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1

Introduction

1.1 Background

Artificial intelligence is concerned with the task of enabling machines to solve complex prob-
lems by,e.g., learning, behaving intelligently, reasoning, decision-making. In the seventies
of the last century, when artificial intelligence was at its beginnings, these cognitive processes
were seen, studied and modeled separately. Later on, results in various artificial intelligence
disciplines accumulated and computer technology rapidly advanced. As a consequence, the
paradigm of theintelligent agentbecame an appealing approach to study and recreate the
human mental activities.

An agent is an autonomous entity that embodies several cognitive processes, defined as “any-
thing that can be viewed as perceiving its environment through sensors and acting upon that
environment through actuators” (Russell and Norvig, 2010,pg.34). An intelligent agent is
defined as “a computer system that is capable of independent action on behalf of its user or
owner” (Wooldridge, 2009, pg. 5). By definition an agent interacts with its environment and
other agents. The appeal of the agent paradigm lies precisely in the possible computational
power that emerges from the interaction among agents. The structures formed by intelligent
agents are calledmultiagent systems. The interest in multiagent systems particularly took off
with the advent of social software when the role of a computershifted from the computer
being a self contained machine for executing software, a “personal computer”, to being a
“net-book”, a global communication tool and an access node for disseminating information,
conducting commerce and efficient leaking of embarrassing personal information to potential
employers.

The interactions within a multiagent system include cooperation and coordination. To be
able to coordinate and cooperate, intelligent agents need to reach collective consents, namely
binding group decisions, over issues such as beliefs, actions and desires. One type of col-
lective consent isan agreement. An agreement is a mutual and enforceable understanding
among agents. The processes and mechanisms implicated in reaching agreements among
agents have recently become a subject of research and analysis from technology-oriented
perspectives (Ossowski, 2008).

The interactions among people and how they reach collectiveconsents are studied within the
scope of economic theory, by social choice theory. In economic, a decision is a choice of
option(s) from a given set of options. The set of options is also sometimes called a set of
alternatives. Social choice theory includes voting theory, preference aggregation and judg-
ment aggregation. These theories are all concerned with developing and studying methods
for making collective decisions.

1



2 Chapter 1 Introduction

Preference aggregation (Arrow et al., 2002, Part 1) studiesthe problems of forming a group
opinion for a set of options. Each agent specifies which options he most prefers, which
he prefers less and so on, building a subjective preference order over the set of options.
A preference aggregation rule fuses these subjective orders into a preference order that is
representative for the group.

Voting theory (Arrow et al., 2002, Chapter 4), (Nurmi, 2010)studies the problems of making
a group choice from a set of candidates. Each agent casts a vote for or against one, some or all
of the candidates. The structure of the vote depends on the voting context. The simplest vote
structure is the one-person-one-vote, when each agent is allowed to choose one candidate
from the candidate set. The most elaborate vote structure isa total preference order, as in
preference aggregation. Voting occurs in many formal contexts such as: political elections,
electing best entries in contests and determining the winners in sport competitions like figure
skating. Voting also occurs in informal contexts, such as groups of people deciding where to
go for dinner, how to name their robots,etc. A voting rule selects a winner from the set of
candidates based on the individual votes.

Judgment aggregation (List and Puppe, 2009) studies the problems of making group deci-
sions regarding the truth-value of several issues considered concurrently. For one set of is-
sues, all combinations of truth-value assignments are not allowed. Judgment aggregation
problems occur in committee and jury decision-making contexts. As in voting theory, the
contexts of judgment aggregation problems range from entirely formal to entirely informal.
An example of a formal context is a collegiate court which is deciding whether a given case is
within the jurisdiction of a given court, whether the presented evidence for the case are suffi-
cient for a trial, and whether a trial should be scheduled. A trial can be scheduled if and only
if the evidence is sufficient and a court has jurisdiction. Anexample of an informal judgment
aggregation context is a group of friends deciding on whether to go to a certain restaurant,
whether the restaurant in question has vegetarian dishes onthe menu and whether the prices
are affordable. The group can only go to the restaurant if it is the group’s opinion that there
are vegetarian dishes and that the prices are affordable.

Each agent forms a judgment regarding the truth state of eachissue. Usually a judgment is
a binary value denoting whether an issue is true or false, accepted or rejected. A judgment
aggregation rule aggregates these truth-value assignments into an allowed combination of
truth-value assignments, one for each considered issue.

The Figure 1.1 is an abstract simplified illustration of preference aggregation (left hand-side
funnel), voting (center funnel) and judgment aggregation (right hand-side funnel), and allows
us to make a comparison between the three. In each of the social choice problems presented
on Figure 1.1, there are three agents: Top, Middle and Bottom. Their individual preferences,
votes and judgments are represented in the corresponding order. The group decisions are
represented in the exit of the funnel. In the case of preference aggregation the set of options
are a star, a circle and a square. In voting, the star, the circle and the square are candidates.
In this picture we give the most complicated vote construct,the full preference order. In
the case of judgment aggregation, the star, the square and the circle are the issues on which
judgments are cast. Each agent assigns a value true (yes) or false (no) to each issue. The
relations between the star, the circle and he square are suchthat if an agent accept either the
star or the circle, then he has to accept the square as well.

Preference aggregation, voting and judgment aggregation all appear to be simple. However,
these procedures, and related theories, are for many reasons, far from simple. The variety of
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Figure 1.1: Different social choice problems: preference aggregation (left), voting (middle)
and judgment aggregation (right).

contexts in which these social choice rules are used is extremely large and so is the variety of
requirements that the group decision should satisfy with respect to the individual opinions,
votes or judgments correspondingly. There are many different procedures that can be used
for the same problem each leading to a different group decision. There also are many combi-
nations of requirements that no procedure can satisfy simultaneously. There are problems for
which some procedures can be applied more efficiently than others.

Economic theory is no stranger to computer science when it comes to applying methodology
from one to the other. While social choice rules generate collectively binding group decisions,
another discipline in economy, decision-making, considers the problem of making individual
decisions. Chapters 16 and 17 in (Russell and Norvig, 2010) illustrate that decision theory
is a staple methodology used in artificial intelligence. In the last five years, the exchange of
ideas and methodologies between economics and computer science is flowing both ways, as
witnessed by the very fruitful field ofalgorithmic game theory(Roughgarden, 2010).

Importing concepts from social choice theory into computing and applying computational
analysis in social choice is studied bycomputational social choice(Chevaleyre et al., 2007).
The first direction of using methods from computing to study problems in social choice
theory is well explored. The most typical problem studied incomputational social choice
is the complexity-theoretic analysis of voting protocols,such as (Bartholdi et al.,
1989; Hemaspaandra et al., 1997; Conitzer and Sandholm, 2002b,a; Walsh, 2008). Other typ-
ical problems include allocation of resources (Maudet, 2010, Chapter 3), (Chevaleyre et al.,
2005); formal specification and verification of social procedures using mathematical logic,
such as (Bouveret and Lang, 2005), (Maudet, 2010, Chapter 2); compact representation of
elicited input using logic, such as (Bienvenu et al., 2010) and the computer aided search for
properties of social choice rules, such as (Tang and Lin, 2009).

The second direction of importing concepts from social choice to computer science is also
outlined as a core consideration of computational social choice. This direction is consider-
ably less explored. One would expect that some of the first models for obtaining collective
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consents in multiagent systems would be inspired by, or imported from, social choice theory.
This is not what happens.

Why is there a gap where there should be work that explores theuse of social choice for col-
lective reasoning problems in multiagent systems? Are there no multiagent systems problems
that can benefit from social choice methods? We give a few examples to illustrate that this is
not the case.

Argumentation based negotiation methods (Beer et al., 1999) are seen as essential in enabling
agents to reach agreements that respect the constraints imposed by norms and organizations
(Ossowski, 2008). However negotiation is insufficient to cover all collective reasoning prob-
lems. The most notable difference between negotiation and aggregation is in the number
of information exchanges between the agents before group consent is obtained. Negotiation
procedures presume a potentially unspecified number of exchanges. Aggregation requires
that the agents submit their preferences, choices or judgments; correspondingly, only once to
an agent or service which aggregates them.

There are contexts in which the agents cannot or will not commit to numerous exchanges
of opinions. Agent teams that operate in uncertain environments, such as robots conducting
rescue missions, cannot afford the time to negotiate about what to do since their options
can change while they are still negotiating on which option to choose. A hierarchical group
is a group in which there is one agent who responsible for making group decisions. This
agent often needs to consider the opinions of other group members to reach that decision.
In hierarchical groups, aggregation is sometimes a better approach than negotiation since the
agents that do not make the decision can be unwilling to participate in negotiation.

A special case of a hierarchical group is an agent that needs to acquire information about the
environment, by considering the opinions on other agents. Consider a robot that does not
have a microphone. It needs to determine whether an alarm is on in a building and whether
the alarm being on implies the need to vacate the premises. Different other robots may report
different information on these two counts, or even have different opinions on whether the
building has to be vacated. Our robot can aggregate the received information to determine
what to do and what to believe.

The improvement of information and communication technological systems (ICT systems)
depends on the evaluation of the users. The users provide feedback that is used to modify
certain system’s features, such as for example resilience and dependability. The feedback of
the user can be different regarding the same feature. The software engineers need to analyze
the user data and determine which features to modify and in which direction to modify them.
The user feedback is a valuable commodity. A lot of effort hasbeen spent on the technical
support of eliciting opinions,i.e., voting. Technical means are used to resolve issues such
as guarantee of privacy, eliminating possibilities for coercion and security. However, once
the information is obtained, engineers cannot expect that the users will negotiate it among
each other and agree on which features they like to see improved. The users together with
the producers form a hierarchical group. It is difficult to derive a collective consent from
a multiple feedback without a formal and automatized method. Such methods are needed
even when a standardized input on a set of qualifiers is used toelicit the information because
certain features depend on others.

Prediction markets, also known as “event futures” and “information markets” are markets in
which agents trade contracts with payoff that depend on unknown future events. The goal
of designing prediction markets is to make accurate forecasts. This is done by aligning the
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experts’ incentives with the elicitation of information and by aggregating their opinions. The
agents that make predictions are myopic, have fixed beliefs about the value of a contract, and
are risk neutral. They have a fixed, finite budget and participate exactly once, by acting in the
market and then exiting, see for instance (Othman and Sandholm, 2010). When his prediction
is confirmed, an agent is rewarded with increased weight on his prediction, and punished with
reduced weight when his predictions are wrong. At each step the forecast of the agents on a
set of market prices needs to be aggregated. This process is sequential and tied to real world
events. The agents are presumed to be selfish, so negotiationis not an option.

In negotiation, the produced consent depends not only on theinformation the individual
agents have but also on the negotiation skill of particular agents. When the group is het-
erogeneous, the input from “weaker” agents will be marginalized. Consensus groups are
groups in which there is no one agent responsible for making the decision. An example of a
decision-making in a consensual group is the establishing of group mental attitudes, such as
beliefs and intentions. In multiagent systems, it is usually taken that a group has an attitude if
every member of the group individually has the same attitude, but his is not the only way to
model collective attitudes (Dunin-Keplicz and Verbrugge,2010, Chapter 3). How collective
attitudes are formed is studied in social epistemology. Social epistemology offers an alter-
native definition of collective attitudes: a group has an attitude if the group members agree
to have that attitude, see for instance (Gilbert, 2009). This is called thenon-summative ap-
proachto collective attitudes and it is more flexible in allowing groups to act together, as they
do not need to be equally minded to have joint attitudes.

The aim of this thesis is to explore the possibilities of using social choice procedures as
method for reaching collectively binding decisions in multiagent systems.

1.2 Research Question

The research question pursued in this thesis is the following:

How can judgment aggregation operators be designed and selected for use in
multi-agent systems?

The social choice rule used to combine individual opinions,votes or judgments correspond-
ingly, can be seen as a type of a norm. The social choice rule isestablished before the
opinions, judgments or votes, are elicited. This is necessary, since one can design a rule that
produces a desired outcome from an individual input. For instance, in presidential elections,
a parliament or other authority before the elections sets the rule according to which the presi-
dent is elected. A rule is chosen to best serve the purposes ofthe context in which it is applied.
This is why the challenge in using social choice to obtain group consents automatically is in
the selection of adequate rules for multiagent contexts.

We enumerated three social choice disciplines developing and studying methods for generat-
ing collectively binding decisions: voting, preference aggregation and judgment aggregation.
Why focus on judgment aggregation? Voting and preference aggregation are very similar,
they both aggregate agents’ preferences over a set of options. Voting rules produce an option
that is the most preferred,i.e., a winner or alternatively a set of winners, while preference
aggregation rules produce a collective preference order over the set of options. The problem
of aggregating judgments only started attracting considerable attention in the last ten years,
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Figure 1.2: Bringing social choice theory with multi-agentsystems closer.

since (List and Pettit, 2002; List and Puppe, 2004) showed that judgment aggregation is gen-
eral in the sense that it subsumes voting theory and preference aggregation (List and Polak,
2010). The novelty and the generality of judgment aggregation is the reason we have chosen
it among the aggregation theories of social choice.

The thesis research question is tackled by considering three sub-problems:

1. Designing judgment aggregation rules.

2. Classifying judgment aggregation rules by properties they satisfy.

3. Pairing aggregation contexts with adequate rules.

Figure 1.2 illustrates symbolically the roles that these sub-problems have in answering the
research question. We design operators for aggregating judgments and we use them in group
decision problems that occur in multiagent systems. The properties of the operators and the
properties of the group decision problems are used to pair one with the other.

Voting has been formally studied since the seminal works of Borda and Condorcet in the
eighteenth century. Judgment aggregation is resent when compared to voting. The problem
of aggregating judgments was observed by (Kornhauser and Sager, 1986), but it has its pre-
cursors in the works of (Gilbaud, 1966; Wilson, 1975) and (Rubinstein and Fishburn, 1986),
see (List and Polak, 2010) for a detailed historical overview and comparison. The interest
in voting theory is caused by the need to conduct democratic elections. Therefore, it was of
interest to develop dozens of specific voting rules over the years. The interest in judgment
aggregation was sparked when it was shown that it applies to problems that are different than
the ones studied in voting theory. The majority of the work injudgment aggregation is de-
voted to studying impossibility results in the style of the work in preference aggregation by
Arrow, see (Arrow, 1963) and (List and Puppe, 2009). A small number of specific rules for
aggregating judgments have been proposed, however the development of specific aggregation
rules is still widely unexplored.

It is different whether a social choice method, for instancevoting, is applied in a democratic
election or for the purpose of reaching automated consent. The difference is in the frequency
of the process and the impact it has on the agents that use the consent produced by it. The
voting in elections occurs infrequently, but the impact of the results is enduring. In general,
people only vote for issues that are critical. In computational and multiagent contexts the
situation is reversed. The need for consent is frequent, butthe impact of the consent is low.
If a group observes it is doing something wrong, it can re-vote. Eliciting information from an
artificial agent is much more feasible than organizing national elections. This is why desirable
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properties for rules used in human social choice contexts are not necessarily desirable for the
rules used in multiagent systems. For instance, the incentive of an agent to manipulate the
aggregation process to obtain a desirable outcome is a big issue in elections. However, when
the impact of the consent is low, then it can be expected that the incentives to manipulate
are also low. There are many properties of rules studied in voting theory that ensure that
the consent is desirable with respect to the individual input. Some of these properties are
also desirable for judgment aggregation rules and need to bedefined in terms of judgment
aggregation rules. This is the core of the second sub-problem.

To recommend a judgment aggregation rule for a multiagent systems problem one needs to
pair the properties of the rule with the characteristics of the problem. There are many contexts
that can be specified. One general approach is to look into thetype of group that needs to use
the decision-making procedure. In the broadest sense of whodoes the collectively binding
decisions apply to, we can distinguish between two types of groups: a hierarchical group and
a consensual group. In hierarchical groups there is one agent that is responsible for making
the decision for the group by considering the opinions of thegroup members. In consensual
groups, no one responsible agent exists. The group decisionemerges or is proposed by any of
the agents. In the case of hierarchical groups, the decisioncan apply only to the agent who is
responsible to make it, only to the agents who contribute theopinions, or to all agents within
some institution. In consensual groups, all the decision makers are the decision “targets”. We
consider consent reaching contexts in hierarchical and consensual groups and we give one
example of group decision-making procedures based on judgment aggregation for each of
these contexts.

Within the scope of this theses, we consider only the case when the agents involved do not
behave strategically, in both the hierarchical and consensual context. Therefore here we do
not define nor study vulnerability to manipulation of the introduced rules or consent reaching
models. Both the examples we give involve groups that cooperate in pursuing a group goal.
This implies that the groups, in addition to reaching collectively binding decisions, also need
to form joint plans and to communicate with each other. We do not consider specifics of
planning and inter-agent communication. We assume that these activities are possible and
do not hamper the judgment aggregation based consent reaching procedures we propose. We
also do not consider group learning, although we acknowledge its relevance, particularly in-
group adaptation, which we do consider. In the context of hierarchical groups, the agents
are bound to acknowledge, conform and act according to the group decisions by the context
in which the decision is made. For instance, all members of aninstitution are bound by the
decisions of the president of the institution. In the context of consensual groups, the fact that
the group decision is binding needs to be additionally expressed. This is the reason why we
also design and study group commitment strategies in our example.

Let us elaborate each of the sub-problems, and how go about solving them, in more detail.

1.2.1 Designing judgment aggregation rules

In this section we consider the problem of designing judgment aggregation rules. A judgment
aggregation problem is specified by anagendaand a set of agents. An agenda is a set of
logically related issues, usually referred to aspropositions. It is common to represent the
agenda issues and the relations that hold between them in propositional logic. Each agent
expresses an acceptance or rejection regarding individualpropositions in the agenda. The
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expressed acceptance or rejection of an issue is calleda judgment.

An intuitive approach to aggregating the judgments is to consider how many agents support
each truth-value for each of the issues and adhere to the willof the majority. We consider the
concept of majority and the different ways it can be used to construct judgment aggregation
rules.

The concept of majority in judgment aggregation

Example 1.2.1.Consider four agentstRed,Blue,Green,Orangeu and an agenda of four is-
sues: a, b, c and d. The relations are such that d can be accepted if and only if a and either
b or c are accepted, namelypa^pb_cqqØ d. Table 1.1 represents a possible judgment ag-
gregation problem. Thè entry denotes an accepted proposition and the´ entry, a rejected
one. The collection of all judgments received from the agents is calleda profile, which is the
white panel in Table 1.1.

AgentsAgenda

a b c d

Red - + + -
Blue + - - -
Green + + - +
Orange + - - -

Table 1.1: An example of a judgment aggregation problem.

It is common to require completeness, namely that each agenteither expresses an acceptance
or rejection for each issue. Each agent is constrained by thelogical relations, in the sense
that the combination of issues he accepts or rejects must satisfy these constraints.

Each of the judgment sets of the agents in Table 1.1 conforms to the logic relations between
the issues. For instance, Red rejects a and also rejects d, while accepting both b and c. If Red
were to accept d in addition to accepting b and c, while rejecting a, his judgment set would
have been inconsistent.

