Gpwever, Gg can only be pursued
alone. Thus the coordination rule for all three goals is

REeord = RN — RO — ((Ggy A —(Gn v G)) v ~Gep).

To ensure that the judgments provided by the agents areeuiabgienerating group goals,
we impose that each of the individual judgments sets is cetepind consistent as defined in
Chapter 3.

Definition 85 (Admissible judgment set)Let¢ = {Aya|a=aora= —a,ac A} be the set

of all judgments from agents M N for agendaA. We define the set of accepted constraints
Rm = {Aur | r € R}. The set of judgments is admissible if it satisfies the following condi-
tions:

o for each ae A, either Ayac ¢ or Ay—ace ¢ (completeness), and

o ¢ URM H L (consistency).

A profile, as in Chapter 2, is a set of judgment setg,

2The agents accept the constraints as they are, as a whole set.
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= {A{Wl} plaA{Wl} p27A{W1} - p37A{W1}GglvA{W2} - plaA{Wz} p27A{W2} p37A{W2}Ggla
Apway P1, Az P2, Apwsy — P3, Aqwyy —~Ga1} is @ possible profile for Example 6.2.1.

We can also use the matrix notation

P1p2 P3s G
w1101
m=w,<0111
ws|(1000

In the judgment sets in Chapler 2, one cannot distinguishthveine judgment set belongs
to one agent or another. Using the acceptance operator teljuadyments, we can make a
distinction between the individual judgments. In judgmeggregation, the collective judg-
ment set of a group of agents is obtained by applying a judgaggregation function to the
profile. The judgment aggregation rulesve use here are defined as the irresolute judgment
aggregation rules in Definition 2.

Let Ag be the agenda corresponding to a gpabnsidered by a group of agemsand letrg
be the profile of the members judgment regardigg We define the group attitudes regarding
a goalg, i.e,, thedecision to be the collective judgment set of the group.

Definition 86 (Decision) Given a profilery for a considered goal g and a judgment aggre-
gation rule F, the group K¢ decision regarding g i®y = {Aya | ae f(m)}.

Proposition 6.2.4. Every group member accepts the group decision.

Proof. As a direct consequence of axioPAcces3, when the group has intentiogg, every
agent inN accepts that this is the group’s intention, regardless dtvitheir individually
accepted regardin@g. Also, as a consequence of axioM¥cces$, when the group rejects

a goal,AN—Gg, every agent accepts this group decision. The same holds for the group
beliefs. O

6.2.4 Judgment aggregation rules for agreeing on intentios

Which of the rules we introduced in Chapters 2 and 3 are adedaause by a group that

needs to agree on its intentions? Since the judgments imtbe/tion agreement problem are
binary and unweighted, we can choose both from the rules ap@f 2 and Chapter 3. To

select the particular one we need to look at the propertefmet] in Chapter 4, that the rule
should satisfy.

The judgment aggregation rule we can use for obtaining ggoags should produce decisions
that are complete and it should satisfy collective ratigpallf F (1) is not complete it is
difficult to revise the group intentions. For example, if thecision contains only a group
goal acceptance, then we do not know why the goal was (noptad@and consequently when
to revise it. For example, the cleaning crew decides for thed gz (to collect recyclables),
without having the reasons likg (a container where to put them). If the information about
the world is updated anéh pg holds, the robots will continue to collect recyclables. Hét
aggregation of an admissible profile is not consistent withdonstraints, we would not be
generating reasons for the group goal. All the rules we pegasatisfy collective rationality.
The rules from Chapter 2 do not produce complete judgmest bethis case, the judgment
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sets can be completed by adding the missing judgments insswely that the consistency of
the set is not perturbed. For example, consider the preeagér- {p,q, p— g} and assume
that the collective judgment set {®, —q}. This set can be made complete by extending it
into {p,—q, ~(p — a)}.

Since the judgment aggregation problem is that of produeimgagreement between the
agents, the rules should be such to guarantee that the ated@siesponsive to the accep-
tances of the individuals. This means that the decisionlghueisupported by the majority
whenever that is feasible. Therefore the rule applied shbelmajority-preserving.

There are cases, when the profile is not majority consistemen the rule leads the group
to adopting a goal that neither of the agents endorses duhilly. To avoid this, we need
to aggregate using a rule that satisfies the unanimity pliecif only the weak form of the
property, particularly on issu€g. As we can observe in Table 4/14, the rules that satisfy
weak unanimity ar®y, Rysa Rra andRgy.

Another desirable property for consensual group’s degisi@king contexts is resoluteness.
Since all judgment aggregation rule are by constructiasotute, one can prefer the rules
that produce less judgment set. It can happen®hah generates more judgment sets than
Rrafor the same profile. As it can be observed in Table 8.1.2, dfilective judgmentis in all
the judgment sets obtained By, then it will be in all the judgment sets obtained Rysa,

for the same profile, but the reverse does not hold. This nteahgor the same profile, there
are judgment sets generated Rysa but not byRga. applied to a profile produces strictly
more judgment sets thé¥y applied to the same profile. Therefore we exclRggafrom the
set of choices.

The ruleRgra can be seen as better thBp and Rgy since it satisfies one more property,
the strict insensitivity to reinforcement of collectivedgments. In addition, one can easily
construct a linear time algorithm, with respect to the sizthe profile, for calculatindrra,
while Ry andRgy can be expected to be computationally more complex.

The irresoluteness of the rul&y, Rra andRgry must be resolved. In Chapter 5 the group
was hierarchical so the agent responsible for the decigi@ninitiator, chose between two
possible judgment set. In this context, a tie-breaking raaigdm needs to be specified. Ties
can be broken by randomly selecting one of the collectivgioent sets, or by selecting the
judgment set that contains a judgment on a particularly ntamd issue, such as the goal,
supported by the majority. In the case of the rRlgx this last approach is not applicable,
since the collective judgments are selected in order ohgtheof the majority that supports
them.

6.3 The generation of multiple group goals

The mental state of the group is determined by the mentasstaftthe members and the
choice of judgment aggregation function. We represent tbetal state of the group by a set
Y of AGE_ 1. formulas. The seY contains the set of all candidate gogls= Lg/£ prop for
the group and, for eacBge 9, the corresponding constrairigy, as well as the individual
and collective acceptances made in the group regardingdagés The setY is common
knowledge for the group members. An agent ugseghen it acts as a group member and its
own beliefs and goals when it acts as an individual.

To deal with multiple, possibly mutually inconsistent giahe group has a priority order
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%x over the group goal§ — Y. To avoid overburdening the language withza operator,
we incorporate the priority order within the constraiﬂ?@St =TI < Gg. We want the con-
straints to capture that@g; is not consistent (according to the coordination ruleshw@me
higher priority goalsGg;,...,Ggm, then the group can acce@®y if and only if none of
Ga,...,Ggm is accepted. Hence, we replace the justification ﬂbgiét € Y with ﬂzgiJ”St =
(Ti A /\rj“(ANﬂng)) < Gg, WhereGgj € G, Ggj xx Gg andGg A Ggj A J%gioord E L.