The first problem is to determine how to define majority in judgment aggregation. Sets of
judgments are particular types of information. On one hand aset is a unit of information
since it represents the opinions of one agent on one agenda. On the other hand, the set
contains judgments that can be considered to be units of information.

Let us consider the judgment set as an atomic information unit. In this case, if there is a
judgment set that is supported by more agents than any other judgment set, then this is a
majoritarian judgment set. Let us callset-majoritarianthe set of judgment that is selected, as
a whole set, by the largest number of agents, with respect to the profile. Consider Table 1.1
as an example. Blue and Orange both accept the same set, whilethe sets of Red and Green
are different from the Blue-Orange one and from each other. Consequently the Blue-Orange
set is the set-majoritarian set. The set-majoritarian judgment set does not always exist.

Let us consider the judgments to be an atomic unit of information. In this case, if there is
a judgment set in which each judgment is supported by a strictmajority of agents, then this
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set can be considered a majoritarian judgment set. Let us call issue-majoritarianthe set of
judgments that is determined by counting the majority judgments on each issue. In which
order should this issue-by-issue aggregation be done? Consider Table 1.1 as an example. If
applied to all issues at once the result of this exercise is anacceptance ofa, a rejection ofc
andd and no decision onb. If b is accepted then the collective set violates the constrains, and
a majority does not exist. Ifb is rejected then the set is consistent with the issue relations,
but there is no reason forb to be rejected? The problem is more general: due to the logic
relations among the issues, for every rule that aggregates the judgments issue-by-issue can
produce, there exists some profile for which the rule produces a judgment set that violates the
constraints.

Some agendas can be conceptually partitioned to a set of premises and a set of conclusions.
A conclusion is typically an issue whose acceptance can be deduced from the acceptances
and rejections of the premises. For example, let us interpret the agenda issues as follows:

a a victim is trapped in a location that is difficult to access

b the victim is conscious

c the victim is in a face-up position

d save the victim using a rescue harness

The issuesa, b andcare premises. In this case they are the necessary and sufficient conditions
under which certain actiond will be taken. Apremise-based procedureis the aggregation rule
that calculates the majority for each premise and deduces whether the conclusion is accepted
or rejected based on the issue relations.

The premise-based procedure is an appealing alternative tothe issue-by-issue aggregation,
however there are some problems with using it. The problem with the premise-based proce-
dure is that:
a) not every agenda can be conceptually partitioned intro premises and conclusions, and
b) even if the partitioning is possible, the conclusion is not deducible from the premises in
every set of judgment sets.

Consider the profile in Table 1.1. Using the premise-based aggregation rule we obtain thata
is accepted andc rejected. We get no decision forb and cannot deduce the decision for the
conclusiond.

Using majority and minimization to design rules

When a consensual group needs to reach decisions, these decisions should reflect the “will
of the majority” for them to be acceptable to the group. Therefore, one would like to have
rules that select the issue-majoritarian or the set-majoritarian judgment. The problem is that
neither the set-majoritarian nor the issue-majoritarian sets exist for every profile, but every
set-majoritarian judgment set is an issue-majoritarian judgment set and the reverse does not
hold. We can have the second-best thing: a rule that selects the issue-majoritarian judgment
set whenever such a set is consistent with the constraints.

The appeal of the majoritarian sets is that, when selected ascollective consent, theyminimize
the discrepancy between the collective consent and the elicited information. It is this minimal
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discrepancy that is desirable for consensual groups and we use it to design judgment aggrega-
tion rules. We callmajority-consistentany profile for which an issue-majoritarian judgment
set exists. What if we change the profile in some minimal way sothat it becomes majority-
consistent and then select its issue-majoritarian judgment set as the collective judgment set
for the original profile? There are many ways to minimally alter a profile. For example,
this can be done by removing judgments on an issue, individual judgments, judgments that
belonging to some agent(s), by repeating judgments etc. There can be, as many rules as
there are minimal alterations to a profile that can be defined,but each of these rules will by
construction always select the issue-majoritarian set when such a set exists for the starting,
unaltered, profile.

There is a third way to use majority, we can treat the judgmentsets as units that are qualified
by the individual judgments they consist of. This allows us to define a measure of similarity,
or distance, between two judgment sets that is finer grained than [equal,different]. The
majority concept here corresponds to most similar. What does it mean that a judgment is
most similar to a profile of judgments?

The similarity between sets can be quantified based on the number and the type of judgments
on which the two sets differ. For instance, the sets of Red andBlue differ on three judg-
ments, and so do the sets of Red and Green. However Red and Green differ on different
three judgments. Red and Blue give the same judgment for whatis the conclusion under the
interpretation we gave. Hence, the set of Red can be considered more similar to the set of
Blue than to the set of Green. Given the context of the aggregation problem many similarity
measures can be specified.

Numeric distances can be aggregated by using an arithmetic aggregation function. The col-
lective consent is the set that is closest to all the individual judgment sets. The interpretation
of how close is a judgment set to a profile of judgments is set bythe arithmetic aggregation
function. Table 1.2 illustrates an aggregation of distances using the sum as an arithmetic
aggregator and the number of different judgments as a similarity measure between two judg-
ment sets.

a b c d Red Blue Green Orange
ř

- - - - 2 1 3 1 7
- - + - 1 2 4 2 9
- + - - 1 2 2 2 7
- + + - 0 3 3 3 9
+ - - - 3 0 2 0 5
+ - + + 3 2 2 2 9
+ + - + 3 2 0 2 7
+ + + + 2 3 1 3 9

Table 1.2: Quantifying the similarities between judgment sets and aggregating them using
the arithmetic aggregator sum.

We consider not only the distance from each of the contributed sets to the profile, but also the
distances from any judgment set that satisfies the issue relations to the profile. In the left hand-
side of Table 1.2, all the acceptable judgment sets, for the agenda and constraints in Example
1.2.1, are enlisted. The numbers under each agent’s name, the number indicates on how many
judgments that agent’s judgment set differs from the judgment set in the corresponding row.
It can be observed from the calculations in the figure, in the furtherst right hand-side column,
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the set that is closest to all the agents sets is the one contributed by Blue and Orange.

This approach of aggregating the distances between judgment sets, and selecting the set that
is at a minimal aggregated distance from the profile, has already been used to design judgment
aggregation rules by (Pigozzi, 2006). Distance-based judgment aggregation rules, unlike the
rules based on minimization, do not always select the issue-majoritarian judgment set when
such exists. However, they are interesting rules to consider for hierarchical groups.

In consensual groups it makes sense to consider that all agents’ judgments are of equal weight
and importance. If Red, Blue, Green and Orange are members ofa consensual group then
we need to aggregate their judgments in such a way that each ofthem has equal bearing
on the produced consent. In hierarchical groups, the agent that aggregates the judgments is
interested in using the best judgments. What does “best judgments” means? If the agents in
the group have different areas and levels of expertise, thenit is of advantage to the group to
aggregate by considering adequate different weights for different judgments. Lets interpret
the agenda issues as follows:

a software upgrades are affordable

b software does not perform according to expectations

c user satisfaction is low

d recommend modification of the software

If agent Red is an expert in finance, then it is better for the group to capitalize on his expertise
and assign a high weight for his judgment ona. In the presence of weights, the aggregation
rule should prioritize higher weights on a judgment and not the number of agents that support
it. Furthermore, in the presence of experts, the requirement that all agents express either
acceptance or rejection for each agenda issue is rendered meaningless. If an agent is not an
expert regarding a particular issue, it is unfeasible to expect and potentially undesirable to
request his judgment on this issue. Hence, the agent that aggregates the judgments needs to
consider judgment weights, but also rules that can handle incomplete individual judgment
sets.

Weighted rules that aggregate incomplete judgment sets have not been proposed in judg-
ment aggregation theory. However, we can extend the distance-based judgment aggregation
rules to obtain such rules. Distance-based aggregation rules originate from the theory of be-
lief merging; see for instance the works of (Revesz, 1995; Konieczny and Pino-Pérez, 1999;
Konieczny et al., 2004; Condotta et al., 2008). Within belief merging, belief bases are ag-
gregated. In this area of research weights associated with agents are considered, as well as
multiple values for the truth-value of the beliefs. We buildfurther on this work in belief
merging to construct weighted distance-based rules.

1.2.2 Pairing aggregation contexts with adequate rules

Outside of the domain of law, see (Nash, 2003)1, very little is known about contexts in which
judgment aggregation is, or can be, applied. The contexts ofconsensual and hierarchical

1Different Nash from the game theory one!
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Figure 1.3: Comparing the structure of the rules consideredin the literature and those we
propose in the thesis.

groups are very large and can be further categorized. Each sub-context produces its own
desirable properties that a judgment rule applied in it should satisfy.

Within voting contexts, a voting rule is selected based on the properties it satisfies. For
instance, the plurality rule, in which each agent chooses one candidate and the candidate with
the most votes wins, is used when the number of agents is much larger then the number of
candidates and when the agents cannot be expected to spend a lot of time constructing a more
complex vote such a total preference order.

Many properties have been proposed for voting rules. These properties are both of structural
and relational nature. Structural properties describe theadequate rule based on the structure
of the votes, or the desired structure of the winner. Questions considered are such as, do we
need strictly one winner or is it acceptable that more than one candidate is selected as winner.
The relational properties describe the desirable relations between the profile of individual
votes and the winner. For instance, selecting as winner the candidate that is preferred by a
majority of agents when compared with any other candidate isa relational property called the
Condorcet winner property.

In judgment aggregation theory some structural and relational properties are proposed and
studied, but not nearly as many as in voting theory. In order to be able to pair aggregation
contexts with aggregation rules we need to study the rules wedesign from the aspect of these
properties. We also need to enlarge the set of judgment aggregation rule properties.

The rules we propose are of different structure than the onesconsidered in the judgment
aggregation literature when defining relational and structural properties. Exceptions are the
distance-based rules of (Pigozzi, 2006), for which properties have not been extensively stud-
ied. Figure 1.3 illustrates the difference between the structures of our rules and those in the
literature. The rules for which the properties are defined are partial functions that associate
to each profile, of complete judgment sets, one complete judgment set. The rules we define
are functions that associate to each profile, a selection of possibly incomplete judgment sets.

Since the output from the judgment aggregation rule is not necessarily a unique judgment set,
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the relational rules, in general, cannot be directly applied to our rules. Therefore we need to
construct new corresponding definitions of these properties.

To enlarge the set of interesting judgment aggregation ruleproperties, primarily of the rela-
tional kind, we consider known properties in voting theory for inspiration. We also define
properties only of interest in judgment aggregation, relational properties that consider the
relations between the agenda issues, the profile and the selected collective judgment set(s).

1.2.3 Applying judgment aggregation rules in MAS

We consider the two general categories of aggregation contexts based on the types of groups
that need to make collectively binding decisions. For each of these groups we give an example
in which judgment aggregation can be used.

A hierarchical group example

For the example of a hierarchical group consent reaching problem we look for problems
in which negotiation cannot be used. We consider a hierarchical team that needs to solve
problems in a changing environment.

A decision theoretic approach requires that the group listsall possible options, calculates
the expected utilities for each and chooses the option that has the maximal expected utility.
When agents are under severe resource restrictions they need to rely on some “approximate”
method to make group decisions. However, just as agents do not have the time to negotiate
on what the state of the world is, they also do not have the timeto enlist and consider all the
possible options.

Groups of people, such as teams of firefighters or soldiers on battlefields, do manage to reach
consents in uncertain environments despite the resource constraints. We begin by asking
if these human decision-making methods can be extended to hierarchical teams of artificial
agents. We studied how human teams make decisions, with the purpose of finding a simple
model that can be used as a base. Our search yielded therecognition-primed decision(RPD)
model (Klein et al., 2010).

The RPD model describes how a commander of a firefighting team decides what to do when
faced with a familiar problem. This commander does not consider the opinions of the rest
of the firefighters when making decisions. According to the RPD model, the commander
matches the problem with a typical solution and verifies if the solution is applicable by con-
sidering if a particular set of cues are present and/or satisfied. For instance, when faced with
a burning house a commander first considers the option of having his team extinguish the fire.
This option is adequate if the building is empty of people (first cue) and there are surrounding
buildings that are in danger of catching fire themselves (second cue). Since the commander
is on site of the burning building he can decide for himself ifthe cues are present or not. The
commander considers the typical solutions one by one until he finds an adequate solution.

We consider a team in which the commander is not on the site where the problem is; there are
artificial agents there. For such a team we lift the RPD model to a recognition-primed group
decision model (RPgD). The commander determines which is the typical solution and which
combination of cues verify its adequacy, but it is the artificial agents that judge if the cues are
present or not. The commander uses judgment aggregation to make a final decision whether
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the solution is adequate and for which reasons, or cues is this decision taken. For the RPgD
model we also consider how the group consents on the cues can be used to reconsider group
decisions in light of new information.

A consensual group example

As an example of using judgment aggregation for reaching consent in a consensual group, we
consider the problem of group intentions. A commonly accepted paradigm is that an agent
intends to do something if he chooses it as his goal and is committed to bringing it about
(Cohen and Levesque, 1990). But what does it mean for a group to intend something?

Although the problem of what group intentions are, and how they can be represented and
generated, has been studied since the nineties. However, the proposed solutions are all based
on the same underlying social epistemic theory, that a groupintends to do something if and
only if all the agents in the group intend individually to thesame thing and are committed to
doing it. This is the so calledsummative viewon what a group attitude is.

The summative group intentions are easy to establish. However, allowing a group to act only
when all the agents in the group are of the same mind state poses a limitation on the group’s
construction and its scope of abilities. It is unfeasible that a group with a lot of members that
are heterogeneous, for instance some being robots and others software agents, would be able
to align its intentions.

An alternative to the summative view is the so callednon-summative viewof group attitudes.
According to this view, a group intends to do something if andonly if the members of the
groupagreeto do that thing and are jointly committed to doing it. We construct a model
of group intentions based on the non-summative view. We propose a procedure for reaching
group intentions that relies on a judgment aggregation rulefor reaching agreements. The
group agrees on what goals to pursue, but also on the reasons for which to pursue that goal.
We use these reasons to construct strategies for joint commitment, but also strategies for
revising the intentions of the group.

1.3 Interdisciplinarity and methodology

Answering the research question of the thesis calls for an interdisciplinary study among com-
putational social choice, judgment aggregation and multiagent systems. Both computational
social choice and judgment aggregation are new disciplinesand no textbook or established
approach of study exists for either. They, and the field of multiagent systems, are interdis-
ciplinary areas of research in their own right. As a result, the area of study conducted for
this thesis spans over social choice theory, social epistemology, experimental psychology and
decision making theory in addition to the computer science areas of agent cooperation, agent
reasoning, agent modeling and complexity theory.

The sub-problems of designing rules, studying their properties and using them in multiagent
systems problems, were not answered sequentially, but rather in parallel, starting with the
search for problems of reaching collectively binding decisions in multiagent systems.

Our method for tackling the problem of applying judgment aggregation was to search for
both consensual and hierarchical group contexts in which judgment aggregation is a better
approach than negotiation.
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Negotiation as an agreement reaching technology is difficult to apply in contexts where the
agent environment is changing and where the agents are heavily constrained with respect
to the time they have to reach consents. Such contexts are usually modeled using a Partially
Observable Markov Decision Process (POMDP) (Monahan, 1982). However modeling group
decision-making as a POMDP often cannot be solved efficiently. Decision-making is the
process of choosing one option from a set of possible options. A rational agent chooses the
option that maximizes his expected utility. Simon (1956) prescribed that a resource bound
rational agent should not do decision-making at all, since listing the alternative options and
calculating the expected utilities is costly. Instead, an agent shouldsatisfice, namely he should
choose the first option he finds that satisfies a list of sufficient criteria. Satisficing is an
appealing approach for groups of agents, however Simon proposed a concept applied to a
single agent and not a model for a group.

Human teams of agents such as firefighters, army personal and various emergency rescue
teams face uncertain environments and time-constrained decisions. These are also groups in
which each agent can be expected to be more reliable on some issues than on others. For
instance, a firefighter inside a burning house may be able to observe better if there are victims
that need to be rescued than a firefighter that is outside the house. In these teams there is a
hierarchical chain of command. The methodology we adopt is to look for decision-making
models, constructed by means of experimental psychology, that describe the reasoning of
firefighters and various other emergency rescue teams. The cognitive models should be ap-
plicable, or modifiable for application to artificial agents.

Judgment aggregation is an adequate method for consensual groups, when they need to reach
consents on several, logically related, issues concurrently. An example of a set of related
issues is the one consisting of an agent’s intention and his beliefs that support and justify his
intention. According to (Cohen and Levesque, 1990), an agent’s intention is the goal he had
chosen to pursue and is committed to pursuing. An agent’s choice of a goal is constrained by
his beliefs and knowledge of the world. Groups also need to determine their intentions based
on what they as a group hold to be true about the world. Beliefs, goals and intentions are
calledmental attitudes.

How collective attitudes are formed and modeled is studied by social epistemology (Goldman,
1987). The above approach to determining the attitudes of a group is often referred to assum-
mative(Meijers, 2002). An alternative is modeling the collectiveattitudes such as intentions
in thenon-summativesense (Gilbert, 2009). According to this approach, a group has a partic-
ular intention if the agentsagreethat this is what their intention is. List (2005) proposes that
judgment aggregation is used as a formal approach to thinking about institutions in social
epistemology. Our methodology is to propose a non-summative model based on judgment
aggregation that generates collective intentions from relevant individual beliefs and goals.

We need to develop two categories of rules, one for consensual and one for hierarchical
groups. As we observed in the examples of the previous section, adherence to majority, and
in general all group decisions that minimize the discrepancy with the individual opinions,
are the desirable properties for consensual groups. In voting theory many rules have been
proposed based on the concept of minimization: Kemeny, Dodgson, ranked pairs, etc., see
(Brams and Fishburn., 2004) for an overview. We also use minimization to develop judgment
aggregation rules that are majority adherent.

In hierarchical groups, one agent that aggregates the inputfrom the rest of the group members
makes the group decision. This agent does not need to be concerned with having the group
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decision adherent to the majority. Instead he needs to use the various strengths and compe-
tences of the group members, by considering some individualjudgments as very relevant and
others possibly as useless. The rules suitable for a hierarchical group need to be more general
then those for the consensual groups, in the sense that theserules should aggregate the indi-
vidual judgments by considering weights assigned to the judgments. This category of rules
is aimed for the context of uncertain environments. Therefore, in addition to the structural
and relational properties, we also need to analyze the complexity-theoretic properties of these
rules.

1.4 What is new and what is old

There exists no unique, standard framework of judgment aggregation. In general, one can
distinguish between the logic-based frameworks that were introduced by (List and Pettit,
2002) and generalized by (Dietrich, 2007), and abstract or algebraic frameworks introduced
by (Wilson, 1975) and extended by (Rubinstein and Fishburn,1986). Given a logic-based
framework, one can construct a corresponding abstract framework. However, for one abstract
framework, there are many logic-based frameworks that can be constructed (List and Polak,
2010).

The main differences among frameworks are based on how the agenda issues, the relations
among them and the judgments are defined. Some authors, such as (Pauly and van Hees,
2006; Dietrich, 2007; Dietrich and List, 2007b; Dietrich and Mongin, 2010; Endriss et al.,
2010a), define the agenda issues as not necessarily atomic formulas of some logic, with the
relations among the agenda issues incorporated in the issues themselves. An example of such
agenda, using propositional logic and the atomstp,q, ru is tp, pÑ q, r Ñ pu. Other authors,
such as (Pigozzi, 2006; Miller, 2008), restrict themselvesto atomic agendas and additionally
specify a set of constraints that capture the logic relations among the issues. An example
of such an agenda is the “doctrinal paradox” originating from (Kornhauser and Sager, 1993;
Chapman, 1998). An instance of the “doctrinal paradox” is anagenda: there was a contract
(p), assuming there was a contract there is a breach of contract(q), and the defendant is liable
for a breach of contract (r). The constraint ispp^qqØ q.

Authors like (Dietrich, 2007; Dietrich and Mongin, 2010; Endriss et al., 2010a) require that
the agenda is closed under negation, namely that ifϕ is an issue in the agenda, then so is
 ϕ . These frameworks define a judgment to be a non-empty subset of the tϕ , ϕu set. Au-
thors such as (Pauly and van Hees, 2006; Pigozzi, 2006; Miller and Osherson, 2009) define a
judgment to be a truth valuation of an agenda element. Pauly and van Hees (2006) consider
multi-valued truth assignments while (Pigozzi, 2006; Miller and Osherson, 2009) consider
strictly binary values. Frameworks exist that impose further constraints on the agenda set,
such as for instance that it is closed under deduction. Therepossibly are contexts in which
one framework version is better than another, but these havenot been studied or specified in
the literature.

We define a general framework for judgment aggregation in which the agenda can contain
non-atomic issues, but also additional constrains over theissues can be specified. In this
framework, for binary and three-valued judgments, we can express the judgment sets in a
dual fashion: as sets of propositions and as sequences of truth-values. We use the logic-based
framework of (Dietrich and List, 2007b; Dietrich and Mongin, 2010; Endriss et al., 2010a)
for defining the rules based on minimization, but for the rules aimed for hierarchical groups
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we need the general framework.

The few judgment aggregation rules have been proposed in theliterature, most of which were
not compared among each other. Comparing two-judgment aggregation rules means deter-
mining the relation between the judgments sets produced by each rule. Depending on the
structural properties of the collective judgment sets produced, we can define different rela-
tions between rules. By comparing rules we primarily are interested in establishing whether
two given rules select the same collective judgments or judgment sets for all profiles. We are
also interested in which rule selects more judgments or judgment sets for the same profile.

The first collection of judgment aggregation rules, as well as the relations that hold among
them and existing rules, were developed as a joint effort with Jérôme Lang, Gabriella Pigozzi
and Leendert van der Torre. Part of this work was published inthe joint paper (Lang et al.,
2011). The full work is a manuscript in preparation for a journal submission. The complexity-
theoretic analysis of the second category of rules was a joint effort with Wojciech Jamroga.
This analysis, together with the rules themselves, and an analysis of the relationship between
these rules and known judgment aggregation rules, was published as (Slavkovik and Jamroga,
2011). An extended version of this paper, including some of the properties of the rules, was
submitted to AAMAS 2012. Other published work related to this category of rules and the
properties they satisfy, is the joint paper with Gabriella Pigozzi and Leendert van der Torre
(Pigozzi et al., 2009).

This thesis is one of the first efforts to develop and implement social choice rules specifically
for use in multiagent systems. The difficulty in threading this direction of computational
social choice lies first in the lack of unified formalisms in judgment aggregation. Judgment
aggregation properties are defined for a particular construction of judgment aggregation rules
that does not allow for many rules to be specified, see Figure 1.3. The reputation of social
choice theory is that of the theory of impossibility. As insightful and important as the im-
possibility results are, they do not render the use of socialchoice rules neither trivial nor
impossible.

Algorithmic approaches to applying social choice rules arerare, even in work of computa-
tional social choice. Two examples of models for reaching group consent based on judgment
aggregation have been developed here, which show how group consent based on judgment
aggregation can be implemented. The first example we presentis a consent-reaching model
for hierarchical groups. It models reaching consent in uncertain environments. This model
was constructed by lifting a known cognitive model from an individual agent to a team level.
This work is an extension of a paper that was published jointly with Guido Boella, Gabriella
Pigozzi, and Leendert van der Torre (Boella et al., 2011b).

The second example we present is a consent reaching model forconsensual groups. It models
reaching collective intentions in the non-summative social epistemic sense. This model is de-
veloped based on the concepts proposed in (Gilbert, 1987, 2002, 2007, 2009). The existence
of models such as this has been foreseen in (Dunin-Keplicz and Verbrugge, 2010, Section
3.9). The model of collective intentions has been publishedas the joint article with Guido
Boella, Gabriella Pigozzi, and Leendert van der Torre, (Boella et al., 2011a).

Additional work published work related to this thesis, but not included since it falls outside
of the outlined scope of the thesis, is (Pigozzi et al., 2008a,b; Grossi et al., 2009).
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1.5 Thesis layout

The thesis is structured as follows. In Chapter 2 the rules based on minimization are pre-
sented, as well as the relationships between these rules andthe rules that already exist in the
judgment aggregation literature. This chapter includes and extends the Sections one, two,
three, four, five and seven of (Lang et al., 2011).

In Chapter 3 we present the family of weighted rules for ternary judgments based on dis-
tances as well as specific examples of family members. Most ofthese rules are based on the
semantic belief merging operators presented in (Koniecznyet al., 2004), but some new rules
are introduced as well. The novelty from the belief merging rules is in the introduction of
weights for the judgments. We also give a complexity-theoretic analysis of the rule class as a
whole. Portions of this chapter were published in (Slavkovik and Jamroga, 2011).

In Chapter 4 we introduce and study properties for judgment aggregation rules. This chapter
includes the Section six of (Lang et al., 2011).

Chapters 5 and 6 present the examples of models for hierarchical and consensual groups
correspondingly. Chapter 6 predominantly consists of (Boella et al., 2011a), while Chapter 5
is a considerably extended version of (Boella et al., 2011b).

In Chapter 7 we give an overview of related work.

Chapter 8 contains a summary of the thesis and an overview of results. This chapter also
includes related work on implementation of judgment aggregation on robots and a set of
directions for future work.
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Developing judgment aggregation
rules
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2

Developing judgment aggregation
rules based on minimization

Abstract. Collectively binding decisions by consensual groups, justas win-
ners of democratic elections, need to adhere to the will of the majority, or at least
minimize the discrepancy with the opinions held by a majority of the agents.
Many voting rules are based on minimization or maximizationprinciples. Like-
wise, in the field of logic-based knowledge representation and reasoning, many
belief change or inconsistency handling operators make useof minimization.
The aim of this chapter is to develop and study rules for judgment aggrega-
tion based on minimization. We distinguish four families ofrules. The rules
of the first family first compute the issue-majoritarian judgment set and then re-
store consistency to this set, when it is inconsistent, using some minimal profile
change principle. The rules of the second family proceed in asimilar way but
take into account the strength of the majority on each issue.Those of the third
family consist in restoring the consistency of the majoritarian judgment by re-
moving or changing some individual judgments in a minimal way. Finally, those
of the fourth family are based on some predefined distance between judgment
sets, and look for a consistent collective judgment minimizing the overall dis-
tance to the individual judgment sets. For each family we propose a few typical
rules. While most of these rules are new, a few ones correspond to rules that
have been defined in the literature. We study the inclusion relationships between
these rules to show that they are distinct rules.

2.1 Introduction

In voting theory and in computational social choice, a largebody of work focuses on spe-
cific voting rules: how their winner sets compare to each other; their social choice-theoretic
properties; the computational and communication complexity of winner determination; the
theoretical and experimental study of manipulability and control; the amount of information
necessary to determine the outcome;etc.The focus on specific rules, or families of judgment
aggregation rules has been the topic of few papers. We give anoverview of these rules.

• The premise-basedprocedure has been introduced in (Kornhauser and Sager, 1993)
under the name “issue-by-issue voting and studied in (Dietrich and Mongin, 2010;
Mongin, 2008). For this procedure, the agenda is assumed to be partitioned into two
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subsets:premisesandconclusions. The premises are logically independent. The indi-
viduals vote on the premises and the majority on each premiseis used to find the col-
lective outcome for that premise. From these collective outcomes on the premises, the
collective conclusions are derived using either the logical relationships among, or some
external constraints regarding the agenda issues. On the other hand, in theconclusion-
based procedure, individuals decide privately on the premises and express publicly
only their judgments on the conclusions.

• The more generalsequentialprocedures (List, 2004a; Dietrich and List, 2007b; Li,
2010) proceed this way: the elements of the agenda are considered sequentially, fol-
lowing a fixed linear order over the agenda (corresponding for instance to temporal
precedence or to priority) and earlier decisions constrainlater ones. Collective consis-
tency is guaranteed by definition. Of course, in the general case, the result depends on
the choice of the order,i.e. it is path-dependent. Premise-based procedures are specific
instances of sequential procedures.

• Quota-basedrules (Dietrich and List, 2007b; Dietrich, 2010) are a classof rules where
each proposition of the agenda is associated with a quota, and the proposition is ac-
cepted only if the proportion of individuals accepting it isabove the quota. For exam-
ple, uniform rules take the same quota for all elements of theagenda. The majority
rule is a special case of quota-based rules. In Dietrich and List (2007b) sequential
quota rules are also considered.

• Distance-basedrules (Miller and Osherson, 2009; Pigozzi, 2006) assume a predefined
distance between judgment sets and/or profiles and choose ascollective outcome the
consistent judgment sets which are closest (for some notionof closeness) to the indi-
vidual judgments.

Even if a few families of judgment aggregation rules have been proposed and studied, still
the focus on the research is more on the search for impossibility theorems and axiomatic
characterizations of families of rules, which contrasts with voting theory, where voting rules
are defined and studiedper se.

In voting theory, quite a number of rules are based on some minimization (or maximiza-
tion) process: for instance,Kemeny, Dodgson, Slater, ranked pairs, maximin etc. (We
shall not recall the definition of all these voting rules; thereader can refer, for instance,
to (Brams and Fishburn., 2004) for a survey.) Minimization is also a common way of defin-
ing reasoning rules (such as belief revision operators, inconsistency handling procedures, or
nonmonotonic inference rules) in the community of logic-based knowledge representation
and reasoning: typically, one deals with inconsistency by looking for maximal consistent
subsets of an inconsistent knowledge base. Belief revisionoften amounts to incorporating
a piece of information to a knowledge base while minimizing the information loss from the
initial knowledge base. Similar minimization processes are at work in reasoning about action,
belief update and belief merging.

In contrast, with the exception of distance-based rules, minimization has rarely been consid-
ered for judgment aggregation. Our rules maximize the portion of a profile we wish to keep.
The way such maximization is defined depends on the specific rule. Thus, the maximization
operated by our aggregation rules is equivalent to minimizing the portion of a profile we wish
to remove. In other words, we call our rules “based on minimization”, but we could as well
say that our rules are based on maximization. Most of the rules we introduce here are new,
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while a few of them correspond, up to some minor details, to judgment aggregation rules
already proposed in the literature.

From the definitions of two rules, it is sometimes difficult todetermine if those rules select the
same collective judgments for each profile, if the collective judgments selected by one rule
are always also selected by the other. Therefore, when proposing a rule, we need to establish
theinclusion relationsthat hold between the new rule and each of the rules already proposed.
Not only is this analysis necessary to prove that the rule we are defininig is really new, but it
helps in selecting rules for a decision-making problem. Ourrules are such that they can select
several collective judgment sets for one profile. There are some contexts in which more is
better, and other contexts, particularly in multiagent systems require that a unique, or as little
as possible, judgment sets are selected.

This chapter is structured as follows. In Section 2.1.1 we introduce the necessary definitions.
In Section 2.2 we present the four families of judgment aggregation rules, give examples of
specific rules in each family and relate these new specific rules to similar rules in voting theory
and/or knowledge representation and reasoning. In Section2.3 we analyze the inclusion
relationships between each pair of introduced rules. In Section 2.4 we make our conclusions
and some directions for future work.

2.1.1 General definitions

Let Lprop be a propositional language built on a finite set of propositional symbolsL0. Cn
denotes logical closure,CnpSq “ tα P L | S|ù αu.

Definition 1 (Agendas, judgment sets, profiles).

• an agendais a finite setA “ tϕ1, ϕ1, . . . ,ϕm, ϕmu of formulae ofLprop, consisting
of pairs of propositionsϕi , ϕi , where  ϕi ” ϕi and   ϕi ”  ϕi . A does not
contain tautologies nor contradictions. Thepre-agendaA associated withA is A “
tϕ1, . . . ,ϕmu. A subagendaof A is a subset of an agendaA that also contains pairs of
propositionsϕ , ϕ , whereϕ PA.

• a judgment setJ overA is a subset ofA. A judgment set J iscompleteif for every
pair tϕ , ϕu Ď A, J contains eitherϕ or  ϕ . A judgment set J isconsistentif it is a
satisfiable set in terms of classical propositional logic. The setÂpAq is the set of all
consistent non-empty judgment sets that can be constructedoverA. The setΦpAq is
the set of allcompleteand consistent judgment sets that can be constructed overA.

• an n-voter profileoverA is a collection P“ xJ1, . . . ,Jny where each Ji is a consistent
and complete judgment set.

We now define judgment aggregation rules. We writeÂ shortly for ÂpAq andΦ shortly for
ΦpAq to improve readability.

Definition 2 (Judgment aggregation rules).

• A deterministic judgment aggregation ruleis a function f
n,A

: Φn ÞÑΦ. Namely, f
n,A

associates with every profile P“ xJ1, . . . ,Jny a consistent and complete judgment set
f
n,A
pPq.
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• an irresolute judgment aggregation rule(or judgment aggregation correspondence) is
a function F

n,A
: Φn ÞÑ PpÂq, associating with every profile P a nonempty set of con-

sistent, possibly incomplete, judgment sets F
n,A
pPq.

Often in the judgment aggregation literature, a judgment aggregation rule is defined as a
function whose co-domain is the full sett0,1um, wherem is the agenda cardinality. The
requirement that the rule produces only consistent judgment sets is additionally specified
as a property, calledconsistency, of the judgment aggregation function. Here we opted for
the definition that specifiesΦ as a domain, as consistency is not a property that we can
compromise on while applying judgment aggregation in multiagent systems. This point will
be further clarified in Chapters 5 and 6.

Most of the time, when referring to judgment aggregation rules we will keepn andA implicit
when they are clear from the context,i.e., f

n,A
(resp. F

n,A
) will be simply denoted asf

(respectivelyF). Also, by a slight abuse of language, ifP“ xJ1, . . . ,Jny, then we will write
f pJ1, . . . ,Jnq andFpJ1, . . . ,Jnq instead off pxJ1, . . . ,Jnyq andFpxJ1, . . . ,Jnyq.

As in voting theory, a rule can be obtained from a correspondence using a tie-breaking mech-
anism, such as a priority over judgment sets, or over agents.In this chapter we focus on
irresolute rules, unless we state the contrary.

There are two different views of aggregation rules: either we see the output as a mere collec-
tion of consistent judgment sets, or we see it as a closed logical theory.

Definition 3 (Logical theoryTFpPq). Given a judgment aggregation rule F, and a profile P,
we define the logical theory TFpPq “

Ş

tCnpJq | J P FpPqu.

Definition 4 (Rule equivalence). Let F and F1 be two aggregation rules. F and F1 are
theory equivalent, denoted F“T F 1 if for every profile P we have TFpPq “ TF 1pPq. F and F1

areequal, denoted F“ F 1, if for every profile P we have that FpPq “ FpP1q.

Definition 5 (Rule inclusion). Let F and F1 be two aggregation rules. F isat least as dis-
criminantas F1 if for every profile P we have TF 1pPq Ď TFpPq. F and F1 are incomparableif
there exist two profiles P and Q such that TFpPq Ę TF 1pPq and TFpQq Ę TF1pQq.

A formula α is in TFpPq if and only if it can be inferred from every judgment set inFpPq.
Note thatTFpPq being the intersection of consistent closed logical theories, is itself a consis-
tent closed theory. Intuitively,F is at least as discriminant asF 1 if, for every profileP, all
judgments included in every setF 1pPq are necessarily included in every setFpPq.

Definition 6 (Majoritarian aggregation). Let ϕ P A. The issue-majority aggregation rule m
is a function m: Φnˆtϕ , ϕun ÞÑ tϕ , ϕ ,Hu defined as:

mpP,ϕq “

$

&

%

ϕ iff #ti|ϕ P Jiu ą
n
2

 ϕ iff #ti| ϕ P Jiu ą
n
2

H iff #ti|ϕ P Jiu “ #ti| ϕ P Jiu

MpPq is a judgment set defined as MpPq “ tmpP,ϕq | ϕ PAu.

MpPq is theissue-majoritarian judgment setassociated withP. Note thatMpPq is not neces-
sarily an element ofΦ, nor ofÂ.

In the remainder of this chapter we call the setMpPq the majoritarian set.
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Definition 7 (Majority-preservation). A profile P ismajority-consistentif MpPq P Â. A judg-
ment aggregation rule F ismajority-preservingif, for every majority-consistent profile P,
FpPq “MpPq.

If n is odd thenMpPq is necessarily a complete judgment set.

Example 2.1.1.Consider the pre-agendaA“ tp^ r, p^s,q, p^q, tu and a profile P of 17
voters, presented in Table 2.1.

Voters{ p^ r, p^s, q, p^q, t }
J1ˆ6 + + + + +
J2ˆ4 + + - - +
J3ˆ7 - - + - -
M(P) + + + - +

Table 2.1: The profile P

We obtain MpPq “ tp^ r, p^s,q, pp^qq, tu. MpPq is an inconsistent judgment set, there-
fore P is not majority-consistent.

We end this Section by defining distances between judgment sets and between a judgment set
and a profile. A distanced between judgment sets overA is a functiond : ΦˆΦÑ N0 such
that for allJ,J1,J2 P Φ:

(a) dpJ,J1q “ 0 if and only if J“ J1,

(b) dpJ,J1q “ dpJ1,Jq, and

(c) dpJ,J2q ď dpJ,J1q`dpJ1,J2q.

A distance function between profiles is defined similarly. Finally, theHamming distancebe-
tween judgment sets and between profiles (Miller and Osherson, 2009; Endriss et al., 2010b)
is defined as follows.

Definition 8 (Hamming distance between complete judgment setsdH). Given two complete
judgment sets J and J1 (over the same set of agents and the same agenda), the Hamming
distance dH between J and J1 is defined by

dHpJ,J
1q “ |JzJ1|` |J1zJ|

Now, the distance between two profiles is the sum of the Hamming distances between their
individual judgment sets.