Example 6.3.1. Consider the goals and rules of the robot crew C from Examfe56 As-
sume the crew has been given the priority orden Gg Gg, >y Ggz. Y contains: § =
{Ga1,Go, Ggs}, one background knowledge rule, one coordination rulegéhustification
rules, out of which two are new priority modified rules:

{9, —Ppa— —ps, (G A ~(Gar v Cg)) v =G, Gar <> (P1 A (P2 v P3)),

G < (Par PsA (Pev P7) A Ac—Ga1),Ggs < (P A Po A P3 A (Ac—G@)}-

The agents give their judgments on one agenda after andtréing with the agenda for
the highest priority candidate goal. Once the profiland the decisiof®y for a goalg are
obtained, they are added Yo To avoid the situation in which the group casts judgments on
an issue that has already been decided, we need to remowedéssues froriy before
eliciting the profile for this agenda.

The group goals are generated by execuGegerateGoalgY, N).

functi on GenerateGoal§yY, 9 :
for each Gg € §s.t. VGgj € 9: (Ggj = Gg) = (ANGQ;j € Yor Ay—Ggj € Y)]
{ B:=({a]Ayae Y}u{—a|Ay—ae Y}) nAg;
Ty, = elicit(S,Ag, Y);
Yi=Yumgu (), }
return.

GenerateGoaldgoes not violate the candidate goal preference order aadinates i€licit
terminates. elicit requests the agents to submit complete judgment setsgfar Y. We
require thatlicit is such that for all returnedt it holds: Yu f(m)) ¥ L andY u rm>i B L
for everyi e N. When a higher priority goakg is accepted by the group, a lower priority
incompatible goalGg; cannot be adopted regardless of the judgments on the issulg.i
Neverthelesselicit will provide individual judgments for the agendg, . If the acceptance
of Gg is reconsidered, we can obtain a new decisiorGg because the profile fagg; is
available.

Example 6.3.2.Consider theY sets for the robots given in Example 6.3.1. The followintgscal
to elicit are made in the given order. Firgty, = elicit(N,Ag ,Y) with the GenerateGoa(¥) =
Y =Yurmng u f¥mg,). Secondsg, = elicit(N,Aj,,Y"), with GenerateGoaly”) = Y =

Y U, u f3(1(g2)). Last, 1, = elicit(N,Ag,,Y”), with GenerateGoaly”) = Y” = Y" U
Ty, w f3(y,). Since there is no overlapping between agendgsand Ag,, Aj = Ag, and
Ag, = Ag,. However, sincelg, N Ag, = p3, thenAg, = {ps, Po, Ggs}-

6.4 Commitment strategies

The group can choose to reconsider the group goal in presd#noew information — “a
joint commitment must béerminatedjointly” (Gilbert, 2007, pg. 143). Whether the group
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chooses to reconsider depends on how committed it is to thgpgntention corresponding
to that goal. We defined the group intention tolg = AN Gg, i.e. the decision to accet
as the group goal. The level of persistence of a group in tudiective decision depends on
the choice of commitment strategy.

These are the three main commitment strategies (introdug¢dao and Georgeff, 1993)):
Blind commitmentlig — (l;gUB;g)

Single-minded commitmeritg — (ligU(Big v BiLC1—Q))

Open-minded commitmeritg — (l;gU(Big v —Gig))

These commitment strategies only consider the relationdsst the intention and the beliefs
regardingg andGg. In our model of group intentions, a commitment is to a goakatance.
This enables intention reconsideration upon new inforomatin either one of the agenda
issues inAg, as well as on a higher priority goal.

The strength of our framework is exhibited in its ability testribe the groups’ commitment
not only to its decision to adopt a goal, but also to its decigb reject a goal. Namely,

if the agents decidethjgi and Ay —Ggj, they are committed to bothy g and A\—Gg;.
Commitment to rejeag allows forg to be reconsidered and eventually adopted if the state of
the world changes.

Let N be a set of agents with a set of candidate ggalket Gg;, Gg; € § have agendady,
Ag;. We usep e A§ andg € Ag, qj € ﬁgj. The profiles and decisions arg and f (7g);
Gg;j > Gg;, andGg; cannot be pursued at the same timé&as

We use the formulaéai) — (as) to refine the blind, single-minded and open-minded com-
mitment. Instead of thantil, we use the temporal operatetease YyR¢ = —(—y¢ U —¢),
meaning thatp has to be true until and including the point whardirst becomes true; ify
never becomes trug, must remain true forever. Unlike thantil operator, theeleaseoper-
ator does not guarantee that the right hand-side formulawalr become true, which in our
case translates to the fact that an agent could be forevanited to a goal.

(01) EGRINGI

(a2) LRAN—GG

(a3) (EC—gi v EG)RANG
(as) AN—QjRANG

(as) AyP — (E—pRANGH)

Blind commitment: a1 A as.

Only the observation that the goal is achievEd;] can release the intention to achieve the
goallygi. If the goal is never achieved, the group is always committet! If a goal is not
accepted, then the agents do not reconsider accepting it.

Single-minded commitment as.

Only new information on the goal (either that the goal is eebd or had become impossible)
can release the decision of the group to adopt /reject the ijeace, new information is only
regarded if it concerns the conclusion, while informationtbe remaining agenda items is
ignored.

Extended single-minded commitment as A dy.
Not only new information orGg, but also the collective acceptance to adopt a more impor-
tant incompatible goabg; can release the intention of the group to achiege Similarly, if
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Gg is not accepted, the non-acceptance can be revised, nof @by is observed to be im-
possible or achieved, but also when the commitment to puegjiés dropped (for whatever
reason).

Open-minded commitment a3 A Os.
A group maintains its collective acceptances to adopt @cteq goal as long as the new
information regarding all collectively accepted agendanis is consistent witffi( g, ).

Extended open-minded commitmentasz A as A Os.
Extending on the single-minded commitment, a change imtige to pursue a higher priority
goalGgj can also release the acceptance of the groupgn

Once an intention is dropped, a group may need to recond&leollective acceptances.
This may cause for the dropped goal to be re-affirmed, but@nstderation process will be
invoked nevertheless.

6.5 Reconsideration of group attitudes

In Sectior 6.3 we defined the mental state of the gnéup/e can now define what it means
for a group to becoherent

Definition 87 (Group coherence)Given a Kripke structuré( and situations &€ W, a group
of N agents is coherent if the following conditions are met:

(p1): M = —(Asan Ag—a) for any Sc N and any & Ag.

(p2): If M,sk=YthenY# L.

(p3): M,s= AG — —[J—gforall Gge §.

(pa): Let Gge G and g’ = §/{Gg}, thenM |= (A S A EC0—g) — X(—Gg).

(ps): Let pe Ag and ge {Gg,—~Gg}. EpA (EpRANQ) — XANP

The first condition ensures that no contradictory judgmargsggiven. The second condition
ensures that the mental state of the group is logically stersi in all situations. The third
and fourth conditions ensure that impossible goals canmptlnt of the set of candidate goals
and ifg is observed to be impossible in situatigrihen it will be removed fron§ in the next
situation. ps enforces the acceptance of the new information on the grexgd,lwhen the
commitment strategy so allows — aftelis observed and that led the group to de-commit
from g, the group necessarily accepts

A coherent group accepts the observed new information ommipe. This may cause the
collective acceptances to be inconsistent with the juatific rules. Consequently, the deci-
sions and/or the profiles iYineed to be changed in order to ensure thatndp, are satisfied.
If, however[J—g or g is observed, the group reconsid&tdy removingGg from G. In this
case, the decisions and profiles are not changed.