Definition 9 (Hamming distance between profilesDH ). Given two profiles P“ xJ1, . . . ,Jny
and Q“ xJ11, . . . ,J

1
ny, the Hamming distance between P and Q is defined by

DHpP,Qq “
n

ÿ

i“1

dHpJi ,J
1
i q

Instead of the sum, another algebraic aggregation functionD can be used as well, such as for
instancemin, maxor Π, under the conditionspaq´ pcq are observed byD.
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2.2 Four families of aggregation rules

In this section we present four different families of minimization-based judgment aggregation
rules.

2.2.1 Rules based on the majoritarian judgment set

Definition 10 (Rule based on the majoritarian judgment set).

A rule R isbased on the majoritarian judgment setif there exists a function g mapping every
judgment set (consistent or not) to a nonempty set of consistent judgment sets, such that for
every profile P, RpPq “ gpMpPqq.

This family can be viewed as the judgment aggregation counterpart of voting rules that are
based on the pairwise majority graph, also known as tournament solutions. Being based
on the majoritarian judgment set means that knowing the majoritarian judgment set of a
profile is enough to determine the outcome of the rule. Equivalently, two profilesP and
Q whose majoritarian judgment coincide (MpPq “ MpQq) will lead to the same outcome
(RpPq“RpQq). We naturally expect these rules to be majority-preserving, which is equivalent
to saying that the restriction ofg to consistent judgment sets is the identity: ifJ is consistent,
thengpJq “ tJu; such a condition can be seen as the counterpart, for judgment aggregation,
of Condorcet-consistency.

WhenMpPq is not consistent, we look for a minimal way of restoring consistency by remov-
ing some elements from the agenda. Given a judgment setJ, we define the set ofconsistent
sub judgment sets of J, denoted byConspJq, asgpJq “ tJ1 Ď J | J1 P Φu. Defining a rule
consists in defining a minimalism criteria for the set of formulas removed fromJ. There are
two obvious choices, consisting in choosing consistent subjudgment sets ofMpPq that are
maximal for, respectively, set inclusion or cardinality, which corresponds to the following
choices forg:

• gpJq “maxpConspJq,Ďq;

• gpJq “maxpConspJq, |.|q

Equivalently, these rules consist in looking for a minimal subset of formulas inA to remove
such that the profile becomes majority-consistent. We give aformal definition that corre-
sponds to this alternative characterization.

In the following we use the abbreviationmaxcardfor of maximal cardinality.

Definition 11 (Maximal sub-agenda ruleRMSA). Given a profile P“xJ1, . . . ,Jny on an agenda
A, A the preagenda associated withA, and a sub-preagendarYs ĎA, the restriction of P to
Y is PÓY “ xJjXY,1ď j ď ny. Let MSApPq be the set of all maximal sub preagendasrYs ofA
(with respect to set inclusion) such that PÓY is majority-consistent. Themaximal sub-agenda
judgment aggregation rule RMSA maps P to RMSApPq “ tMpPÓYq | rYs PMSApPqu.

Example 2.2.1.Consider the same agenda and profile as in Example 2.1.1. We obtain that

RMSApPq “

$

&

%

tp^ r, p^s, q, tu,
tp^ r, p^s,  pp^qq, tu,
tq,  pp^qq, tu

,

.

-

.
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Instead of looking for maximal majority-consistent sub-agendas with respect to inclusion we
may instead look for maxcard majority-consistent sub-agendas, which leads to the following
judgment aggregation rule.

Definition 12 (Maxcard sub-agenda ruleRMCSA). Let MCSApPq the set of all maxcard sub-
preagendasrYs ofA such that PÓY is majority-consistent. Themaxcard sub-agendajudgment
aggregation rule RMCSAmaps P to RMCSApPq “ tMpPÓYq | rYs PMCSApPqu.

Example 2.2.2.Consider again the agenda and profile from Example 2.1.1. Thesub-preagenda
Y which gives a majority-consistent PÓY and is maximal is obtained for either Y“ tp^ r, p^
s,q, tu or Y “ tp^ r, p^s, p^q, tu. We obtain

RMCSApPq “

"

tp^ r, p^s, q, tu,
tp^ r, p^s,  pp^qq, tu

*

.

TheRMCSA rule corresponds, up to some minor details and for a specific choice of a distance
function, namely the Hamming distancedH , to the ENDPOINT judgment aggregation rule
defined in (Miller and Osherson, 2009). According to theENDPOINT rule, the collective
judgment sets forP are the consistent and complete judgment sets that are at a minimal
distanced from MpPq.

We show that the rulesRMSA andRMCSAare based on the majoritarian judgment set.

Proposition 2.2.3. Let ConspMpPqq be the set of all consistent subsets of MpPq.

• RMSApPq “maxpConspMpPqq,Ďq.

• RMCSApPq “maxpConspMpPqq, |.|q.

Proof. We give the only the proof forRMSA. The proof forRMCSApPq proceeds exactly in the
same way.

Let rYs PMSApPq. We haveMpPÓYq ĎMpPq andMpPÓYq is consistent. Assume thatMpPÓYq
is not a maximal consistent subset ofMpPq. There exists a consistent sub-agendaZ of A
such thatMpPÓYq Ă Z Ď MpPq. Since bothMpPÓYq andZ contains at most one ofϕ , ϕ
for everyϕ PA (otherwise they would not be consistent), there must be aϕ such that either
ϕ P Z or  ϕ P Z, andϕ R rYs. But thenrYs Y tϕu Ď Z Ď MpPq andZ consistent implies
that MprYs Y tϕuq is a consistent subset ofMpPq, contradictingrYs P MSApPq. Therefore,
MpPÓYq PmaxpConspMpPqq,Ďq.

Conversely, letZ PmaxpConspMpPqq,Ďq. Y “ tϕ PA | ϕ P Z or ϕ P Zu is a preagenda of
A, and becauseZ is a consistent subset ofMpPq, Z contains at most one ofϕ , ϕ for every
ϕ PA, thereforeMpPqÓY “ Z.

Assume there is aY1 Ą Y such thatMpPÓY
1
q is consistent. ThenMpPY1

q Ą MpPYq “ Z,
contradictingZ PmaxpConspMpPqq,Ďq. Therefore,Y is a maximal consistent sub preagenda
of P.

We note that even whenn is odd,RMSApPq and RMCSApPq may contain incomplete judg-
ment sets. Take for instanceP“ xta,b,a^bu,ta, b, pa^bqu,t a,b, pa^ bquy; then
RMSApPq “ RMCSApPq “ tta,bu,ta, pa^bqu,tb, pa^bquu. However, whenn is odd, ev-
ery judgment set inRMSApPq anda fortiori in RMCSApPq is equivalentto a complete judgment
set: here,ta,bu, ta, pa^bqu andtb, pa^bqu are equivalent to, respectively,ta,b,a^bu,
ta, b, pa^bqu andt a,b, pa^bqu.
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Proposition 2.2.4. If n is odd then for every JP RMSApPq and every JP RMCSApPq, there is a
complete judgment set J1 such that the deductive closures of J and J1 are equivalent.

Proof. Let J P RMSApPq and assumeJ is not equivalent to a complete judgment set. There is
aϕ PA such that neitherJ |ù ϕ norJ |ù  ϕ . Becausen is odd,MpPq is a complete judgment
set, and contains eitherϕ or  ϕ . Without loss of generality, assume it containsϕ . Then
JYtϕu ĎMpPq andJYtϕu is consistent, contradictingJ P RMSApPq. The proof forRMCSA

follows from the fact thatRMCSApPq Ď RMSApPq.

While, as far as we are aware,RMSA is new, RMCSA coincides with theEndpointd rule
defined in (Miller and Osherson, 2009). We repeat the definition here using our terminology.
Recall thatΦ is the set of all complete and consistent judgment sets forA.

Definition 13 (Endpoint rule). Let d be a distance function between judgment sets. The
judgment aggregation ruleEndpointd is defined as:

EndpointdpPq “ tJ PΦ | dpJ,MpPqq ď dpJ1,MpPqq for all J1 P Φu

Proposition 2.2.5. RMCSA“T EndpointdH
.

Proof. A judgment setJ P Φ extends a judgment setA P Â, alternativelyJ is an extension
of A, when if ϕ P A, thenϕ P J. We claim that for everyP P Φn and everyA P Â, we
haveA P MSApPq if and only if for everyJ P Φ extendingA, and everyJ1 P Φ it holds that
dHpJ,MpPqq ď dHpJ1,MpPqq.

We show the fist direction. Assume thatA is a consistent subset ofMpPq and letJ P Φ be an
extension ofA. We have thatdHpJ,MpPqq ďm´|A|. We need to show that for everyJ1 P Φ
it holds thatdHpJ,MpPqq ď dHpJ1,MpPqq.

Assume the contrary, namely that there existsJ1 PΦ such thatdHpJ1,MpPqq ă dHpJ,MpPqq ď
m´|A|. |J1XMpPq| ą |A| andJ1XMpPq is a consistent subset ofMpPq. As a consequence
A RMSApPq. We conclude that for everyJ PΦ extendingA it is the case thatdHpJ,MpPqq ď
dHpJ1,MpPqq for everyJ1 PΦ. Therefore,TEndpointpPq |ù TRMCSApPq.

We show the second direction. Assume thatJ P Φ and A “ JXMpPq. We have
that dHpJ,MpPqq “ m´ |A| andA is a consistent subset ofMpPq. We need to show that
A PMSApPq.

Assume the contrary, namely thatA R MSApPq. If A R MSApPq, then there exists a con-
sistent subsetA1 of MpPq such that|A1| ą |A|. But now, anyJ1 P Φ extendingA1 is such
that dHpJ1,MpPqq ď m´ |A1| ă m´ |A| “ dHpJ,MpPqq, which implies that we do not have
dHpJ,MpPqq ď dHpJ1,MpPqq for everyJ1 PΦ. Therefore,dHpJ,MpPqq ďdHpJ1,MpPqq for ev-
eryJ1 PΦ implies thatJXMpPq PMSApPq. We conclude thatTRMCSApPq |ù TEndpointpPq.

2.2.2 Rules based on the weighted majoritarian judgment set

We first define theweighted majoritarian judgment setof a profileP as

wpPq “ txϕ ,NpP,ϕqy,ϕ PAu

whereNpP,ϕq “ #ti,ϕ P Jiu.
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WhereasMpPq keeps only the information about which one, of the two propositions ϕ and
 ϕ , is supported by a majority of voters,wpPq keeps much more information, since it stores
the number of voters who supportϕ and ϕ . The setMpPq can be recovered fromwpPq, but
notvice versa.

Definition 14 (Rule based on the weighted majoritarian judgment set).

A rule R isbased on the weighted majoritarian judgment setif there exists a function g map-
ping every judgment set (consistent or not) to a nonempty setof consistent judgment sets,
such that for every profile P, RpPq “ gpwpPqq.

This family can be viewed as the judgment aggregation counterpart of voting rules that are
based on the weighted pairwise majority graph, such as maximin, ranked pairs, or Borda.

The first rule of this class we consider is themaxweight sub-agenda rule.

RMSA andRMCSA consider the judgments on the agenda subset as a unit that is to be kept in
its entirety or got ridden of. A finer way of defining a judgmentrule consists in looking for
maximal or maxcard majority-consistent subsets of the set of elementary pieces of informa-
tion consisting each of a pair (element of the agenda, judgment onit elicited from an agent).
Equivalently, this comes down to weigh each element of the agenda by the number of agents
supporting it, and then to look for maxweight sub-agendas.

Definition 15 (Maxweight sub-agenda ruleRMWA). For any sub-agenda YĎ A, the weight
of Y with respect to P is defined by wPpYq “

ř

ψPY NpP,ψq. Let MWApPq be the set of

all consistent sub-agendas Y ofA maximizing wP. Themaxweight sub-agendajudgment
aggregation rule RMWA maps P to RMWApPq “ tY |Y PMWApPqu.

Example 2.2.6.Consider the agenda and profile of Example 2.1.1. We obtain:

NpP, p^ rq “ 10, NpP, pp^ rqq “ 7
NpP, p^sq “ 10, NpP, pp^sqq “ 7
NpP,qq “ 13, NpP, qq “ 4
NpP, p^qq “ 6, NpP, pp^qqq “ 11
NpP, tq “ 10, NpP, tq “ 7

RMWApPq “ ttp^ r, p^ s,q, p^q, tuu, due to wPptp^ r, p^ s,q, p^q, tuq “ 49 is maximal
with respect to all other complete and consistent YĂA.

The intuition behind this rule is that we look for a minimal number ofelementary information
itemsto remove fromP so that it becomes majority-consistent. An information item is an el-
ement fromA approved by an agent. The set of information items associated with P, denoted
by ΣpPq, is the multiset containing as many occurrences ofϕ as agents approvingϕ in P. E.g.,
if A “ ta,b,c,a^bu andP“ xta,b,c,a^ bu,t a,b,c, pa^ bqu,ta, b,c, pa^ bquy,
then ΣpPq “ ta, b, c, a^ b,  a, b, c,  pa^ bq, a,  b, c,  pa^ bqu and ΣpPq “
ta,a, a,b,b, b,c,c,c,a^b, pa^bq, pa^bqu.

Let MaxCardpΣpPqq be the set of all maxcard consistent subsets ofΣpPq. If
S P MaxCardpΣpPqq, then for everyϕ P A, S contains either all occurrences ofϕ in ΣpPq
or all occurrences of ϕ in ΣpPq. Let JS be the judgment set containingϕ if S contains
all occurrences ofϕ in ΣpPq and ϕ if S contains all occurrences of ϕ in ΣpPq. Then
RMWApPq “ tJS |MaxCardpΣpPqqu.
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Although it looks entirely new, we will show that this natural rule corresponds to a rule
already defined, in a different way, in (Endriss et al., 2010b).

Proposition 2.2.7. RMWA is majority-preserving.

Proof. Let P be a majority-consistent profile. We claim thatRMWApPq consists of all com-
plete consistent sub-agendas extendingMpPq. When n is odd, thenMpPq is a complete
sub-agenda, so in this caseRMWApPq “MpPq. However, ifn is even thenMpPq might be in-
complete. For instance, ifn“ 2,A“ tp,qu andP“ xtp,qu,tp, quy thenMpPq “ tpu and
RMWApPq “ ttp,qu,tp, quu. Let J be a complete consistent judgment set extendingMpPq.
If J R RMWApPq, then there exists a consistent judgment setJ1 such that

ř

ϕPJ1 NpP,ϕq ą
ř

ϕPJ NpP,ϕq. This implies that there must be aϕ P A such thatϕ P J,  ϕ P J1, and
NpP, ϕq ą NpP,ϕq. The latter implies thatϕ R MpPq, which contradicts the assumption
thatJ extendsMpPq.

The following rule is inspired from the ranked pairs rules invoting theory (Schulze, 2003). It
consists in first fixing the truth value for the elements of theagenda with the largest majority.
It proceeds to iterate, considering the elements of the agenda in the decreasing order of the
number of agents who support them, and fix each agenda issue value to the majoritarian value.
It proceeds iterating as long as this is possible without producing an inconsistency.

Definition 16 (Ranked agendaRRA). Let Y“ tϕ P A|NpP,ϕq ą n
2u, and letľP be the

complete weak order relation on Y defined byϕ ľP ψ if NpP,ϕq ě NpP,ψq. RRApPq is
defined as follows: JP RRApPq if there exists a linear orderąP on A refiningě such that
RApą,Pq “ J, where RApą,Pq is defined inductively by

• order the elements of Y using the relationą, i.e., such thatϕσp1q ą . . . ą ϕσpmq;

• D :“H;

• for k :“ 1 to m do: if DYtϕσpiqu is consistent then D:“ DYtϕσpiqu;

• RApą,Pq :“ D.

RRA is based on the weighted majoritarian judgment set. This rule is a special case of the
sequential aggregation rules defined by (List, 2004b), where the rule is defined without spec-
ifying a particular order of aggregation.

Example 2.2.8.Consider the same profile as in Example 2.1.1. We have Y“ tp^ r, p^ s,q,
 pp^ qq, tu, and qąP pp^ qqąP p^ r „P p^ s„P t (where„P andąP are respectively
the indifference and the strict preference relations induced fromą). We obtain

RRApPq “ ttq, pp^qq, t, pp^ rq, pp^squu.

Every judgment setJ in RRApPq is complete; if not, there would be aϕ PA such that neither
ϕ not ϕ is in J. SinceJ is consistent, eitherJYtϕu or JYt ϕu is consistent. But then,
eitherϕ or ϕ would have been incorporated inJ, which contradicts the assumption thatJ
contains neitherϕ nor ϕ . More generally, when the number of votersn is odd, each of the
collective judgment sets obtained from any of the rules introduced so far is equivalent to a
complete judgment set.
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Proposition 2.2.9. RRA is majority-preserving.

Proof. In ą, the elements ofMpPq are considered before the elements ofAzMpPq. Therefore,
when an elementϕ of MpPq is considered, the current judgment setD is a subset ofMpPq
andDYtϕu ĎMpPq, thereforeDYtϕu is consistent, which implies thatϕ is incorporated
into D. Since this is true for anyϕ PA, we get that any element ofRRApPq containsMpPq.

Now, let J be a consistent, complete extension ofMpPq. Takeą such that all elements of
MpPq are considered first, then all elements ofJztMpPu, then all elements ofAzJ. This order
refinesąP, because ifϕ P PMpPq thenNpP,ϕq ą n

2, if ϕ P JztMpPu thenNpP,ϕq “ n
2 and if

ϕ PAzJ thenNpP,ϕq ď n
2. Lastly,RApą,Pq “ J, which proves thatJ P RRApPq.

2.2.3 Rules based on the removal or change of individual judgments

The principle at work, for this family, is that we look for a modified profile, as close as
possible to the original profile (with respect to a given distance), such that the resulting profile
is majority-consistent. Different rules will be obtained with different distance functions.

This family can be viewed as the judgment aggregation counterpart of voting rules that are
based on performing minimal operations on profiles with the purpose of obtaining a profile
for which a Condorcet winner exists. Such are the Young (Young, 1995) and Dodgson rules
(Dodgson, 1876). See (Elkind et al., 2009) for a general family of voting rules of that kind.

The first rule we consider is called theYoungrule for judgment aggregation, by analogy with
the Young rule in voting, which outputs the candidatex minimizing the number of voters to
remove from the profile so thatx becomes a Condorcet winner.

Definition 17 (Young rule for judgment aggregationRY).

Given a profile P“ xJ1, . . . ,Jny and a subset of agents N˚ Ď t1, . . . ,nu, the restriction of P to
N˚ is P´ “ xJj , j P N˚y, and is called asub profileof P. Let MSPpPq be the set of maxcard
majority-consistent sub profiles of P for which MpP´q is a complete judgment set. Then the
Youngjudgment aggregation rule Y maps P to RYpPq “ tMpP´q | P´ PMSPpPqu.

Intuitively, this rule consists of removing a minimal number of agents so that the profile
becomes majority-consistent. Or, equivalently, we maximize the number of voters we keep
of a given profile. If the profileP is majority-consistent, then no voter needs to be removed
andYpPq “ tMpPqu, henceY is majority-preserving.

Example 2.2.10.Once again we consider P forA given in Example 2.1.1. The result

RYpPq “ tt pp^ rq, pp^sq,q, pp^qquu

is obtained by removing 3 of the judgment setstp^ r, p^ s,q,pp^ qq, tu. Removing less
judgment sets, or other 3 judgment sets, does not lead to a majority-consistent profile.

Now, instead of looking for a minimalnumberof individual judgments to remove, we can
look for a minimalsetof individual judgments to remove, leading to the followingrule.

Definition 18 (Inclusion-Young ruleRIY ).
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Let mSPpPq be the set of maximal majority-consistent sub profiles P´ of P. Then theInclusion-
Youngjudgment aggregation rule Y maps P to

RIYpPq “ tMpP
´q | P´ PmSPpPqu

Example 2.2.11.The inclusion Young rule applied to the the profile P results in

RIYpPq “

"

t pp^ rq,  pp^sq, q,  pp^qq u,
tp^ r, p^s, q, p^q, tu

*

.

RIY is majority-preserving for the same reason asRY.

If a profile is not majority-preserving then one might look atthe problem from a different
view point. The Young rule and the Inclusion Young rule minimally alter the profile by re-
moving agent’s judgment sets. The profile can be minimally altered also by repeating agent’s
judgment set, extending the profile instead of shrinking it.The intuition behind extending is
the assumption that there is confirmation pending for some ofthe judgment sets in the profile.
We may ask which is the least amount of confirmation,i.e.,what is the smallest super-profile
of the majority-inconsistent profileP that is itself majority-consistent. We thus obtain a new
rule, thereversed Young judgment aggregation rule, which is also majority-preserving.

Definition 19 (Reversed Young rule for judgment aggregationRRY). Let P“ xJ1, . . . ,Jny be
a profile. Asuper profileof P is a profile P` “ xJ1, . . . ,Jqy, where qě n, such that for every
i P n` 1, . . . ,q there exists a jď n such that Ji “ Jj . Let MSApPq be the set of minimal
(with respect to cardinality) majority-consistent super profiles P` of P. The reverse Young
judgment aggregation rule RY maps P to RRYpPq “ YtRMSApP`q | PSPMSApP`qu.

Example 2.2.12.For the profile P of Example 2.1.1, the outcome

RRYpPq “ tt pp^ rq, pp^sq,q, pp^qquu

is obtained by adding 3 of the judgment setst pp^ rq, pp^ sq,q, pp^qq, tu. Adding
less, or other 3 judgment sets, does not lead to a majority-consistent profile.

Comparing Examples 2.2.12 and 2.2.10, we observe thatRYpPq “ RRYpPq. However, this is
not the case for all profilesP.

In words,RRY consists in duplicating judgment sets inP in a minimal way so thatP becomes
majority-consistent.RRY is majority-preserving: whenP is majority-consistent, no judgment
set inP needs to be duplicated to restore majority-consistency.

RY, RIY andRRY consider a judgment set as a unit, which is either selected orremoved as a
whole. Instead of removing entire judgment sets, we may lookfor finer changes in judgment
sets so that the resulting profile becomes majority-consistent. We give two such rules below,
defined on the notion ofrectangleandco-rectanglefor a profile.

Definition 20 (Rectangles and co-rectangles). Given a profile P“ xJ1, . . . ,Jny, we define a
rectanglefor P as a Cartesian productρ “ I ˆY, where IĎ t1, . . . ,nu is a subset of agents
and YĎA is a sub-agenda ofA. A co-rectangleδ for P is the complement of a rectangle for
P.

The restriction of P to rectangleρ “ I ˆY is the profile defined by the set of agents I, the
agenda Y, and defined by Pρ “ xJiXY|i P Iy.

The restriction of P to co-rectangleδ “ I ˆY is the incomplete profile defined by the set of
agents N“ t1, . . . ,nu, the agendaA, and defined by Pδ “ xJiXY|i P Ny.
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The intuition forPρ is that only the opinionsxi,ϕy inside the rectangle count, whereas forPδ ,
only the opinions outside the rectangleδ count.

Definition 21 (Maximal rectangle ruleRMR). A rectangleρ is maximalP-consistentif Pρ is
majority-consistent and for every super rectangleρ 1 of ρ , Pρ 1 is not majority-consistent. The
maximal rectangle ruleis defined by

RMRpPq “ tMpPρq | ρ maximal P-consistentu

Definition 22 (Maximal co-rectangle ruleRMCR). A co-rectangleδ is maximalP-consistent
if Pρ is majority-consistent and for every super co-rectangleδ 1 of δ , Pδ 1 is not majority-
consistent. Themaximal co-rectangle ruleis defined by

RMCRpPq “ tMpPδ q | δ maximal P-consistentu

RMR are andRMCR are majority-preserving.

Note that if we restrict our attention to (co-)rectangles ofP of the formNˆY, then we recover
MSApPq, whereas if we restrict our attention to (co-)rectangles ofthe formI ˆA, then we
recovermSPpPq. Similar rules can be obtained by maximizing thesizeof the (co-)rectangle.
Before going further, we first establish thatRMCR coincides with a rules that we already know.

Proposition 2.2.13.For all P PΦn, RMSApPq “ RMCRpPq.

Proof. We first prove that, for allP PΦn, if J P RMCRpPq thenJ P RMSApPq.

Let J P RMCRpPq. As a consequence, there exists a maximalP-consistent co-rectangle
δ “ I ˆY such thatJ “ MpPδ q. J is consistent, thereforeJXMpPq is a consistent sub-
set of MpPq. Assume thatJXMpPq R RMSApPq. There exists aJ1 P RMSApPq such that
JX MpPq Ă J1. Let ϕ P J1zpJXMpPqq. From ϕ P J1 Ď MpPq andϕ R J we getϕ P Y.
Consider now the co-rectangleδ 1 “ I ˆpYztϕuq. MpPδ q andMpPδ 1

q agree on all elements
of the preagenda exceptϕ . Moreover,MpPδ 1

q andMpPq agree onϕ , whereasMpPδ q and
MpPq disagree onϕ . Therefore,

MpPδ 1
XMpPq “ pMpPδ XMpPqqYtϕu (2.1)

Lastly, sincePY is majority-consistent,Pδ 1
is majority-consistent as well, which together

with (2.1), contradicts the maximality ofδ . Therefore,J P RMSApPq.

We now prove that, for allP PΦn, if J P RMSApPq thenJ P RMCRpPq.

Let Y PMSApPq. As a consequenceMpPq P RMSApPq. Assume thatNˆY RMCRpPq. Note

thatNˆY “ NˆpAzYq is a co-rectangle that isP-consistent, therefore there must exists a
largerP-consistent co-rectangle. Such a co-rectangleδ 1 cannot be obtained by removing less
agents, sinceNˆY does not remove any agent. Consequently we must remove a smaller

subset of the agenda,i.e.,δ 1 “ NˆpAzZq “ NˆZ with ZĄY. But then the restriction ofP
to Z would be majority-consistent, contradictingY PMSApPq. Therefore,Y PMCRpPq.

The last rule we define does not remove agenda elements and/orvoters, but looks for a min-
imal number ofatomic changesin the profile so thatP becomes majority-consistent. We
consider an atomic change to be the change of truth value of one element of the preagenda
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Votersp^ r p^s q p^q t
6ˆ ` ` ` ` `
4ˆ ` ` ´ ´ `
3ˆ ´ ´ ` ` ´
4ˆ ´ ´ ` ´ ´

MpQq ` ` ` ` `

Table 2.2: The profileQ.

in an individual judgment set. For instance, ifJ1 “ tp,q, p^ q, r, p^ ru, then
J11 “ t p, q,  pp^qq, r, pp^ rqu is obtained fromJ1 by a series of three atomic changes
(change in the truth value ofp, of p^q and ofp^ r).

This approach is in spirit close to Dodgson’s voting rule, which looks for the smallest number
of elementary changes in a profile with the purpose of turningit into a profile for which a
Condorcet winner exists. Replacinghaving a Condorcet winnerby being majority-consistent
and adapting the notion of elementary change, we get our judgment aggregation rule.

Definition 23 (Minimal number of atomic changes ruleRMNAC). Given a profile P, a profile Q
consisting of complete and consistent individual judgmentsets is a closest majority-consistent
profile to P if Q is majority-consistent, and there is no majority-consistent profile Q1 such that
DHpP,Q1q ăDHpP,Qq. Let CMCpPq the set of all closest majority-consistent profile to P. The
minimal number of atomic changes ruleis defined by

RMNACpPq “ tMpQq | Q PCMCpPqu

RMNAC is not a new rule.Fulld, one of the four methods introduced by (Miller and Osherson,
2009), looks for the closest profile of individual judgmentsthat yields a consistent proposition-
wise majority output, and then take this output. Therefore,RMNAC corresponds to theFulld
voting rule together with the choice of the Hamming distanceas the distance measured.
Miller and Osherson (2009) do not commit to a specific distance metric. Another possible
choice would consist in allowing the modified profile to be individually inconsistent, leading
to the so-calledOut putd rule in (Miller and Osherson, 2009).

Example 2.2.14.Consider the profile P from Example 2.1.1. The profile Q given on Table
2.2 is the closest majority-consistent profile to P with DpP,Qq “ 3.

We obtain RMNACpPq “ tp^ r, p^s,q, p^q, tu.

If P is majority-consistent then no elementary change is needed, thereforeRMNAC is majority-
preserving.

We could also look for the closest profilesQ with respect to set inclusion. However, this
would give a very weak ruleRwhereϕ belongs to some judgment set ofRpPq as soon as one
individual judgment containsϕ .

2.2.4 Rules based on distances

Two classes of distance-based rules appear in the judgment aggregation literature. The first
one is characterized by the minimization of distances between judgment sets and does not in-
clude altering the profile in any way (Pigozzi, 2006; Endrisset al., 2010b; Miller and Osherson,
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2009). This class is derived from distance-based merging operators (Konieczny and Pino-Pérez,
2011). The second one is characterized by the minimization of distances among profiles and
relies on making minimal changes to the profile (Miller and Osherson, 2009). The rules we
consider in this section resort to some kind of minimizationof distances among judgment
sets without changing the profile.

Miller and Osherson (2009) propose four distance-based rules for judgment aggregation. We
have already discussed three of them, namelyFull, Output andEndpoint. The fourth
one,Prototype, is defined as follows.

Definition 24. PrototypedpJ1, . . . ,Jnq is the set of all judgment sets JP Φ such that
řn

i“1dpJ,Jiq ď
řn

i“1 dpJ1,Jiq,@J1 P Φ.

This rule has also been considered independently in (Endriss et al., 2010b). We propose a
larger family of aggregation rule, in the same spirit as (Miller and Osherson, 2009).

Let d : ΦˆΦ ÞÑN0 be a distance function between judgment sets fromΦ andd : pN0qn ÞÑN0

be a symmetric, non-decreasing function such that, for every x, y, x1, . . . ,xn P N0, has the
following properties:dpx, . . . ,xq “ x; dpx1, . . . ,xnq “ 0 if and only if x1“ . . .“ xn“ 0.

The distance-based judgment aggregation ruleRd,d induced byd andd is defined by:

Rd,dpJ1, . . . ,Jnq “ argmin
JPΦ

dpdpJ,J1q, . . .dpJ,Jnqq.

Definition 25. A judgment aggregation rule isdistance-basedif it is equal to Rd,d for some
d andd.

Here we consider onlyd “
ř

andd “ max, and the Hamming distancedH . In the case
whend “

ř

we obtain the distance-based procedure of Endriss et al. (2010b). We choose
RdH ,

ř

because it captures the intuition of a majoritarian operator andRdH ,max because it cap-
tures the intuition of compromise between the individuals’judgments (Brams et al., 2007;
Konieczny and Pino-Pérez, 2011). The minimization of the maximum distance minimizes
the disagreement with the least satisfied individual, henceguaranteeing some degree of com-
promise.

We show thatRdH ,

ř

andRMWA are equal rules.

Proposition 2.2.15.For all P PΦn, RdH ,

ř

pPq “ RMWApPq.

Proof. Given two complete judgment setsJ and J1, and ϕ P A, definehpϕ ,J,J1q “ 1 if
ϕ P pJzJ1qY pJ1zJq andhpϕ ,J,J1q “ 0 otherwise.

For any profileP“ xJ1, . . . ,Jny PΦn and anyJ P Φ, we have
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řn
i“1dHpJ,Jiq

“
řn

i“1

ř

ϕPA
hpϕ ,J,Jiq

“
řn

i“1

´

ř

ϕPJ hpϕ ,J,Jiq`
ř

ϕRJ hpϕ ,J,Jiq
¯

“
řn

i“1

´

ř

ϕPJ hpϕ ,J,Jiq`
ř

 ϕPJ hpϕ ,J,Jiq
¯

“
řn

i“1

´

ř

ϕPJ hpϕ ,J,Jiq`
ř

ϕPJ hp ϕ ,J,Jiq
¯

“
ř

ϕPJ p
řn

i“1hpϕ ,J,Jiq`
řn

i“1 hp ϕ ,J,Jiqq

“
ř

ϕPJ pn´NpP,ϕq`NpP, ϕqq
“

ř

ϕPJ 2pn´NpP,ϕqq
“ 2n˚ |J|´2wPpJq

Therefore,
řn

i“1dHpJ,Jiq is minimum if and only ifJ PMWApPq, that is,wPpJq is maximum.
Since every element ofMWApPq is a complete judgment set,MWApPq is equal to the set
of all complete judgment sets minimizing

řn
i“1dHpJ,Jiq, which allows us to conclude that

RdH ,

ř

andRWMA are equivalent.

Comparing Definition 25 and the definition ofPrototyped we observe that for all profiles
P P Φn, RdH ,ΣpPq “ PrototypedH pPq. Consequently, for all profilesP P Φn, RMWApPq “
PrototypedH pPq.

As a consequence,RdH ,

ř

is majority-preserving. This is however not the case forRdH ,max,
which is the only one of our rules failing to satisfy majority-preservation.

Proposition 2.2.16.RdH ,max is not majority-preserving.

Proof. Consider the agendaA “ ta, a,b, bu and P “ xta,bu,ta,bu,t a, buy. Then
RdH ,maxpPq “ tta, bu,t a,buu; however,P is majority-consistent andMpPq “ tta,buu.

Example 2.2.17.Consider the profile P for agendaA of Example 2.1.1. We obtain that
RdH ,Σ “ ttp^ r, p^s,q, p^q, tuuwhile

RdH ,maxpPq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

t pp^ rq,  pp^sq, q,  pp^qq, tu,
t pp^ rq, p^s,  q,  pp^qq, tu,
t pp^ rq, p^s, q, p^q, tu,

tp^ r,  pp^sq,  q,  pp^qq, tu,
tp^ r,  pp^sq, q, p^q, tu,
tp^ r, p^s,  q,  pp^qq,  tu,
tp^ r, p^s,  q, p^q,  tu

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

.

The full calculations are presented inwards Table 2.3.

2.3 (Non)inclusion relationships between the rules

In this section we consider the equality and inclusion relationships between the rules we
have introduced. This analysis is necessary to establish how the collective judgments derived
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Ji tp^ r, p^ s, q, p^ q, tu dH pJ,J20q dH pJi ,J18q dH pJi ,J3q
ř

max
J1 - - - - - 5 3 1 49 5
J2 - - - - + 4 2 2 46 4
J3 - - + - - 4 4 0 40 4
J4 - - + - + 3 3 1 37 3
J5 - - + + - 3 5 1 45 5
J6 - - + + + 2 4 2 42 4
J7 - + - - - 4 2 2 46 4
J8 - - + + + 2 4 2 42 4
J9 - + - - - 4 2 2 46 4
J10 - + - - + 3 1 3 43 3
J11 - + + + - 2 4 2 42 4
J12 - + + + + 1 3 3 39 3
J13 + - - - - 4 2 2 46 4
J14 + - - - + 3 1 3 43 3
J15 + - + + - 2 4 2 42 4
J16 + - + + + 1 3 3 39 3
J17 + + - - - 3 1 3 42 3
J18 + + - - + 2 0 4 40 4
J19 + + + + - 1 3 3 39 3
J20 + + + + + 0 2 4 36 4

Table 2.3: The calculations forRdH ,ΣpPq and RdH ,maxpPq. Recall that
řn

i“ j dpJi ,Jjq “
6dHpJi ,J20q`4dHpJi ,J18q`7dHpJi ,J3q

from one rule compare to the collective judgments derived from another rule. We have the
following diagram (Table 2.4), whereinc means “inclusion-wise incomparable”,Ă means
thatTR1pPq Ă TR2pPq for every profileP PΦn, whereR1 is the row rule andR2 is the column
rule, correspondingly forĄ. The number next to inc,Ă or Ą, denotes the proposition in
which the relationship is proved.

RMCSA RMWA RRA RY RIY RRY RMR RMNAC RdH ,max

RMSA Ă, 2.3.1 Ă, 2.3.2 Ă, 2.3.3 inc,2.3.5 inc,2.3.16,2.3.21inc,2.3.14Ą,2.3.18 inc, 2.3.22inc, 2.3.4
RMCSA inc,2.3.6 inc,2.3.7 inc,2.3.5inc, 2.3.16,2.3.21inc,2.3.12Ą,2.3.19 inc,2.3.21 inc,2.3.4
RMWA inc,2.3.10inc,2.3.8inc, 2.3.21,2.3.16inc,2.3.12Ą,2.3.19 inc,2.3.23 inc,2.3.4

RRA inc,2.3.9inc, 2.3.16,2.3.21inc,2.3.12Ą, 2.3.20 inc,2.3.23 inc,2.3.4
RY Ą,2.3.15 inc,2.3.11Ą,2.3.19 inc,2.3.23 inc,2.3.4

RIY inc 2.3.11 Ą,2.3.18 inc,2.3.23 inc,2.3.4
RRY inc2.3.13 inc,2.3.23 inc,2.3.4
RMR inc, 2.3.24 inc,2.3.4

RMNAC inc,2.3.4

Table 2.4: A summary of the (non)inclusion relationships between the proposed rules.

For every profileP P Φn, if a collective judgment is in all the judgment setsRMCSApPq, or
RMWApPq or RRApPq, then that collective judgment is in all the judgment setsRMSApPq. For
ever profileP P Φn, if a collective judgment is in all the judgment setsRMSApPq, RMCSApPq,
RMWApPq, RRApPq, RYpPq or RIYpPq, then that collective judgment is in all the judgment sets
RMRpPq. This means that the rulesRMSAandRMR are very “weak” in the sense that they often
select a very large number of judgment sets. In this sense theruleRIY is weaker thanRY. For
a decision reaching context in which the rule should select as little judgment sets as possible,
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we can choose from seven rules, out of which five,RMCSA, RRA, RY, RRY andRdH ,max have
not been studied in judgment aggregation.

Following are the proofs for these (non) inclusion relationships.

Proposition 2.3.1. For every profile PPΦn, TRMSApPq Ă TRMCSApPq.

Proof. If YĂA is a maxcard consistent sub-preagenda ofA, with respect toP, then it is also
a maximal consistent sub-preagenda with respect toP. If α P TRMSApPq, thenα is inferred
in every maximal consistent sub-preagenda, anda fortiori in every maxcard consistent sub-
preagenda, thereforeα P TRMCSApPq.