For simplicity, at present we work with a world in which theeags’ knowledge can only

increase, namely the observed information is not a fluentevA hore conditions need to

be added to the definition of group coherence for our modektalile to be applicable to

fluents. For example, we need to define which observatiorcisped when two subsequent
contradictory observations happen.
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6.5.1 Reconsideration strategies

For the group to be coherent in all situations, the acceptregarding the group goals need
to be reconsidered after de-commitment. £gtc Y contain the group acceptances for a
goalg, while 1y < Y contain the profile fog. There are two basic ways in which a collective
judgment set can be reconsidered. The first way is to eliciwa profile forg and apply
judgment aggregation to it to obtain the reconsid@gd The second is to reconsider only
Dy without re-eliciting individual judgments. The first appah requires communication
among agents. The second approach can be done by each agesideringy by herself.
We identify three reconsideration strategies availabtbéagents. The strategies are ordered
from the least to the most demanding in terms of agent comeation.

Decision reconsideration {-r).

Assume thaEa, a€ ﬁg, ge {Gg,—Gg} and the group de-committed froANg. The re-

considered decisio®] is such that is accepted, i.eAya e Dy, and the entire decision

is consistent with the justification rules, namﬂ;agj”Stu D ¥ L. If the D-r specifies a

unique®g, for any observed information and aRy;, thenY can be reconsidered without
any communication among the agents. Given the forriiigii"s‘t (see Section 6.3), this will
always be the case.

HoweverD-r is not always an option when the de-commitment occurredtdwa change in
collective acceptance of a higher priority goal Letq' € {Gg,—Gg'}. Let the new accep-
tance beAn—g'. D-r is possible if and only i = Dy andﬂQgJ”Stu DguU{AN—T} H# L.
Recall thath\n g was notindg and as such the acceptancefadr —q' is never in the decision
for .

Partial reconsideration of the profile (Partial 7rr).

Assume thaEa, ae Ag, Gge G. Not only the group, but also the individual agents need to
accepta. ThePartial -r asks for new individual judgments to be elicited. This is el¢m
ensure the logical consistency of the individual judgmexts svith the observations. New
judgments are only elicited from the agentghich Ag, —a.

LetW < N be the subset of agents.t. Aj,—ae Y. Agentsi are s.t. Ajae Y when the
observation i€—a. Let ng" C 1y be the set of all acceptances made by the ageMs e
constructy’ = Y/n;"’. The new profile and decision are obtained by execufiagerateGoals
(Y, W).

Example 6.5.1.Consider Example 6.2.3. Assume tRgt = {Acp1,Ac—P2,AcPs, AcGt},
Dg, = {AcPa, AcPs, AcPs, AcP7, Ac Gz} andDg, = {Acps, Acpe, AcGgs} are the group’s
decisions. Assume the group de-commits ofb8gause of E p,. If the group is committed
to Gg, the commitment on Ggill not allow for Ay ps to be modified when reconsidering
Ggi. Since Aps exists inY’, p3 will be excluded from the (new) agenda for, @lthough

it was originally in it. elicit calls only on the agents in W tmmpletery, € Y’ with their
judgment sets.
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Full profile reconsideration (Full 1z-r).

The full profile reconsideration is the same as the part@imsiderations except ndw = N.
Namely, within the full profile revision strategy, each agsnasked to revise his judgment
set by accepting the new information, regardless of whdthdvad already accepted it.

6.5.2 Combining revision and commitment strategies

Unlike the commitment strategies of (Rao and Georgeff, 1.9@3our framework the com-
mitment strategies are not axioms of the logic. We requiat tifhe commitment strategy is
valid in all the models of the group and not in all the modelA&H .. This allows the
group to define different commitment strategies and differevision strategies for different
goals. It might even choose to revise differently dependingvhich information triggered
the revision. Choosing different revision strategies factegoal, or each type of new in-
formation, should not undermine the coherence of the metd#t of the group, the s&t
The conditions of group coherence of the group ensuresdftat, every reconsideratioly,
must remain consistent. However, some combinations of atmant strategies can lead to
incoherence oY.

Example 6.5.2. Consider the decisions in Example 6.5.1 . Assume that ligitlae group

is such that it follows the open-minded commitmentdgi land blind commitment fogbs,
with goal open-minded commitment fog AGg,. If Eg; and thus ¢g; is dropped, then the
extended open-minded commitment would allew&g, to be reconsidered and eventually
Icgo established. However, since the group is blindly committetdgs, this change will
not cause reconsideration and as a result baifpland gz will be in Y, thus makingy
incoherent.

Problems arise whesub(R§"*) ~ subRE1U™) # &5, wheresub(R§!**) denotes the set of
atomic sub-formulas of some gagbindGg;, Gg; € §. Proposition 6.5.3 summarizes under
which conditions these problems are avoided.

Proposition 6.5.3. Leta’ anda” be the commitment strategies selected fargl g corre-
spondingly.Y'u a’ ua” # L (in all situations):

a) if ¢ € SUHREMS) n sUMRE“S) and pe Ag N Ag;, thenas is either in botha’ anda” or

in none;

b) if Gg is more important than Ggwhile Gg; and Gg cannot be accepted at the same time,
thenase a”.

Proof. The proofis straightforward. If the change in the group (@oeeptance dbg causes
the ANGg; to induce group incoherence, then we are able to de-comarit Ay Gg;. If

we would not able to de-comit fromAyGg; then group coherence would be blocked. If
the change in the group (non)acceptancé&gf is caused by an observation on a premise
pe Ag nAg; then condition a) ensures that the commitme{gsg; does not block group
coherence. If the change @ Gg; is caused by a change in commitment to a higher priority
goal, the condition b) ensures that a commitment regar@iggdoes not block group coher-
ence. Condition b) allows only “goal sensitive” commitrreetd be selected for lower level
goals. O
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Conmi t ment Rel ease on Change How

to

AN(—)Gg O—glg [Ggj[A§ Y @9 |[@m |JA
Blind v

Single-minded |V |V Dr |V

Extended v VI Partial re-r v v
Open-minded v o v Full r-r v v
Extended v oY

Table 6.1:Gg; > Ggand cannot be pursued at the same time Bigh®9gy denotes collective
attitudes foig are reconsideredy iy denotes the profile (all or some parts of it) is re-elicited.

6.6 Conclusions

We present a formalization of non-summative beliefs, gaals intentions irAGE 1| and
show how they can be generated using judgment aggregatiorm@ti-agentAGE 1| logic
extendsBDI .. In accordance with the non-summative view, having a grotgniionlyg

in our framework does not impll;,g for each the member We extended the commitment
strategies of (Rao and Georgeff, 1993) to increase theivégatf the group to new informa-
tion. Now the commitment strategies are not axioms of theasgmtation logic; instead they
are a property of a group. Groups can have different levatewfmitment to different goals.
We showed how the group can combine different commitmend#fierent goals.

An advantage of our framework is its ability to allow groupsbmmit to a decision to reject
a goal, thus having the option to reconsider rejected g&alithermore, we do not only show
when to reconsider, but also how, by defining reconsideratiategies. Table 1 summarizes
our commitment and reconsideration strategies.

In our framework, the entire group observes the new infoionat One can also explore
the case when only some members of the group observe the mesmation. The only
assumptions we make regarding the connectivity of the mesnisethat they are able to
communicate their acceptances and receive the aggregesioit The problem of elicitation
and communication complexity in voting is a nontrivial o@ofitzer and Sandholm, 2002b,
2005) and in the future we intend to study these propertiesioframework.

In our framework, the group has an intentigif it has agreed to pursugas a group goal.
The agents agree on which goal to pursue by stating theipgoees of a proposed group
goal, and related beliefs that support or justify that gaatl applying a judgment aggregation
rule on these acceptances. Since the judgment aggregalécserves as an agreement reach-
ing mechanism, it needs to satisfy the properties of majgmieservation and the unanimity
principle. Based on these properties we propose that tesRuh, Ry andRry, developed in
Chapter 2 are used.

The rules from Chapter 2 are defined for judgment aggregatioblems that are specified
by an agenda and a set of agent names. A set of constraintspamof the problem spec-
ification. We use the set of constraints here to describedtdediknowledge that the group
needs to take into consideration when choosing its goalsaM/@ble to use the rules from
Chapter 2 anyway since we defined an admissibility critef@mnthe individual judgment
sets.
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Although we studied the complexity of winner determinationthe rules of Chapter 3 we
did not make the same analysis for the rules of Chapter 2. dosshfurther betweeRgra,
Ry andRgy we need to know their complexity-theoretic properties al.we

In this context of agreeing on group goals we imposed theirepent that the agents are
always able to declare whether they accept a belief or a ggoapor not. This requirement
was feasible because the agent’s judgments are expresfiacseptance, not an estimate of
the state of the world as in Chapter 5. Nevertheless, it nigtdesirable to give the option
to an agent, or a group, to also express express “do not kn@thehto accepd” via the
formula—Ag,a A —Agy—a, or respectively-Aya A —Ay—a. This option implies a change
in the input value-type of the judgment aggregation problesm binary to ternary. To be
able to allow for this option we need to consider the extamsibthe rules of Chapter 2 to
ternary judgments.

In the work we presented, we do not consider how an individoahstructs his judgments.
We can take thaBi ¢ — Ay ¢, but this is not a requirement for all agents. We would
expect “honest” agents to follow this rule, but we can alsfingedishonest agents for which
Bi¢ — Aiy¢ does not hold. In the latter case, the agent might deélgye while it does not
believe¢. Given that the group attitudes are established by an agtioegrule that can be
expected to be, as almost all but the most trivial socialahailes, manipulable, the question
is whether there are scenarios in which an agent can havedéetive to behave strategically
in rendering judgments. Furthermore, given that some ofékensideration strategies call
for re-elicitation of judgments, can an agent have the iticerto behave strategically in
rendering judgments that would lead to sooner re-elicitéti To answer these questions we
need to study the manipulability properties of our rules.
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Related work

The problem of aggregating profiles of yes/no decisions asst of logically related issues
is, with minor variations, studied under different namasdgment aggregation, majority-
voting under interconnected decisions, abstract binagreggtion, aggregation of binary
evaluations. Some comparisons of the differences betwemiframeworks denoted with
the different terms can be found in (List and Polak, 2010;n@rand Endriss, 2010). We
uniformly use the term judgment aggregation, althougletiyrspeaking, our rules based on
minimization are judgment aggregation rules and our destdmased rules are both judgment
aggregation and ternary-evaluation aggregation rules.

To the best of our knowledge there is no work that is relatatieahesis as a whole. There-
fore we give the related work with respect to our judgmentegation rules, properties and
models of collective reasoning.

7.1 Part |- designing rules

The study of judgment aggregation rufeey seis a rarity in judgment aggregation. The only
exception in this sense is probably the work of (Miller andh€&son, 2009). Some judgment
aggregation rules do appear in the context of other works.

7.1.1 Rules based on minimization

The premise-based procedure has been introduced in (Kesahand Sager, 1993) under
the name “issue-by-issue voting” and studied extensivel{Dietrich and Mongin, 202.0).
The conclusion-based procedure has been studied in (Pietcrlz, 2009). These were the
first rules considered in the literature. The sequentiat@dares have been introduced in
(List, 20044a) studied also in (Dietrich and List, 2007b; 2010), followed by quota-based
rules (Dietrich and List, 2007b; Dietrich, 2010). The qubtssed rules are a class of rules
where each proposition of the agenda is associated with tagaed the proposition is ac-
cepted only if the proportion of individuals accepting itabove the quota. The majority
rule is a special case of quota-based rules. Lastly, thardistbased rules are studied in
(Miller and Osherson, 2009) and in (Pigozzi, 2006). We exytlae principles of these rules
in Chapter 2, therefore here we just enlist the relation&éen these rules and the rules we
propose.

The rulesRuysa, Ruwa andRynac are special cases of three of the four distance-based rules
introduced in (Miller and Osherson, 2009). More precisédy,d being the Hamming dis-
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tance,Rysa is theory equivalent wittEnd poing; Ruwa and Rynac are equivalent with
Prototypeg andFully correspondingly.

Nehring et al. (2011) and (Nehring and Pivato, 2011) defieeCttndorcet admissible s&t

be any maximally consistent sub-set of the majoritarian Retall that the majoritarian set
for a profile is the set of all judgments supported by a majaftagents according to the
profile. The Condorcet admissible sets for any profile arévatgnt to the set of judgment
sets that can be produced by applyiRgsa to that profile. Rather then considering a rule that
derives the Condorcet admissible sets, they consider ihaespf judgment sets and study
under which conditions this space collapses to a singlaioa profile. They calCondorcet
determinatevhat we define as majority-consistent profile.

Nehring et al. (2011) introduce two new judgment aggregatites: theSlater ruleand the
Median rule The Slater rule is equivalent to oRycsaand the Median rule to oWRywa.
Nehring and Pivaic (2011) in addition introduce ttexiMin rule which we defined aRra.
The difference betweeRra and Rywa on one side and the LexiMin and Median rule on
the other, is that the LexiMin and Median rules are definedafyent-weighted judgments.
Nehring et al. (2011) and also (Nehring and Pivato, 20113t agent weights, normalized
over[0,1] so that the sum of the weights of all agents on an issue is alayhe focus of
(Nehring et al., 2011) is to characterize the conditiong] mientify the likelihood, under
which Tr,,,(P) contains a complete judgment set, some particular eleni¢ghe@genda or
the full set of consistent and complete judgment sets.

7.1.2 Distance-based non-binary rules

Distance-based rules for aggregating judgments have hepinéd by thenodel basedistance-
based belief merging rules (Konieczny et al., 2004). The fiistance-based rules for ag-
gregating judgments have been introduced by (Pigozzi, Pa0® observed that there are
considerable similarities between the belief merging airJudgment aggregation problems.

Belief merging theory studies the problem of merging bdlesges. Given a set of belief bases
and a set of constraink€, the problem of merging the belief bases is to generate eftilse
which satisfies all of théC constraints and incorporates a maximal amount of beliefs fr
the bases that are merged. In judgment aggregation theédndhjudgment sets are cast on
agenda issues. In belief merging no agenda is defined.