To show thatTRMCSApPq Ę TRMSApPq, consider the profileP in Example 2.1.1. As it can be
observed in Example 2.2.2,TRMCSApPq |ù p ^ r, but we can observe from Example 2.2.1 that
TRMSApPq * p ^ r.

Proposition 2.3.2. For every profile PPΦn, TRMSApPq Ă TRMWApPq.

Proof. If YĂA is a consistent sub-preagenda maximizingwPpYq, thenMpPÓYq is a maximal
consistent sub-agenda with respect toP. If α P TRMSApPq, thenα is inferred in every maximal
consistent sub-preagenda, anda fortiori in every maxweight consistent sub-agenda, therefore
α P TRMWApPq.

To show thatTRMWApPq Ę TRMSApPq, consider the profileP in Example 2.1.1. As it can be
observed in Example 2.2.6,TRMWApPq |ù q, but we can observe from Example 2.2.1 that
TRMSApPq * q.

Proposition 2.3.3. For every profile PPΦn, TRMSApPq Ă TRRApPq.

Proof. In the construction ofRRApPq, let Z be the subset ofA composed of theψk such that
δ ^ ψk is consistent.Z is a maximal consistent sub-agenda with respect toP. Z is consistent
by construction, and maximal because every time a formulaψk is rejected, it is because it
produces an inconsistency with the formulas already present in δ . If α P TRMSApPq, thenα is
inferred in every maximal consistent sub-agenda, anda fortiori in Z, thereforeα P TRRApPq.

To show thatTRRApPq Ę TRMSApPq, consider the profileP in Example 2.1.1. As it can be
observed in Example 2.2.8,TRRApPq |ù q, but we can observe from Example 2.2.1 that
TRMSApPq * q.

Proposition 2.3.4. RdH ,max is incomparable with all the other rules.

Proof. Let R be a majority-preserving rule. Take the profileP as in the proof of Proposition
2.2.16. ThenaØ b P TRdH ,maxpPq, whereasaØ  b R TRpPq (sinceaØ b P TRpPq); and
a P TRpPq, whereasa R TRdH ,maxpPq. Therefore,RdH ,max is incomparable with all of the five
other rules.

Proposition 2.3.5. RY is incomparable with RMSA and RMCSA.
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a aÑ pb_cq b c aÑ pd_eq d e
` ` ` ´ ` ` ´
` ` ´ ` ` ´ `
` ´ ´ ´ ´ ´ ´

Table 2.5: The profileP used in provingRY inc RMSA andRY inc RMCSA.

Proof. Consider the pre-agendaA“ ta,aÑ pb_cq,b,c,aÑ pd_eq,d,eu and the profileP
for this agenda for three agents given on Table 2.5.

We have thatMpPq “ ta,aÑ pb_cq, b, c,aÑ pd_eq, d, eu. The minimal inconsis-
tent subsets ofMpPq areta,aÑ pb_cq,b,cu andta,aÑ pd_eq,d,eu. ConsequentlyMpPq
has 10 maximal consistent subsets: 9 containinga and one equal toMpPqztau. The 9 sets
containinga contain two of the three formulastaÑ pb_ cq,  b,  cu and two of the
three formulastaÑ pd_ eq, d, eu. These 10 maximal consistent subsets correspond to
10 maximal sub-agendas. The only maxcard consistent sub-agenda isAztau, and in this sub-
agenda ofA, a is inferred. Therefore,TRMCSApPq |ù a. All sub-profiles ofP of size two are
majority-consistent, and each of them acceptsa, thereforeTRYpPq |ù a. As a consequence,
RY andRMCSAare incomparable. ForTRYpPq Ę TRMSApPq, take the same profile as above and
note thata P TRYpPq buta R TRMSApPq.

To show thatTRMSApPq ĘTRYpPq, assume the pre-agenda is extended with another agenda item
ϕ , on which the agents vote +, + and - correspondingly. We haveϕ P TRMSA butϕ R TRY .

Proposition 2.3.6. RMWA is incomparable withRMCSA.

Proof. To show thatRMWAĆ RMCSA take the following seven agent profileP:

a b a^ b
3ˆ ` ` `
2ˆ ` ´ ´
2ˆ ´ ` ´

We obtainRMWApPq“ tta,b,a^ buu andRMCSApPq“ tta,bu,ta, a_ bu,tb, a_  buu.
Consequently,a P TRMWApPq anda R TRMCSApPq.

For the converse, thatRMCSAĆ RMWA revisit the example of Proposition 2.3.5. We have
 aR TRMWApPq and a P TRMCSApPq.

Proposition 2.3.7. RRA is incomparable with RMCSA.

Proof. Same profileP as in Proposition 2.3.5. We have thatTRRApPq |ù a. HenceaP TRRApPq
and aP RMCSApPq, see Proposition 2.3.5.

Proposition 2.3.8. RMWA is incomparable with RY.

Proof. Consider the following pre-agenda
A“ ta,aÑ p1,aÑ q1,aÑ pp1 ^ q1q,aÑ p2,aÑ q2,aÑ pp2 ^ q2q,aÑ p3,

aÑ q3,aÑ pp3 ^ q3q,aÑ p4,aÑ q4,aÑ pp4 ^ q4qu.

Let the profileP be as given on Table 2.6.
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Voters
Agenda ˆ1ˆ1ˆ1 MpPq NpP,ϕiq
a + + + + 3
aÑ p1 + + - + 2
aÑ q1 + - + + 2
aÑ pp1 ^ q1q + - - - 1
aÑ p2 + + - + 2
aÑ q2 + - + + 2
aÑ pp2 ^ q2q + - - - 1
aÑ p3 + + - + 2
aÑ q3 + - + + 2
aÑ pp3 ^ q3q + - - - 1
aÑ p4 + + - + 2
aÑ q4 + - + + 2
aÑ pp4 ^ q4q + - - - 1

Table 2.6: The profileP used to showRMWA inc RY. The judgment sets are the second, third
and fourth column of the table.

We obtain thatRMWApPq “ tt a,aÑ p1,aÑ q1, paÑ pp1 ^ q1qq,aÑ p2,aÑ q2,

 paÑpp2 ^ q2qq,aÑ p3,aÑ q3, paÑpp3 ^ q3qq,aÑ p4,aÑ q4, paÑpp4 ^ q4qquu.
HenceTRMWApPq |ù  a.

The result forRYpPq is obtained when exactly one, either one, of the voters is removed. For
RYpPq we obtainTRYpPq |ù a.

Proposition 2.3.9. RRA is incomparable with RY.

Proof. We haveTRRApPq Ę TRYpPq as a consequence of Propositions 2.3.3 and 2.3.5.

To show thatTRYpPq Ę TRRApPq, consider the pre-agendaA“ tp,q, p ^ q, r,s, r ^ s, tu and
the 18 agents profileP:

p q p^ q r s r ^ s t
1ˆ ` ` ` ´ ` ´ `
3ˆ ` ` ` ´ ` ´ ´
4ˆ ` ` ` ` ´ ´ ´
2ˆ ` ´ ´ ` ´ ´ ´
4ˆ ` ´ ´ ` ` ` `
4ˆ ´ ` ´ ` ` ` `

The minimal number of agents to remove to make the profile majority-consistent is two.
These two agents are the two agents of the fourth row (light gray shaded). We obtain
t P TRYpPq andt R TRRApPq.

Proposition 2.3.10.RRApPq is incomparable with RMWA.

Proof. Consider the same profile example in Proposition 2.3.8. We obtain thatϕ13 P TRRApPq
and ϕ13 P TRMWApPq.
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Proposition 2.3.11.RRY is incomparable with RY and RIY .

Proof. Consider the pre-agendaA “ tp,q, p ^ q, r,s, r ^ s, tu and the profileP for this
agenda given in Table 2.7.

Voters p q p^ q r s r ^ s t
1ˆ ` ` ` ´ ` ´ `
3ˆ ` ` ` ´ ` ´ ´
4ˆ ` ` ` ` ´ ´ ´
2ˆ ` ´ ´ ` ´ ´ ´
4ˆ ` ´ ´ ` ` ` `
4ˆ ´ ` ´ ` ` ` `

Table 2.7: The profileP used to showTRRYpPq |ù  t.

We obtainRRYpPq “ tp,q, p ^ q, r,s, r ^ s, tu, by adding the fourth judgment set six times,
i.e.,asMpP1q, whereP1 is the profile given in Table 2.8. ConsequentlyTRRYpPq |ù  t.

Voters p q p^ q r s r ^ s t
1ˆ ` ` ` ´ ` ´ `
3ˆ ` ` ` ´ ` ´ ´
4ˆ ` ` ` ` ´ ´ ´
8ˆ ` ´ ´ ` ´ ´ ´
4ˆ ` ´ ´ ` ` ` `
4ˆ ´ ` ´ ` ` ` `

MpP1q ` ´ ` ´ ´

Table 2.8: The profileP1 obtained fromP of Table 2.7 by adding the fourth judgment set 4
times.

The RYpPq and RIYpPq are obtained by calculatingMpP2q, the profileP2 being given in
Table 2.9 and obtained fromP by removing the fourth judgment set (both of them).
RYpPq “ RIYpPq “ tp,q, p ^ q, r,s, r ^ s, tu, henceTRYpPq |ù t andTRIY |ù t.

Voters p q p^ q r s r ^ s t
1ˆ ` ` ` ´ ` ´ `
3ˆ ` ` ` ´ ` ´ ´
4ˆ ` ` ` ` ´ ´ ´
0ˆ ` ´ ´ ` ´ ´ ´
4ˆ ` ´ ´ ` ` ` `
4ˆ ´ ` ´ ` ` ` `

MpP2q ` ` ` ` ` ` `

Table 2.9: The profileP2 obtained fromP of Table 2.7 by removing the two judgment sets in
the fourth row.
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Proposition 2.3.12.RRY is incomparable with RMCSAand RMWA.

Proof. Consider the pre-agenda from Example 2.1.1 and the profileP given in Table 2.1. As
it can be observed in Example 2.2.12,RRYpPq “ t pp ^ rq, pp ^ sq,q, pp ^ qq, tu,
obtained by adding 3 of the judgment setst pp ^ rq, pp ^ sq,q, pp ^ qq, tu.
HenceTRRYpPq |ù  pp ^ rq.

For the same profileP we obtain thatTRMCSApPq |ù p ^ r and TRMWApPq |ù p ^ r, see
Examples 2.2.2 and 2.2.6.

Proposition 2.3.13.RRY is incomparable with RMR.

Voters p q p^ q r s r ^ s t u v w y
1ˆJ1 ` ` ` ` ` ` ´ ´ ´ ´ ´
1ˆJ2 ` ` ` ` ´ ´ ` ` ´ ´ `
1ˆJ3 ` ` ` ` ´ ´ ` ` ´ ` ´
1ˆJ4 ` ´ ´ ` ` ` ` ´ ` ´ ´
1ˆJ5 ` ´ ´ ` ` ` ´ ` ` ` `
1ˆJ6 ´ ` ´ ´ ` ´ ` ´ ` ` `
1ˆJ7 ´ ` ´ ´ ` ´ ´ ` ` ` `

Ma jority ` ` ´ ` ` ´ ` ` ` ` `

Table 2.10: The profileP used to proveRMR inc RRY.

Proof. Consider the pre-agendaA“ tp,q, p ^ q, r,s, r ^ s, t,u,v,w,yu and the ProfileP for
it given on Table 2.10. We obtainRRYpPq, by repeating the first judgment set once, namely,
asMpPRYq, PRY being given on Table 2.11. We obtain thatRRYpPq “ tp,q, p ^ q, r,s, r ^ su
and as consequenceTRRYpPq * t_ u_ v_ w_ y.

Voters p q p^ q r s r ^ s t u v w y
2ˆJ1 ` ` ` ` ` ` ´ ´ ´ ´ ´
1ˆJ2 ` ` ` ` ´ ´ ` ` ´ ´ `
1ˆJ3 ` ` ` ` ´ ´ ` ` ´ ` ´
1ˆJ4 ` ´ ´ ` ` ` ` ´ ` ´ ´
1ˆJ5 ` ´ ´ ` ` ` ´ ` ` ` `
1ˆJ6 ´ ` ´ ´ ` ´ ` ´ ` ` `
1ˆJ7 ´ ` ´ ´ ` ´ ´ ` ` ` `

Ma jority ` ` ´ ` ` ´ ` ` ` ` `

Table 2.11: The profilePRY constructed from profileP in Table 2.10.

The maximal rectangles are given in Table 2.12. We obtain,TRMRpPq |ù t _ u_ v_w_ y.
ConsequentlyTRMRpPq Ę TRRYpPq.

Now consider the pre-agendaA“ tp,q, p ^ qu and for it the profileP in Table 2.13.

We obtainRRYpPq “ ttp,q, p ^ qu,tp, q, pp ^ qqu,t p,q, pp ^ qquu. Consequently,
TRRYpPq |ù p_ q. The maximal rectangles for this profile are:
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Set Removed setsRemoved issues ResultingSets
J8 tJ6u tp, q, r, s, u u
J9 tJ7u tp, q, r, s, t u

J10 tJ1,J2,J3u t  pp ^ qq, s, v, w, yu
J11 tJ1,J2,J4u t q,  pp ^ qq, s,  pr ^ sq, u, v, w, yu
J12 tJ1,J2,J5u t q,  pp ^ qq, s,  pr ^ sq, t, v, w u
J13 tJ1,J3,J4u t q,  pp ^ qq, s,  pr ^ sq, u, v, w, yu
J14 tJ1,J3,J5u t q,  pp ^ qq, s,  pr ^ sq, t, v, yu
J15 tJ1,J4,J5u t q,  pr ^ sq, t, u, v w, yu
J16 tJ2,J3,J4u t q,  pp ^ qq s,  t v w yu
J17 tJ2,J4,J5u t q, s,  pr ^ sq, w u
J18 tJ2,J3,J5u tp, q, s,  pr ^ sq,  u, v u
J19 tJ3,J4,J5u t q, n s,  pr ^ sq, yu
J20 tp,ru t q, s,  pr ^ sq, t, u, v, w, yu
J21 tp,su t q, r,  pr ^ sq, t, u, v, w, yu
J22 tp,r ^ su t q, r, s, t, u, v, w, yu
J23 tq,ru tp, q, s,  pr ^ sq, t, u, v, w, yu
J24 tq,su tp, q, r,  pr ^ sq, t, u, v, w, yu
J25 tq,r ^ su tp, q, r, s, t, u, v, w, yu
J26 tp ^ q,ru tp, q, s,  pr ^ sq, t, u, v, w, yu
J27 tp ^ q,su tp, q, r,  pr ^ sq, t, u, v, w, yu
J28 tp ^ q,r ^ su tp, q, r, s, t, u, v, w, yu
J29 tJ2u tpu t q,  pp ^ qq r, s, t, v, w u
J30 tJ3u tpu t q,  pp ^ qq r, s, t, v, yu
J31 tJ2u tqu tp,  pp ^ qq r, s, t, v, w u
J32 tJ3u tqu tp,  pp ^ qq r, s, t, v, yu
J33 tJ2u tp ^ qu tp, q, r, s, t, v, w u
J34 tJ3u tp ^ qu tp, q, r, s, t, v, yu
J35 tJ4u tru tp, q, s,  pr ^ sq u, w, yu
J36 tJ5u tru tp, q, s,  pr ^ sq t u
J37 tJ4u tsu tp, q, r,  pr ^ sq u, w, yu
J38 tJ5u tsu tp, q, r,  pr ^ sq t u
J39 tJ4u tr ^ su tp, q, r, s, u, w, yu
J40 tJ5u tr ^ su tp, q, r, s, t u

Table 2.12: Maximal rectangles for the profile in Table 2.10.

Voters p q p^ q
1ˆJ1 ` ` `
1ˆJ2 ` ´ ´
1ˆJ3 ´ ` ´
MpPq ` ` ´

Table 2.13: The profileP, counter-example forRRYpPq P RMRpPq.

• ρ1“ tJ2,J3uˆA giving rise tot pp ^ qqu,

• ρ2“ tJ1,J3uˆA giving rise totqu,

• ρ3“ tJ1,J2uˆA giving rise totpu,

• ρ4“ Nˆtq, p ^ qu giving rise totq, pp ^ qqu,

• ρ5“ Nˆtp, p ^ qu giving rise totp, pp ^ qqu,

• ρ6“ Nˆtp,qu giving rise totp,qu,
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Due tot pp ^ qqu PRMRpPqwe obtain thatTRMRpPq * p _ q. Hence,TRRYpPq Ę TRMRpPq.

Proposition 2.3.14.RRY is incomparable with RMSA.

Proof. To prove thatTRMSApPq Ę TRRYpPq we consider the profileP from Example 2.1.1, and
Examples 2.2.12 and 2.2.1. We obtain thatTRMSApPq |ù t, butTRRYpPq * t.

To prove thatTRRYpPq Ę TRMSApPq we consider the profileP from Table 2.7. We obtain
TRRYpPq |ù  t. HoweverTRMSApPq *  t.

Proposition 2.3.15.For every profile PP Φn, TRIY pPq Ă TRYpPq.

Proof. If Y Ă A is a maxcard consistent sub-preagenda (w.r.t.P) of A then it is also a
maximal consistent sub-preagenda with respect toP. If α P TRIYpPq, thenα is inferred in
every maximal consistent sub-agenda anda fortiori in every maxcard consistent sub-agenda.
Conseqeunetlyα P TRYpPq.

To show thatTRYpPq Ć TRIYpPq consider the profile from Example 2.1.1. For this profile we
obtain:

• RYpPq “ tt pp ^ rq, pp ^ sq,q, pp ^ qquu, see Example 2.2.10;

• RIYpPq “ tt pp ^ rq, pp ^ sq,q, pp ^ qqu,tp ^ r, p ^ s,q, p ^ q, tuu, see
Example 2.2.11.

It holds thatTRYpPq |ù  pp ^ rq, while TRIYpPq *  pp ^ rq.

Proposition 2.3.16. There exists a PP Φn such that TRIYpPq Ę TRZpPq for
Z P tMSA,MCSA,MWA,RA,RY,MR,MCR,MNACu.

Proof. Consider the pre-agendaA“ tp,q, p ^ q, t1, t2, t3, t4, t5, t6, t7, t8u and for it the profile
P given on Table 2.14. We obtainRIY by removing any two voters:

Voters p q p^ q t1 t2 t3 t4 t5 t6 t7 t8 t9
J1ˆ + + + + - - - + + + - -
J2ˆ + + + + + - - - + - + -
J3ˆ + - - + + + - - - + - +
J4ˆ + - - - + + + - - + - -
J5ˆ - + - - - + + + - - + +
J6ˆ - + - - - - + + + - + +

MpPq + + -

Table 2.14: The profileP.