In belief merging, the primary concern of the merging precissto maximize the infor-
mation content from the merged belief bases. Rules for mgrbeliefs are constructed
so that they satisfy a set of postulates that are inspired tie belief revision postulates
(Alchourrén et al., 1985). Judgmentaggregation rulesanstructed so that they satisfy a set
of properties that are inspired from voting theory and mexfee aggregation (List and Pclak,
2010). The aggregation properties are not concerned wittimizing the information con-
tent from the individual judgment sets.

Pigozzi (2006) applies the model based operator of (Komieeral., 2004), defined for a
Hamming distance an¥l, directly by treating the judgment sels as belief, or knowledge
bases. The agenda is defined as a set of propositional dgios A judgment set is a
consistent set of atomic and non-atomic formulas, comftet¢he agendad. The set of
constraintdC corresponds to the set of rul@s Each judgment set is consistent with respect
to R. The set of all models foR is the co-domain of the aggregation rue. Endriss et al.
(2010b) also define their procedure in terms of the Hammisgdce and_, but contrary to
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(Pigozzi, 2006), they define the agenda in such a way thatitcatain non-atomic formulas.
However they do not consider additional rules and in thaimfeworkR = . Consequently,
the distance-based rule for the Hamming distance and tlas an aggregation operator are
not equivalent. The distance-based rules we propose atiowdth non-atomic formulas in
the agenda and additional rules to be externally specified.

The use of agent weights in distance-based belief mergintegts has been previously be
considered in (Revesz, 1995). Weights in the context ofjuglgt aggregation have not been
considered. The weights assigned to issues, or to (agarg)ipairs, have not been considered
in belief merging or in judgment aggregation context. Dists between sequences that
contain more values than binary have been considered iit¢hature (Condotta et al., 2C08;
Coste-Marquis et al., 2007).

There are many reasons for which one would like to relax tlygirement of complete-
ness for judgment sets and allow the agents to abstain on ssues. That the require-
ment of completeness for judgment sets is too strict, has dexusses by (Gardenfors,
2006). Dokow and Holzman (2010b) construct a framework foaty aggregation in which
abstentions are allowed. The value assigned to the almtdastdescriptive, namely a spe-
cial symbol “%”, while 0 and 1 are used for the “no” and “yes” judgments cspandingly.
Pauly and van Hees (2C06) construct a framework for mulieellogics in which the judg-
ment sets with abstentions may be seen as a special casech)2007) constructs a general
logic framework in which some ternary logics are a specigkcalhese authors focus on
proving impossibility results for their respective franmmws and offer no particular rules for
aggregating judgment sequences with abstentions.

One might argue that the aggregation of judgments with alistes poses no particular chal-
lenge; namely, if an agent abstains then his input can beéghas if a judgment was not
elicited from that agent. This perceived simplicity disapgs once one is reminded that the
agenda issues are logically related and the judgmentswsbstg them are logically related.
Abstaining on one-issue influences the judgments that casdigned to the rest of the issues,
by the same agent and on the generation of collective judtgfienall issues. The challenge
in developing judgment aggregation rules that handle alistes is not in the representation
of the abstentions but in the interpretation of the abstassti When distance-based rules are
used, the interpretation assigned to abstentions hingesthe sef\ and the chosen distance
metric. The sef\ depends on the particular ternary logic used for reprasgiitie judgments.

The distance-based rules we introduced can be applied fretmework of (Pauly and van Hees,
2006) whenA is constructed using the logic of (Pcst, 1921). The rulesbeaapplied in the
framework of (Dokow and Holzman, 2010b), whers treated a% and either the logic of
(Lukasiewicz, 1920) or the logic of (Kleerne, 1938) is usede Tmpossibility results proved
by (Dietrich, 2007) hold for judgment aggregation problesyzresented by the t ukasiewicz
logic since this logic is a special case of the general lagioduced by (Dietrich, 2007). We
show that this holds.

Dietrich (2007) defines the propertied — L3 for (£, =) and proves his impossibility of
aggregation results for general logics that satisfy- L 3 (Dietrich, 2007, pg. 554).

L1  Foranype £ it holds thatp = p (self-entailment
L2 Foranype L andS c S c L, if § = pthenS; = p (monotonicity.

L3  The empty sepy is consistent, and each consistentet £ has a consistent super-set
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S < £ containing a member of each pair—p e £ (completability.

Proposition 7.1.1. The pair(£., =3), where£| is the logic of Lukasiewicz, satisfies self-
entailment.1, monotonicity.2, and completability_2.

Proof. Self-entailment follows directly from the definition of toperator=3. Namelyl' =3
yifandonlyif AT — y.

Whens$; |=3 ¢ then for all valuatior, if v(A S;) = 1 thenv(¢) = 1 and ifv(A S;) = 3 then
v(p) e {1, %}. We prove monotonicity by distinguishing among cases:

VIAS) =1 Vv(§)=1 VAS/S)=1VS)=henceS, =3 ¢

VAS) =1 V(§)=1 VAS/S)=3VS)=73henceS; =3¢
VAS) =1 Vv()el V(AS/S)=0V(S)= Ohencdszbzsqb
VAS) = % V(@) e {1, é} VIAS/S) =1V(S) = ; 1 henceS; =3 ¢
VAS) = 2 v(e) € {1, ;} VAS/S) = 3 V(S) = 3 henceS, =3 ¢
VASL) =3 V(9) € {13} IASI/S) =0 V(S) = 0 hences, =30

The pair(£', |=3) satisfies completability. The empty set is consistent sirfgg) =qer 1.
Whenv(¢) = 1 orv(¢) = 0, eitherg or —¢ can be added t&, but not both. Whers is
valued to%, if v(¢) =1 thenSk= ¢, but it is not true thaS = —¢, sincev(S) # 0. For
v(¢) = 0thenS}=3 —¢, and itis not true thab =3 ¢.

O

Apart from the basic ternary logics and the classical emiilt operator, one can consider
ternary paraconsistent logics, such as the ones studi&@dmeczny and Marquis, 2002), for
representing judgments. The distance-based operatotzecapplied regardless of the logic,
as long as the sdt can be specified.

In addition to the completeness requirement, the judgngntegyation theory also stipulates
that the judgment sets are consistent, with respect to the Ruwhen such rules are given.
Miller (200€) considers the case when the constraints dogestive, namely each agent's
judgment setA is consistent in terms of that agent's constrakgt A. u R ¥ L. Miller
(2008) generalizes judgment aggregation to subjectivesidecsituations, implying that the
impossibility results studied in (Dietrich, 2007) persisthout individual agreement on the
set of constraints.

In addition to different constraints, one may considerediéht entailment operatoks; for
each agent, thus haviry U R; ¥ L as the required consistency property for the individual
judgment sets. As long as tieand}=3 are determined for the collective judgment sets, the
A set can be constructed and our distance-based mergingandwe specified.