• removingJ1 andJ2 we obtaint pp ^ qq, t1, t3, t4, t6, t9u

• removingJ1 andJ3 we obtaintq, pp ^ qq, t1, t4, t7, t8u
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• removingJ1 andJ4 we obtaintq, pp ^ qq, t7, t8, t9u

• removingJ1 andJ5 we obtaintp, pp ^ qq, t2, t5u

• removingJ1 andJ6 we obtaintp, pp ^ qq, t2, t3, t5, t6u

• removingJ2 andJ3 we obtaintq, pp ^ qq, t1, t2, t4, t5u

• removingJ2 andJ4 we obtaintq, pp ^ qq, t2, t5, t9u

• removingJ2 andJ5 we obtaintp, pp ^ qq, t7, t8u

• removingJ2 andJ6 we obtaintp, pp ^ qq, t3, t6, t7, t8u

• removingJ3 andJ4 we obtaintq, t2 t3, t5, t6, t7, t8u

• removingJ3 andJ5 we obtaintp,q, t3, t6, t9u

• removingJ3 andJ6 we obtaintp,q, t9u

• removingJ4 andJ5 we obtaintp,q, t1, t3, t4, t6u

• removingJ4 andJ6 we obtaintp,q, t1, t4u

• removingJ5 andJ6 we obtaintp, t1, t2, t4, t5, t7 t8, t9u

We have thatRIYpPq “ RYpPq. Let us denote withα the formula t1_ t2_ t3_ t4_
 t5_ t6_ t7_ t8_ t9 and withβ the formulat1_ t2_ t3_ t4_ t5_ t6_ t7_ t8_ t9.
We obtain thatα P TRIYpPq, butβ R TRIYpPq. For the rest of the rules we obtain:

• ttpu,tqu,tp ^ quu Ă RZpPq, whereZ P tMSA,MCSA,MR,MCRu henceα R TRZpPq.

• Observe thatNpP, pq “ 4, NpP, pq “ 2, NpP,qq “ 4, NpP, qq “ 2, NpP, p ^ qq “ 2,
NpP, pp ^ qqq “ 4, NpP, tiq “ NpP, tiq “ 3 , for i P r1,9s. Observe that a judgment
set that include either one oftp,q, pu, t p,q, pp ^ qq or tp, q, pp ^ qq and any
consistent subset oftti , tiu, i P r1,9s will have the maximum weight of 37. Conse-
quentlyRMWApPq contains the judgment sets:
tp,q, p ^ q, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
t p,q, pp ^ qq, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tp, q, pp ^ qq, t1, t2, t3, t4, t5, t6, t7, t8, t9u.

ConsequentlyTMWApPq * α.

• For the profileP we can construct the following order:
p„ q„  pp ^ qq ą t1 „  t1 „ t2 „  t2 „ t3 „  t3 „ t4 „  t4 „ t5 „  t5 „ t6 „
 t6„ t7 „ t7„ t8„ t8„ t9„ t9ą p„ q„ p ^ q.
Correspondingly, we obtain, among others, the following judgment sets inRRApPq:
tp,q, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tp, pp ^ qq, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tq, pp ^ qq, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tp,q, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tp, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tq, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tp,q, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
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tp, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
tq, t1, t2, t3, t4, t5, t6, t7, t8, t9u,
etc.

Consequentlyα R TRRApPq.

• RMNAC“ ttp, pp ^ qqu,tq, pp ^ qquu, henceα R TRMNACpPq.

Proposition 2.3.17.There exists a profile P such that:

1. TRMSApPq Ę TRIY pPq,

2. TRMCSApPq Ę TRIYpPq,

3. TRMWApPq Ę TRIYpPq,

4. TRRApPq Ę TRIYpPq.

Proof. This relationship follows fromTRIYpPq ĂTRYpPq, Proposition 2.3.15, and: Proposition
2.3.5, for items 1 and 2, Proposition 2.3.8 for item 3, and Proposition 2.3.9 for item 4.

Proposition 2.3.18.For every profile PP Φn, TRMRpPq Ă TRMSApPq and TRMRpPq Ă TRIYpPq.

Proof. Removing only voters, as we do inRIY , corresponds to a rectangle in the form of
I ˆA, while removing only votes on a subset of the agenda, like we do in RMSA, corresponds
to a rectangle in the form ofNˆY.

To show thatTRMSAĆ pPqTRMRpPq, consider the profileP from Example 2.1.1. For this profile,
we obtain:

• RMSApPq “ ttp ^ r, p ^ s,q, tu,tp ^ r, p ^ s, pp ^ qq, tu,tq, pp ^ qq, tuu, see
Example 2.2.1; and

• RIYpPq “ tt pp ^ rq, pp ^ sq,q, pp ^ qqu,tp ^ r, p ^ s,q, p ^ q, tuu, see
Example 2.2.11.

We obtainTRMSA |ù t, TRMSA* q, TRIY |ù q andTRMSA* t. SinceRMSApPqYRIYpPq ĂRMRpPq
we obtain thatTRMR * t andTRMR * q.

Proposition 2.3.19.For every profile PP Φn:

• TRMRpPq Ă TRMCSApPq,

• TRMRpPq Ă TRMWApPq, and

• TRMRpPq Ă TRYpPq.

Proof.
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• TRMRpPq Ă TRMCSApPq is a consequence ofTRMRpPq Ă TRMSApPq, Proposition 2.3.15, and
TRMSApPq Ă TRMCSApPq, Proposition 2.3.1.

• TRMRpPq Ă TRMWApPq is a consequence ofTRMRpPq Ă TRMSApPq, Proposition 2.3.15, and
TRMSApPq Ď TRMWApPq, Proposition 2.3.2.

• TRMRpPq Ă TRYpPq is a consequence ofTRMRpPq Ă TRIYpPq, Proposition 2.3.18, and
TRIYpPq Ă TRYpPq, Proposition 2.3.15.

To show thatTRMCSApPq Ć TRMRpPq, TRMWApPq Ć TRMRpPq andTRYpPq Ć TRMRpPq consider the
profileP from Example 2.1.1.

• As it can be observed from Example 2.2.2, henceTRMCSApPq |ù t and we showed in the
proof of Proposition 2.3.18 thatTRMR * t.

• As it can be observed from Example 2.2.6,RMWApPq “ ttp ^ r, p ^ s,q, p ^ q, tuu,
henceTRMWApPq |ù t andTRMR * t.

• As it can be observed from Example 2.2.6,RYpPq“ tt pp^ rq, pp^ sq,q, pp^ qquu
henceTRMCSApPq |ù q and we showed in the proof of Proposition 2.3.18 thatTRMR * q.

Proposition 2.3.20.For every profile PP Φn, TRMRpPq Ă TRRApPq.

Proof. This inclusion is a consequence ofTRMRpPq Ă TRMSApPq, Proposition 2.3.18 and
TRMSApPq Ă TRRApPq, Proposition 2.3.3.

Proposition 2.3.21.RMNAC is incomparable with RMCSA.

Proof. To show that there exists a profileP such thatTRMCSApPq Ć TRMNAC, consider the pre-
agenda and profile in the proof of Proposition 2.3.5 in which we have thatTRMCSApPq |ù  a.
There are 23 profilesQ at a minimal distanceDpP,Qq “ 2. We obtainTRMNACpPq *  a
because

RMNACpPq “ t ta,aÑ pb_cq, b,c,aÑ pd_eq, d,eu,
ta,aÑ pb_cq, b,c,aÑ pd_eq,d, eu,
ta,aÑ pb_cq,b, c,aÑ pd_eq, d,eu,
ta,aÑ pb_cq,b, c,aÑ pd_eq,d, eu,
ta, paÑ pb_cqq, b, c, paÑ pd_eqq, d, eu
t a,aÑ pb_cq, b, c,aÑ pd_eq, d, euu.

To show that that there exists a profileP such thatTRMNAC Ć TRMCSApPq, consider the profile
P from Example 2.1.1. We haveTRMNACpPq |ù q, see Example 2.2.14, butTRMCSApPq * q, see
Example 2.2.2.

Proposition 2.3.22.RMNAC is incomparable with RMSA.
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Proof. To show that there exists aP such thatTRMSApPq Ę TRMNACpPq, consider the pre-agenda
A“ tp,q, p ^ q, p ^  q,α1,α2,q^ p,α3, α4u, where
α1 “ p^ q^ q,
α2 “ p^ q^ q^ q,
α3 “ q^ p^ p,
α4 “ q^ p^ p^ p.
A profile for this pre-agenda is given in Table 2.15.

Voters p q p^ q p ^  q α1 α2 q^ p α3 α4

1ˆ + + + - - - - - -
1ˆ + - - + + + - - -
1ˆ - + - - - - + + +

MpPq + + - - - - - - -

Table 2.15: The profileP, counter-example forTRMSApPq Ă TRMNACpPq.

We obtain

RMSApPq “ ttq, pp ^ qq, pp ^  qq, α1, α2, pq^ pq, α3, α4u,
tp, pp ^ qq, pp ^  qq, α1, α2, pq^ pq, α3, α4u,
t pp ^ qq, pp ^  qq, α1, α2, pq^ pq, α3, α4uu

ConsequentlyTRMSApPq |ù p_q.

Voters p q p^ q p ^  q α1 α2 q^ p α3 α4

1ˆ - - - - - - - - -
1ˆ + - - + + + - - -
1ˆ - + - - - - + + +

MpPq - - - - - - - - -

Table 2.16: After changing the first three judgments of the first agent.

To obtainRMNACpPq, we need to change the first three judgments of the first voter,obtaining
the profile given in Table 2.16. This is the minimal change, since if either the second or the
third agent change either their judgment onp or their judgment onq, they have to change
additional other three judgments. We obtainRMNACpPq “ t p, q, pp^ qq, pp ^  qq,
 α1, α2, pq^  pq, α3, α4u. We observe thatTRMNACpPq * p_q.

To show that there exists aP such thatTRMNACpPq Ę TRMSApPq, consider the profileP from
Example 2.1.1. We haveTRMNACpPq |ù q, see Example 2.2.14, butTRMSApPq * q, see Exam-
ple 2.2.1.

Proposition 2.3.23.RMNAC is incomparable with RY, RIY , RRA, RRY and RMWA.

Proof. Consider the pre-agendaA“ tp,q, p^ qu and the profileP from the proof of Propo-
sition 2.3.11, given on Table 2.9. SinceRMNACpPq “ MpP1qY MpP2q, whereP1 andP2 are
as in Tables 2.17 and 2.18, we obtain that pp^ qq P TRMNACpPq.

On the other hand, we obtain:

• RY “ ttpu,tqu,t pp^ qquu,
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Voters p q p^ q
1ˆ + + +
1ˆ - - -
1ˆ - + -

MpPq - + -

Table 2.17: The first profile,P1, used to prove
RMNAC is incomparable withRY, RIY , RRA, RRY

andRMWA.

Voters p q p^ q
1ˆ + + +
1ˆ + - -
1ˆ - - -

MpPq + - -

Table 2.18: The second profile,P2, used to
prove RMNAC is incomparable withRY, RIY ,
RRA, RRY andRMWA..

• RIY “ ttpu,tqu,t pp ^ qquu

• RRY“ ttp,qu,t q, pp ^ qqu,t p, pp ^ qquu

• RRA“ ttp, q, pp ^ qqu,tp, q, pp ^ qqu,tp,q, p ^ quu,

• RMWA“ ttp, q, pp ^ qqu,tp, q, pp ^ qqu,tp,q, p ^ quu.

ConsequentlyTRMNACpPq Ć TRZpPq for Z P tY, IY,RY,RA,MWAu.

To show thatTRYpPq Ć TRMNACpPq consider the profileP from Example 2.1.1. As it can be
observed from Example 2.2.14,TRMNACpPq |ù p ^ r, but we can observe in Example 2.2.10
that for this profileTRYpPq |ù  pp ^ rq. Furthermore, we can observe in Example 2.2.11
thatTRIY pPq * p ^ r; in Example 2.2.12 thatTRRYpPq |ù pp ^ rq and in Example 2.2.8 that
TRRApPq |ù  pp ^ rq.

To show thatTRMWApPq Ć TRMNACpPq, consider again the pre-agenda of the proof of Propo-
sition 2.3.22 and its corresponding profileP given on Table 2.15. For this profile we get
thatRMWApPq “ tp,q, p ^ q, pp ^  qq, α1, α2, pq^ pq, α3, α4u, since for this
judgment set the weight is 17, and for the remaining three other possible judgment sets the
weights are: 14 for the set of the judgment sets of the second,and third agent and 16 for the
judgment sett p, q, pp ^ qq, pp ^  qq, α1, α2, pq^ pq, α3, α4u. Conse-
quently,TRMWA |ù p_q. In the proof of Proposition 2.3.22 we show thatTRMNACpPq * p_q
for this profile.

Proposition 2.3.24.RMNAC is incomparable with RMR.

Proof. To showTRMRpPqĘTRMNACpPq consider the first part of the proof of Proposition 2.3.22.
To show thatTRMNACpPq Ę TRMRpPq consider the profile given in Table 2.13. We obtain
TRMNACpPq |ù  pp^ qq sinceRMNACpPq “ ttp, q, pp ^ qqu,t p,q pp ^ qqu. However
TRMRpPq *  pp ^ qq, see the second part of the proof of Proposition 2.3.13.

2.4 Conclusion

In this chapter we design judgment aggregation rules based on minimization. For a consen-
sual group, a collective decision has to be such that it coincides with the view of the majority
of the agents in the group. A consistent issue-majority set,in which each judgment is sup-
ported by a strict majority of agents, does not exist for every profile. The profiles for which
such a set exists we call majority-consistent. We design judgment aggregation rules that
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minimally change the profile into a majority-consistent profile. When the profile is majority-
consistent, no change is necessary. As a consequence the issue-majority set is always selected
by our rules, when it exists. Each concept of minimal change gives rise to a new judgment
aggregation rule.

We define ten judgment aggregation rules based on minimization, grouped in four families.
We analyze how these rules relate to similar voting rules, but also to the judgment aggrega-
tion rules proposed in (Miller and Osherson, 2009). The aim of this chapter is to generate
a large selection of concrete judgment aggregation rules that are majority-preserving and
can be applied to any profile. Judgment aggregation theory normally follows the reverse
methodology, studying the minimal sets of properties that can be simultaneously satisfied by
a non-dictatorial or non-oligarchic rule or, such as the resent work of (Nehring et al., 2011;
Nehring and Pivato, 2011), the characterization of rules which select from a desirable collec-
tion of judgment sets.

To determine if two judgment aggregation rules are distinct, we study the inclusion relations
between the collective judgments selected by pairs of rulesfor the same profile. One purpose
of the inclusion analysis, summarized in Table 2.4, is to verify whether two rules select
different collective judgments for the same profile. Another purpose of this analysis is to
qualify the rules to be able to distinguish them. Our analyses shows that the rulesRMSA and
RMR are very “weak” in the sense that they often select a very large number of judgment sets.
In this sense the ruleRIY is weaker thanRY.

The inclusion analysis enables us distinguish between the judgment aggregation rules based
on the number of judgment sets they select. A consensual group usually needs only one
collective judgment set to be selected by the judgment aggregation rule. Therefore the rules
RMSA, RIY andRMR are a bad choice for aggregation rules in consensual contexts. However
we still need to be able to distinguish between the remainingrules and pair them with partic-
ular problems of decision reaching in consensual groups. Tothis end we return to these rules
in Chapter 4 where we develop other properties for judgment aggregation rules and study
how they are satisfied byRMCSA, RRA, RMWA, RMNAC, RY, RRY andRdH ,max.

Since the aim of application for our rules are computationalcontexts, one can also distinguish
between rules by considering the complexity-theoretic properties of the rules. While we can
reasonably expect that for some rules such asRRA, finding the collective judgment sets can
be done in a computationally efficient way, for other others such as the young rules we can
expect that this task is not a problem of low computational complexity.

That the group decision minimizes the loss of information from the profile is only one way to
interpret adherence to majority. What we considered in thischapter is the utilitarian perspec-
tive of minimizing loss of information. Another way is to minimize the loss of information
from each individual judgment set in the profile, namely to take an egalitarian perspective.
The ruleRdH ,max in particular embodies this concept. An interesting class of rules can be con-
structed that minimally change each judgment set in the profile to obtain a majority-consistent
profile. These types of rules would be of interests to groups of self-interested agents that need
to reach a consensus on how to share a resource, the so calledfair division problems, see for
instance (Brams and Taylor, 1996, Introdcution).
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Developing weighted ternary
distance-based judgment aggregation

rules

Abstract. Unlike in consensual groups, in hierarchical groups the adherence
of the group decision to some majority is not the most relevant concern. The
agent responsible for the decision in a hierarchical group needs to use the ex-
pertise of each agent that contributes opinions. Judgment weights can be used
to represent the expertise of an agent regarding a given issue. While in con-
sensual groups each agent can be expected to give a judgment on each issue, in
hierarchical groups this is not necessarily the case. The aim of this chapter is
to develop judgment aggregation rules for hierarchical groups. We extend the
distance-based rules of the previous chapter into a class ofjudgment aggregation
rules that aggregate three-valued judgments with associated weights. We give
specific examples of rules and show the inclusion relationships between each
pair. For this class of rules we also consider the computational complexity of the
winner determination problem.

3.1 Introduction

Consider as an example of a hierarchical group a tourist recommender agent that needs to
find the best hotel for you, provided your demands and conditions. This agent assembles
information from various sources. While the hotel web page might be highly reliable on the
issue of Wi-Fi being available in the rooms, the web page on user experience is the one with
higher reliability than the hotel page when it comes to the issue of how silent the room is at
night. There would be certain information that the tourist agent would disregard, for instance
the quality of the bacon served for breakfast assessment from the vegetarian tourist blog. Also
the agent is not going to be able to find information on all demands and conditions from every
source. Consequently, the tourist recommender agent needsto use a judgment aggregation
rule that aggregates judgment sets in which some agents abstain on some issues,i.e., allow
for three-valued judgments, and have different weights regarding the issues.

In many aggregation contexts for hierarchical groups, it isnot feasible or desirable to request
all the agents to vote on all the issues. In these contexts, different agents may have differ-
ent levels of expertise on different issues and consequently their judgments should have a

51
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higher bearing on the collectively binding decisions. The rules introduced in Chapter 2 are
defined for binary and unweight judgment sets. The problem pursued in this chapter is the
development of weighted three-valued judgment aggregation rules.

Aggregation frameworks that allow for three-valued and even multi-valued judgments have
been considered in for instance (Gärdenfors, 2006; Pauly and van Hees, 2006; Dietrich, 2007;
Dokow and Holzman, 2010b; Li, 2010). Of these, only (Li, 2010) presents an actual rule,
the sequential rule, for aggregating such judgments. Of allthe rules introduced in Chapter
2, the rules based on the weighted majority graph and the rules based on distances can be
extended to handle weights on judgments. From the rules based on the weighted majoritarian
graph, we defined the ruleRRA andRMWA. A weighted three-valued extension ofRRA can be
easily constructed following the definitions and analysis of (Li, 2010). The ruleRMWA, as we
showed, is equivalent to the distance-based ruleRdH ,Σ. Therefore, it is the class of distance-
based rules the one we extend in this chapter. More precisely, we generalized further the
family of Rd,d. The generalization approach we take can be directly applied to generalize
RMNAC into a weighted three-valued rule. Observe that if we wantedto consider only weights
associated with agenda issues, we would be extending the rules based on the majority graph.
If we wanted to consider only weights associated with an agent, the rulesRY, RRY andRIY

are the best candidates for extending.