Benamara et al. (2010) consider the problem of aggregatufgnent sets in which not only
abstentions, but alsteutral judgmentsare allowed. They define an agenda as a set of atoms
corresponding todP and a singleton set of an atod called adecision corresponding to
AC. What we call an abstention here, is called a neutral judgingBenamara et al., 2010),
denoted by “?” and representing the case in which an agemtdsaided on an issue. The
abstentions in (Benamara et al., 2010) are denoted by “X'rapresent the case in which an
agent deems the agenda issue “irrelevant” for the decidibas judgments are assignments
A {0,1,?2 X}. A decision rule is a formul& (AP) < d, whererl (AP) is a propositional
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logic formula built on literalsA” andd e {d,—d}. The agents can accept, reject or be neutral
regarding the rulei.e.,, assign it a “value” from{0,1,?}. Benamara et al (2010) give a
judgment aggregation procedure for this framework, adogrtb which the “judgment” on
the rule is determined according to a majority rule, theeaiVe judgments on the premises
are determined by ignoring the abstentions and applyingeawhich we defined as majority
m, to the rest. The collective judgment on the decision ishiedas in the premise-based
procedure if the majority accepts the rule and by applyiegtiajority rule over the individual
judgments fod.

We can represent the framework of (Benamara et al., 201®pimtframework in the follow-
ing way. Let us denote the decision riléAP) <> d by a. The agendal is constructed as
A=APUA®U {a}. We replace each judgment judgment ? V\éthWe construct a weight
matrix using weightsy; j = 0 when an ageritassigns< to issuea; andw; j = 1 in every other
case. The judgmend$ can be replaced with either one {, %, 1}, since they are assigned
a weight 0. Then the premise-based procedure can be defioresideringa as one of the
premises.

Li (2010) considers the sequential aggregation rules dodslifor continued-valued judg-
ments on thd0, 1] interval. An agent expresses the strength of his acceptangection
of an issue through the continuous judgments. The judgmenp) of a negated issug
assigned a judgmert—¢) = 1 —v(¢). The aim of Li's work is to determine decision paths
that maximize the strength of each judgment.

7.2 Partll - properties of rules

Properties for judgment aggregation rules have been stwdit the objective of determin-
ing which set of properties admits a judgment aggregatioetfan or rule. Apart from the
universal domain, anonymity and independence propentiesptonicity and unanimity were
introduced. Grandi and Endriss (2010, 2011) instead stuglgdnnection between the prop-
erties of aggregation rules and the language in which tlsecdeonstraintRR are expressed.

The unanimity principle for aggregation functions wasaaiuced in (Dietrich and List, 2008b).
Nehring et al. (2011) define and study, what we define as, to@gtunanimity principle.
They observed that this principle is violated by the Condbacimissible sets for most agen-
das, which is consistent with our observation tRgta does not satisfy this property.

Monotonicity as a property imposed on a subset of the ageindaddress manipulability
issues) was introduced in (Dietrich and L st, 2005), and atonicity on a judgment set in
(Dietrich and List, 2008a). Monotonicity as a property ofigiment aggregation functions
was defined in (List and Purpe, 2009).

Nehring and Pivaic (2011) study two properties that are genjlar with our Separability |
and Separability II. They define separability as we defineagagility 11. Our Separability |
corresponds to the reinforcement of (Nehring and Pivatd1P®ut it is a stronger property.
The reinforcement property of (Nehring and Pivato, 201)liag to entire judgment sets,
whereas Separability | is applied to propositions. Thewfee obtain thaRywa violates
Separability, while the Median rule of (Nehring and Piva#011) satisfies this reinforcement

property.
What we define as independence of cloned agenda issues,réadyabeen introduced in
(Dietrich, 2006b) as the sensitivity togical agenda manipulatiarDietrich (2006b) stud-
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ies this property as a justification for imposing the indegerce of irrelevant information
condition on judgment aggregation rules and functions.

7.3 Partlll - applying rules

To the best of our knowledge this thesis is the first invesiigain applying judgment ag-
gregation for reaching group decisions in multiagent systeWe considered two types of
groups, hierarchical and consensual, that give rise to tff@rent aggregation contexts.

In the example of hierarchical group, one agent needs toeggtg the opinions of the other
agents to reach a decision. The procedure we proposed fgp gexision-making is one that
produces satisficing decisions. Satisficing is exploredsisgle agent approach to decision-
making, but not for groups.

In the example of consensual group, we model non-summatiwgogntentions, and propose
a method for their generation, commitment strategies avidioa strategies. Group inten-
tions, how they are modeled, generated and revised is aiguéiat has been considered
since the advent of multi-agent systems.

7.3.1 Satisficing

As (Zilberstein, 1998) observes, there has been a searahsédul techniques from deci-
sion making, since it is widely accepted that optimal decisinaking is too computationally
complex. The concept of satisficing (Simon, 1955) offerslgar@ative to the search for an
optimal decision, however Simon does not instruct on howottstruct satisficing algorithms
or systems. Zilberstein (1998) argues that optimizing ialéarnative to satisficing.

Satisficing is little used as an approach to group decisiaking. However, it is in the
case of group decision-making that the complexity of makingptimal decision becomes
high. An exception is the work of (Stirling and Goodrich, £9$tirling and Nokleby, 2009)
who develop satisficing games by constructing conditiotibfies. Their utilities “take into
account the interests of others as well as the self, reprasealternative to the categorical
utilities of classical decision theory.”(Stirling and Neky, 2009, pg.53).

The recognition-primed group decision-making model westrtt is a model that allows
for a team of agents to reach decisions that are satisfy af seteorelated sufficient cues.
This model is applicable when at least one agent in the tedamigiar with the decision
context since cues are determined from his experience. \plecéxhat, how optimal is a
group decision reached this way depends on the team’syatoiliearn from its mistakes.

7.3.2 Group intentions

Collective intentions are studied and formalized in (DuK#plicz and Verbrugge, 2010,
Chapter 3) and also, among others, in (Grosz and Hunsh2@@7; Jennings, 1995; Singh,
1990). The dynamics of intentions have been considered ander Hoek et al.,

2007; Grosz and Hunsberger, 2007).

In (Dunin-Keplicz and Verbruggez, 2010, Section 3.9) we firdktailed overview of the var-
ious formalizations of group intentions. Most of this worlied not consider the dynamics
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of group intentions. An exception is (Grosz and Hunsbe2@0.7). In (van der Hoek et al.,
2007) the reconsideration of individual intentions andagged plans is considered.

Grosz and Hunsberger (2007) recognize that groups needke graup decisions with re-
spect to many intention related issues such as how to chaagértentions. In (Hunsberger,
2002) they conclude that a specification of group decisi@king mechanism must include:
(1) the possible inputs an agent can make into the mecha(®$mme conditions under which
agents may make those inputs; (3) rules for determiningvbnbinations of agent inputs
establish group decisions; and (4) a method for making the dexision known to all the
members of the group. Although they consider examples ohar@sms such as unanimous
approval, they make no connection with social choice theory

We assume that the group has an order of importance for ithdate goals. Alternatively, the
group can also agree on this order by expressing individestpences. Uckelman and Endriss
(2010) show how individual (cardinal) preferences overlgoan be aggregated. Intentions
and their role in deliberation for individual agents havebeatudied in a game theoretic
framework by (Roy, 2009¢,b). Icard et el. (2010) considerjtint revision of individual
attitudes, with the revision of beliefs triggering intemtirevision. We allow for both the
changes in epistemic and in motivational attitudes to bethese for reconsideration.
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Summary

People agree on things all the time. They discuss about sluessat hand and make col-
lectively binding decisions. Some of these decisions &itenan history, others alter dinner
plans. Regardless of the context of the agreement, so@aetules have been developed to
serve humanity when it needs to reach consents.

Since its inception, computing continues to grow more andenpowerful, but at the same
time more and more distributed. As a consequence, comppt@esessors and users, more
precisely artificial agents acting on their behalf, needetich collectively binding decisions.
In this thesis we show that this problem of reaching colexdyi binding decisions can be
solved by “computationalizing” social choice, in partiaukthe social choice discipline of
judgment aggregation.

We consider two types of groups: consensual and hierarthite first, the agents reach a
decision collectively, while in the second there is one agiest makes a decision by consid-
ering the input from others. A consensual group is a reptatien of a distributed system
of agents that need to behave as a whole and make decisidrgotlean their actions and
behavior. A hierarchical group is a representation of amtadecision-maker that needs to
use, not only his own, but the knowledge, opinions and eiqeedf many other, possibly
distributed agents. These decisions can be used by theldgesdlf, by the agents who con-
tribute information or by a wider set of agents within theme®f one institution. For each
of these two types of groups we give an example of a group ideeisaching problem and
show how it can be solved using judgment aggregation. In bbthe examples judgment
aggregation is a consent reaching method, applicable ehen W cannot be assumed that
the agents persuade each other on a single position.

8.1 Results

8.1.1 Designing judgment aggregation rules

Judgment aggregation theory is a new discipline of socialaghin the scope of which not
enough effort has been devoted to constructing and anaglysgecific aggregation rules.
Therefore, before developing examples of how to use judgmggregation in multiagent
systems, we needed to develop judgment aggregation rutea arethod for distinguishing
among them. The results of this thesis are therefore notiartlye filed of multiagent sys-
tems but also in the field of judgment aggregation theory. tWredifferent types of groups
we consider pose two different requirements for aggregatites. Consensual groups need
rules that produce decisions, which minimize the discrepavith each individual opinion.

185
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Hierarchical groups need rules that produce decisionsctizitalize on the expertise of the
group members. We therefore constructed two classes &f nulées based on minimization
and weighted distance-based rules.

In the first class of rules we constructed ten rules that gaeeatecisions adherent to the
majority: Rysa, Rucsa Ruwa Rra Ry, Riy, Rry, Rur, Rucr andRynac. We compare
the decisions produced by one rule with the decisions prediby another, but in the same
manner we compare our rules and existing rules in judgmegreggtion. A summary of this
analysis is given in Table 2.4.

In the second class of rules we start from the distance-based presented by (Pigozzi,
2006) and generalize them to rules that handle a richertaneiof judgments, in particular
various types of weights associated with the judgments.rt&pam the sequential aggrega-
tion considered in (Li, 2021.0), no judgment aggregationsiiave been proposed for aggre-
gating ternary (or multi-valued) judgments. In (Dokow anol#inan, 201Ch; Dietrich, 2007;
Pauly and van Hees, 2006; Gardenfors, 2006) frameworks fdii-valued judgment aggre-
gation are considered, but no rules are proposed. Aggoegatiweighted judgments has not
been considered in the literature.

In belief merging weights associated with agents have dyréaen considered in (Revasz,
1995) and merging multi-valued propositions has been densd in (Konieczny and Marquis,
2002; Condotta et al., 2008; Coste-Marquis et al., 2007 ddwvelty of our rules from the
viewpoint of belief merging is in added possibility to assigeights to beliefs. Namely, the
weight of a belief depends not only on the agent that holdbdfief but also on which belief
itis.

We analyze the complexity-theoretic properties of the Wekd-distance based rules we pro-
pose. Much attention has been devoted to various compléhétyretic aspects of voting
rules, in particular to the problem of winner determinatidhe winner determination prob-
lem is the problem of determining if a given candidate is angirfor a given profile of votes
when voting ruleF is applied. In judgment aggregation the “winner” deterrtiova prob-
lem,i.e., given a judgment and a profile of judgments determine if thifgjnent is among
the selected collective judgments by judgment aggregatil@t, has only been consider in
(Endriss et al., 2010b) for two judgment aggregation rulém complexity-theoretic analysis
of the winner determination problem is used as an indicdttireocomputational efficiency of
a particular rule or aggregation operator. Certain compyjékeoretic aspects, corresponding
to the winner determination problem as definec in (Endrisd ¢20100), of belief merging
operators have been considered in (Konieczny et al., 2@4)complexity results are usable
in a belief merging context as well.

8.1.2 Selecting judgment aggregation rules

To be able to distinguish among judgment aggregation ruldgmthe same class, we need
to consider which structural and relational propertiessatisfied by these rules. Each au-
thor, or group of authors, that works in judgment aggregeti@ory has proposed their own
framework for judgment aggregation, defining propertiepudfyment aggregation rules in
it. As a consequence, we first needed to construct a genesabhrjudgment aggregation
framework common for both classes of rules and then cortdtracorresponding definitions
of judgment aggregation rules within this framework. Oriign were we able to analyze our
rules with respect to the common rule properties considiergdigment aggregation theory.
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Tables 4.14 and 4.15 summarize which of our rules satisfglwvproperty. We repeat these
tables here.

Majority Weak Strong IR-s S-i
Preservation (Unanimity  |Unanimity
Ry |V v v no no
Rwvsa |V v no v no
Rwvcsalv’ no no v no
Ruwa [V no no v no
Rra |V v v v no
ROH-MaX no no no no no
Rry |V v v no no
Runac |V’ no no no no
Property Satisfied Not satisfied
Unanimity (d,%)
(d,max
(d,Gmay)
(d, ")
Weak unanimity principle(dp,®) (di, %)
(di,max
(di,Gmax
(ch,11*)
di € {dH R dT}
Strong unanimity principlgdp, ®)
Majoritarian (d,2) (d,max)
(d,*) (d,Gmay
Majority-preserving |(dn,%) (dp,X)
(dr,%) (d,max)
(d,Gmay
(d,r*)
IR (d,0)
S-s (d, %)
(d,max
(d,Gmay)
(d,1%)

We analyzed our rules mainly for the judgment aggregatiapg@rties that already exist in
the literature. These rules have been designed while dagrfdr a minimal set of desirable

properties that characterize a judgment aggregation anld,consequently it is unsurpris-
ing that these are properties that are desirable in mosextmtWe need the properties to
distinguish among rules and to this end we need to develostaly more rule aggregator
properties. We commence this line of research in judgmegitegiation theory by defining

five new desirable properties for rule aggregators, Sedtibf.
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8.1.3 Applying judgment aggregation rules

As an example of hierarchical groups we consider a team aftadkat solves problems in
a changing environment. We use judgment aggregation tmé@xtenodel for reaching satis-
ficing decisions developed in experimental psychology. ddpent decision-maker considers
one option at the time, choosing an option if it satisfies almioation of sufficiently relevant
criteria, or cues as they are called in experimental psydyol The decision-maker aggre-
gates the opinions of other agents to determine if theseaeleriteria are satisfied, but also
if the choosing of a particular option is supported. We pg#our decision-making solution
for incident management teams, however the same approadiecapplied in various other
contexts. One example is a recommendation system that ise®htent of multiple web
pages and other sources to recommend a product or a senicsttmmers. Based on the
criteria set by the customer, the system considers the spthat give information on the
criteria, the reputation of the source and whether the soenclorses the product/service in
question.

As an example of consensual groups we consider a group ofsatiext needs to agree on
what its intentions are. We propose a judgment aggregatsadmethod for agreeing on
which group goals to pursue. Our method is intended for ggdigt engage in joint activity
when it is necessary that the group to present itself as desivigple from the point of view
of beliefs and goals. The requirement that the group prestsaif as a rational entity that
has goals justified by the beliefs it holds, and is able toseetthese goals under the light of
new information, was held by (Tuomela and Millzr, 1992) anddged in agent theory by
(Boella and van der Torre, 2007) and (Lorini and Longin, 20G8ur proposal to formalize
group intentions as the goals on which the group agrees supwand is jointly committed to
pursuing, can be applied, for example, in an open-sourdegitavhere several people have
to discuss online to agree on which is their position on issural which is their goal.

8.2 Other examples of using judgment aggregation

The thesis of (Ganesan, 2011) tests the use of judgmentgagigre for the cooperative an-
choring problem (LeBlanc and Saffiotti, 2008; Coradeschilanutf/, 2003) on NAO robots
controlled by agents written in the GOAL programing langaiddindriks, 2010).

The anchoring, or symbol grounding, problem (Harnad, 199®e problem of assigning
meaning to abstract symbols. This problem is consideredlasdy namely that “we now
understand enough to create systems in which groups of agelitorganizes a symbolic
communication system that is grounded in their interastigith the world, and these systems
may act as models to understand how humans manage to saifioegheir communication
systems.” (Steels, 2008). Combining perceptual inforomatiay be used to ground a symbol.
E.g., the symbolp denoting “there is a chair in the room”, can be grounded te tufalse
by considering vision, pattern recognition and sonar megsliLet as call symbols such ps
which can be grounded by using only percepts, a level- 0 symbmbot would also need to
ground more complex symbols, suchgagenoting “Room E112 is a meeting room”, which
would require fusing not only percepts but also level- 0 sgtab

Collective robotics is a field of research that is concernét the development and use of
robotic teams for performing various tasks. A team of robetsds to collectively ground and
share symbols. There are two basic uses for social symbohgimg: the first is to establish
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grounding that will be used by the team when performing ttasiks; the second to be used
by a robot that grounds a symbol for individual use by comsigethe groundings made by
several other robots.

The grounding of symbols higher than what we call here le¥éd-the problem of assigning
valuesto a set of logically related issues. The social gimgof such symbols is the problem
of aggregating the values assigned to the issues by diffesbats. This is a problem that can
be modeled in judgment aggregation. Ganesan (2011) usesarpke of a level- 0 symbol
that needs to be socially grounded based on a set of per@&pesmplements the premise-
based and the conclusion-based procedure as describedrimh@lser and Sager, 1993) and
identifies the premise-based procedure as better at tratkihg. She also considers the
distance-based procedure, as described in (Endriss 20410b), for the obtained profiles.
The premise-based procedure outperforms the distanestpaecedure one in the case of
level-0 symbols.

8.3 Future work

In computational contexts, as well in (human) society, ¢ree many problems that require
collectively binding decisions to be generated. Due to #mgety of contexts in which these

problems occur in society, social choice theory has beerctiveaand not yet exhausted,
research area for the last three centuries. An essentfalt@teards advancing the use of
judgment aggregation in multiagent systems is to look fopprties that more finely distin-

guish among aggregation rules than the properties thatuarently considered as desirable
in judgment aggregation theory. Furthermore we need takdar, and characterize, collec-
tive decision problems in multiagent systems and study linaiv tharacteristics reflect into

(un)desirable judgment aggregation properties.

In all the similarities between society and computatioaitexts, the requirements and con-
straints of the collective decision-making in these twoteats are different. How social
choice rules are used in society and multiagent system#eésetit: while people need to rely
on them sporadically and only when consensus fails to emartjéicial agents need to use
them for every single group decisions they need to make.

It is often insufficient to analyze the computational prajesrof existing social choice rules,
but one needs to design more. This is the first thing we obdemn starting to explore

the possible use of judgment aggregation in multiagenesyst For instance, the premise-
based and conclusion-based rules are enough of rule optiaudlegiate courts. However,

a recommendation service needs to consider a richer steuofujudgments and agendas
cannot necessarily be partitioned into premises and ceiaeis. The collection of judgment
aggregation rules that we proposed in this thesis is notuestha.

The differences between social and computational contdgtsapply a different approach
to a complexity-theoretic analysis of the aggregationguléhe problem of confirming that a
judgment or a judgment set is selected collective, by a giukerfor a given profile, is relevant
in a human society. Namely, after a consensus starts to eeggoup casts judgments and
only needs to verify that this consensus is the group dagisiith respect to the individual
judgments and the rule used. Atrtificial agents do not starbamdecision-reaching process
by an informal chatj.e., either argumentation is not combined with voting as its roftee
case in naturalistic settings. In multiagent systems ctsiieis more relevant to consider the
complexity of finding a collective judgment set rather thenfirming that a given judgment
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set is the collective one.

The rules designed and represented here are irresolutenisyrgction. Designing rules in
this manner is necessary if one wishes to avoid impossilgitid not impose domain restric-
tions. However, a group usually needs only one decisienjudgment set. Creating resolute
judgment aggregation procedures can be done by implen@mtather than by construc-
tion. How a social choice rule is implemented is an imporgmestion in formal voting
contexts (Dasgupta etal., 1979; Repullo, 1985; Maskin€iBalfrey, 2002; Serrano, 2004).
Implementation of judgment aggregation rules is an impurissue in multiagent systems
contexts. The choice of implementation unveils the amoundtraature of resources needed
for judgment aggregation, but also allows for certain bédranf the agents to be enforced or
discouraged. Answering the question of implementatiohaidlo shed light on the relations
between game theory and judgment aggregation, which asglored but bound to exist. As
mentioned, committees in society usually discuss befotiegoFor multiagent systems this
discussion segment could be modeled as an argumentatied diadog game and combined
with the aggregation rules proposed in this thesis.

We considered hierarchical groups verses consensual gréupatural option is embodied
agents verses software agents. The thesis of (Ganesar)t@8tkjudgment aggregation on a
social symbol grounding problem of a level- 0 symbol for therpise-based and conclusion-
based procedure, but the same experiment can be ran on thendemof the aggregation
rules. To obtain meaningful results one needs to considarged number of robots and a
bigger agenda. The technical challenges made it difficutixtend the experiment into so-
cial symbol grounding for symbols above level- 0. Theselehgles were introduced by the
robot-agent and robot-robot communication that needed tedhnically solved. Since these
issues are resolved, a natural continuation of this pragettt design examples and test the
performance of judgment aggregation for symbols abovd-lévén general, social robotics
is an emerging area of research in which one can expect manp gecision-reaching prob-
lems to emerge.
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