The challenge in distance-based aggregation is not in aggregating multi-valued rules, but
rather in aggregating rules in which weights are assigned tothe judgments. A judgment is
specified by a pair (agent, issue). Distance-based aggregation rules originate from belief
merging (Konieczny and Pino-Pérez, 1999, 2002; Koniecznyet al., 2004). Given a set of be-
lief sets and a set of constraints, belief merging theory studies how to merge a set of belief
bases in such a way that the resulting belief set, or sets, incorporate as much as possible
from the individual beliefs and satisfy all the given constraints. In belief merging, con-
sidering weights for an agent is not uncommon; see for instance (Revesz, 1995). Weights
assigned to an agent are also recently considered in judgment aggregation, (Nehring et al.,
2011; Nehring and Pivato, 2011), however in neither field do we encounter weights assigned
to an (agent,issue) pair, and weights assigned to issues arenot considered in judgment aggre-
gation. We solve the challenge of assigning weights to judgments by observing that some-
times a distance measure can itself be expressed using an arithmetic aggregator.

As in Chapter 2, here also we study inclusion relations between pairs of specific rules to
verify that these rules select different judgments for one profile. The example scenario of a
hierarchical group we consider in Chapter 5 is an example of agents making group decisions
in uncertain environments. Since these agents are severelyresource bounded we make a
complexity-theoretic analysis for the family of aggregation rules we develop in this chapter.

This chapter is structured as follows. In Section 3.2 we introduce the necessary definitions.
In Section 3.3 we design the family of weighted distance-based rules for aggregating ternary
judgments and also give examples of specific rules in this family. In Section 3.4 we define
an inclusion relation between judgment aggregation rules and analyze this relations between
pairs of the specific rules introduced. Although we want a rule that aggregates ternary judg-
ments, having only binary collective judgment sets selected by the rule can be desirable. In
Section 3.5 we show how the family of weighted rules can be further modified to allow the
decision-making agent to control structural properties ofthe selected (collective) judgment
sets. The binary value of the collective judgment sets is such structural property. In Sec-
tion 3.5 we also show how known judgment aggregation rules can be defined and extended
when represented as a weighted distance-based rule. In Section 3.6 we show the computa-
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tional complexity of determining whether a judgment set is among the ones selected from a
distance-based merging rule. In Section 3.7 we make our conclusions.

3.2 Preliminaries

In this section we prepare the ground for building our familyof extended distance based
judgment aggregation rules. We construct a general judgment aggregation framework for
representing three valued judgments. We also present the definitions of the family of rules
we start from.

3.2.1 A dual framework for representing judgment aggregation problems

The problem of aggregating judgments was formulated by (List and Pettit, 2002) using logic
representations. This problem, under the names ofabstractor algebraic aggregationhas
precursors in (Gilbaud, 1966; Wilson, 1975) and (Rubinstein and Fishburn, 1986).

To represent an aggregation problem in a logic-based framework, one needs to specify a
non-empty setL of well founded logic formulas and a binary (consequence) relation
|ù Ď PpLq ˆ L, wherePpLq denotes the power set ofL. L is called alanguageand its
elementspropositions. Propositions are not necessarily atomic formulas.

Definition 26. A set of formulas SPL is logically interrelatedif there exists at least oneϕ PS
such that either Sztϕu |ù ϕ or Sztϕu |ù  ϕ .

Definition 27. A judgment aggregation problem is specified by a set of issuescalled an
agendaAĎ L. Issues are the propositions on which the judgments are cast. The issues are
interdependent, meaning that they share sub-formulas and/or are subject to an additionally
specified set of constraints,RĎ L. The setAYR is logically interrelated.

A (binary) judgment on issuea P A is usually defined, see for instance (Dietrich, 2007), as
the choice of one element from the setta, au. Pauly and van Hees (2006) construct a multi-
valued logic framework in which a judgment is a valuationv : A ÞÑ T, whereT is a set of
values associated with gradient degrees of truth.

In an abstract framework no agenda is given, instead, the agents choose from a set of allowed
binary sequences. For example, if the agenda of the aggregation problem in propositional
logic werexp, pÑ q,qy, then the corresponding set of allowed sequences in an abstract
framework would betx0,1,0y,x0,1,1y,x1,0,0y,x1,1,1yu.

A dual framework for judgment aggregation with abstentionscan be constructed: the judg-
ments are represented both as propositions and as valuations. To this end, a ternary logic
languageL3 is used. We do not discuss here the possible logicsL3 that can be used to
represent the judgment aggregation problems and we do not concern ourselves with partic-
ular ternary logics. The choice of logic depends on the particular decision-problem that is
modeled.

L3 is the set of well formed formulas of propositional logicLProp (in BNF):

ϕ ::“ J | K | p |  ϕ | ϕ^ϕ | ϕ_ϕ | ϕ Ñ ϕ | ϕ Ø ϕ ,

wherep P L0, L0 being the set of atoms.
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The formulas ofL3 are assigned values from the setT “ t0, 1
2,1u. A valuation is a function

v0 : L0 ÞÑ T, where the truth-values 0 and 1 are interpreted as in classical logic, v0pKq “ 0
andv0pJq “ 1. The intermediate truth-value12 is interpreted depending on the semantics of
the particular ternary logicL3 used. The semantics ofL3 also determines how the function
v0 is extended to a functionv : L3 ÞÑ T.

A judgment sequencefor an agendaA, with cardinalitym, is the sequenceA P t0, 1
2,1u

m of
judgments assigned to each of the issues inA. We writeApaq to denote the judgment assigned

to a PA according to sequenceA. A judgment setfor an agendaA is the setÂ P 2A, where
A “ AYt a | a P Au. A judgment sequenceA corresponds to a judgment setÂ andvice
versa, if and only if, for alla PA the value ofa according toA is:

• 0 if and only if aP Â,

• 1 if and only if a P Â, and

• 1
2 if and only if a R Â and a R Â.

A consequence relation for a ternary logic,|ù3, is defined in the standard way (Urquhart,
2001). Given a set of formulasΓĂ L3 and a formulaψ P L3, we say thatψ is entailed byΓ,
if and only if all assignmentsv that makeΓ true, also makeϕ true. A formulaψ for which
H |ù3 ψ is a tautology ofL3. A formula ψ is satisfiablein L3, if and only if there exists
at least one valuationv such thatvpψq “ 1. A set of formulasΓ is inconsistentin L3 if and
only if Γ |ù K, andconsistent, denotedΓ*K otherwise. Observe thatΓ is consistent if there
exists a valuationv such thatvp

Ź

Γq “ 1 orvp
Ź

Γq “ 1
2.

A judgment setÂ is completewhen there exists noa P A for which a R A and a R A.
Correspondingly, a judgment sequenceA is complete when there exists noa P A for which
Apaq “ 1

2.

Example 3.2.1(Judgment sets and sequences). Consider an agendaA “ xc1,c1 Ñ s1,s1y,
R“H and agents N“ t1,2,3,4,5u. Let the judgment set for this agenda assigned by1 and
2 beÂ1,2“ tc1,c1Ñ s1,s1u. The corresponding sequence forÂ1,2 is A1,2“ x1,1,1y. Let the
judgment set assigned by3, 4 and5 beÂ3,4,5“ t c1u. The corresponding sequence forÂ3,4,5

is A3,4,5“ x0, 1
2,

1
2y. The judgment set and sequence for1 and2 are complete, while those for

3, 4 and5 are not complete.

A judgment setÂ and its corresponding sequenceA areconsistentfor logic L3, when
ÂYR * K. Given an agendaA and constraintsR, we can generate the set of all consistent
judgment sets and corresponding sequences. The set of all consistent sequencesA, with
respect toR, isApA,R, |ù3q, while the set of all corresponding consistent sets isÂpA,R, |ù3q.
To ease reading, we write simplyA andÂ whenever it is understandable from the context
whatA, R and |ù3 are used. We denote byAÓProp and byÂÓProp, the subsets ofA and
Â correspondingly, which satisfy the propertyProp. For example,Prop can be the subset
of all judgment sequences fromt0,1um; the subset of all judgment sequences in which the
judgment on issuea is 1

2 etc.

Example 3.2.2.For agendaA“ ta1,a1^a2,a2u andR“H the setsÂ andA are:

A“ t x0,0,0y, x 1
2,0,0y, x0,0,

1
2y, x

1
2,0,

1
2y, x1,0,0y, x0,0,1y, x1,0,

1
2y,

x 1
2,0,1y, x1,

1
2,1y, x0,

1
2,0y, x

1
2,

1
2,0y, x0,

1
2,

1
2y, x

1
2,

1
2,

1
2y, x1,

1
2,0y,

x0, 1
2,1y, x1,

1
2,

1
2y, x

1
2,

1
2,1y, x1,1,1yu
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Â“ t t a1, pa1^a2q, a2u,t pa1^a2q, a2u,t a1, pa1^a2qu,t pa1^a2qu,
ta1, pa1^a2q, a2u,ta1,pa1^a2q, a2u,ta1, pa1^a2qu,t pa1^a2q, a2u,
ta1,a2u,t a1, a2u,t a2u,t a1u,tu,ta1, a2u,t a1,a2u,ta1u,ta2u,
ta1,pa1^a2q,a2uu

In judgment aggregation, a judgment profile is a structure that contains all the judgments
made by agentsN over the agenda items inA. We give a dual definition of a profile: as
a matrix of judgment and as a multiset of judgment sets. The profile defined as a matrix
corresponds to the definition of a profile in abstract aggregation.

We defineπ to be anˆm matrix, wheren “ |N| and m“ |A|. The elements ofπ are
judgments: each row of the matrix is the judgment sets of one agent fromN for all issues
from A, while each column contains the judgment sets of all of the agents fromN for one
issue fromA. We define an operator⊲ to retrieve a given row, and the operator▽ to retrieve
a given column from the matrix. Thusπ⊲i returns the sequence of all judgments made by
agenti andπ▽a returns a sequence of all values assigned to agenda issuea.

Definition 28 (Profile matrix). Let N be a set of n agents andA an agenda of m issues. A
judgment profileπ P t0, 1

2,1u
nˆm is a |N|ˆ |A|-matrix π “ rpi, j s where pi, j “ vipa jq, and

i P N.
The operators⊲ : t0, 1

2,1u
nˆmˆN ÞÑ t0, 1

2,1u
m and▽ : t0, 1

2,1u
nˆmˆA ÞÑ t0, 1

2,1u
n are

defined as:

π⊲i “ xpi, j | j P t1, . . . ,muy,and
π▽a j “ xpi, j | i P t1, . . . ,nuy.

Since the judgment sequence can be seen as a 1ˆm matrix, A▽a“ Apaq denotes the value
assigned to issuea according to the judgment sequenceA. We use the notationAi “ π⊲i, and
pi, j to denote the judgmentpπ⊲iq▽ j.

Example 3.2.3.Consider the crew of cleaning robots N“ tr1, r2, r3u that renders judgments
on agendaA“ tp1, p2, p3,gu where:

p1: The meeting room is empty.

p2: The floors in the meeting room are dirty.

p3: There is garbage in the meeting room.

g: The group should clean the meeting room.

The constraint is that the group should clean the meeting room if and only if the room is empty
and the floors are dirty or there is garbage in the room,i.e.,R “ tpp1^pp2_ p3qq Ø gu.
One possible profile of judgments is:

π “
r1

r2

r3

p1 p2 p3 g
»

–

1 1 1 1
0 1 1

2 0
1 0 0 0

fi

fl

The judgment sequence of the robot r2 is π⊲r2 “ x0,1, 1
2,0y. The sequence of all judgments

for p3 is π▽p3“ x1, 1
2,0y.
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Alternatively we define a profile to be a multi-set of judgmentsets, multi-set since more than
one agents can submit the same judgment set.

Definition 29 (Profile set). Let N be a set of agents andA an agenda. A judgment profile P

for A and N is a non-empty multiset of n judgment sets AP 2A.

Example 3.2.4.The profile P corresponding to profileπ , from Example 3.2.3, is
P“ ptp1, p2, p3,gu,t p1, p2, gu,tp1, p2, p3, guq.

3.2.2 Binary unweight distance-based judgment aggregation rules

A judgment aggregation function is typically defined asf pA1, . . . ,Anq P t0,1un, A1, . . . ,An P
Â, whereÂ is the set of all consistent and complete judgment sets. An abstract aggregation
function is instead defined asf : t0,1umˆn ÞÑ t0,1um. In the judgment aggregation literature
it is always assumed, and we assume it here also, thatPP Â

n
and that the allowed co-domain

of f should also bêA.

A judgment aggregation rule can be defined asF : An ÞÑ PpAq, whereP denotes the non-
empty power set. Thedistance-based procedure, DBP defined in (Endriss et al., 2010b) is a
judgment aggregation rule. We give the definition of this rule using our notation.

LetAÓ01 denote the subset ofA which includes only the sequences fromt0,1um.

DBPpπq “ argmin
APA

Ó01

n
ÿ

i“1

δHpA,π⊲iq.

TheDBPchooses the collective judgment sequences in the followingway. First theHamming
distancesδH between a judgment sequenceA P AÓ01 and each ofπ⊲i are calculated. A
Hamming distance between two binary sequences is defined as

δHpA,A
1q “

m
ÿ

j“1

|Apa jq´A1pa jq|.

The rule selects thoseA P AÓ01 for which
řn

i“1 δHpA,π⊲iq is minimal.

3.3 The judgment aggregation rules

The distance-based belief merging rules developed in (Konieczny and Pino-Pérez, 1999) are
constructed by specifying a metric function (called a distance in the work in belief-merging)
and an arithmetic aggregation function. In one direction, we generalize theDBP in the fashion
of the operators of (Konieczny and Pino-Pérez, 1999), by considering a general aggregation
function instead of

řn
i“1 and a general distance measure instead ofδH .

If a judgment has assigned weightw we can see it as an unweighted judgment appearingw
times in the profile, as ifw agents gave the same judgment. Consequently, the aggregated
judgments ofDBP can be viewed as multiplied by a unique weight 1. We use this observa-
tion to generalize theDBP in another direction: before being aggregated the judgments are
multiplied with their assigned weights.
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3.3.1 Aggregation functions

Aggregation functions are defined in (Grabisch et al., 2009,pg.3). Since we use aggregation
functions extensively, we give this definition here.

Definition 30. Let I be a non-empty real interval. An aggregation function is a function

d : In ÞÑ I

that satisfies the following properties:

• if xď y, thendpx1, . . . ,x, . . . ,xnq ď dpx1, . . . ,y, . . . ,xnq (non-decreasing);

• d satisfies the boundary conditions:

– in f d“ in f I ;

– supd“ sup I.

For example, the
ř

is an aggregation function defined for the intervalp´8,`8q since
lim

xiÑ˘8

řn
i“1xi “˘8.

We also include here the definitions of the most common properties of an aggregation func-
tion, as given in (Grabisch et al., 2009).

Definition 31. An aggregation function is:

• symmetricif and only ifdpxq “ d prxsσq, for everyx P In and permutationσ
(Grabisch et al., 2009, pg.22);

• associativeif and only ifdpxq “ x for all x P I anddpx,dpx1q,x2q “ dpx,x1,x2q for
all x,x1,x2 P

Ť

nPN0 I
n (Grabisch et al., 2009, pg.22);

• idempotentif and only ifdpx,x. . . ,xq “ x for all x P I (Grabisch et al., 2009, pg.24).

In (Konieczny and Pino-Pérez, 1999) theminimalityof aggregation functions is considered.
We give here the general definition of this property.

Definition 32. An aggregation functiond satisfies minimality whendpxq “ in f I if and only
if x“dpin f I, . . . , in f Iq.

As a consequence of the infimum boundary condition ond and the property of non-decreasing
we have that ifx“dpin f I, . . . , in f Iq thendpxq “ in f I. Therefore,d satisfies minimality
when ifdpxq “ in f I thenx“dpin f I, . . . , in f Iq.

We give the definitions of some common aggregation functions. The functions
ř

, Max,
and an operatorGmaxare considered in (Konieczny and Pino-Pérez, 1999; Konieczny et al.,
2004);

ř

,Π, maxandAM are presented in (Grabisch et al., 2009, pg.6). The arithmetic mean
AM defined asAMpx1, . . . ,xnq “

1
n

ř

px1, . . . ,xnq. Observe that, while it holds thatAMpxq ě
AMpyq if and only if

ř

pxq ě
ř

pyq, the functionAM is idempotent, while
ř

is not.
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Definition 33. For x P In, the following functions are defined

ř

pxq “ x1` . . .`xn;
maxpxq “ maxpx1, . . . ,xnq;
AMpxq “ 1

n

řn
i“1xi ;

Πpxq “ x1 ¨ . . . ¨xn;
Gmaxpxq “ tpy1, . . . ,ynq | yi P x and y1 ě ¨¨ ¨ ě ynu.

The functionsΣ, max, AM, Π andGmaxare aggregation functions. TheGmaxis also called
a leximaxoperator. The

ř

, max, AM andGmaxsatisfy minimality on the intervalI“ R` “
r0,`8q, while Π satisfies minimality on the intervalI “ r1,`8q. To see thatGmax is
an aggregation function, observe thatGmaxsorts the input vector in a descending order.
There is a one to one correspondence between the natural numbers and the sorted vector
Konieczny et al. (2004).

All aggregation functions we present here are symmetric andsatisfy associativity. Only the
aggregation functionsAM andmaxare idempotent.

3.3.2 Distance functions

Konieczny and Pino-Pérez (1999) define “distances” what Deza and Deza (2009) define to be
a “metric”. Here we follow the nomenclature and definitions of (Deza and Deza, 2009), pri-
marily because we want to use a type of metric, not consideredin (Konieczny and Pino-Pérez,
1999), that would enable us to construct weighted distance-based judgment aggregation rules.
We present the definitions from (Deza and Deza, 2009, pg.3-4)and (Deza and Deza, 2009,
pg.45) that we use.

Definition 34. Let X be a set. A functionδ : XˆX Ñ R
` is calleda distanceon X if the

following properties are satisfied for every x,y,zP X:

• δ px,yq ě 0 (non-negativity),

• δ px,yq “ δ py,xq (symmetry), and

• δ px,xq “ 0 (reflexivity).

A distanceδ is called ametricon X when for every x,y,zP X:

• δ px,yq “ 0 if and only if x“ y (identity of indiscernible);

• δ px,yq ď δ px,zq` δ pz,yq (triangle inequality).

The setpX,δ q is called a metric space whenδ is a metric.

Definition 35. Let pX1,d1q,pX2,d2q, . . . ,pXm,dmq be a finite, or countable, number of metric
spaces. A product metric d is a metric on the Cartesian product X1ˆX2ˆ¨¨ ¨ˆXm“
tx“ px1,x2, ...,xmq : x1 P X1, ...,xm P Xmu defined as a functionf of δ1, ...,δm.

Theorem 3.3.1. If X1 “ X2 “ . . .Xn “ X, pδ ,Xq is a metric space andf is an aggregation
function forI P r0,`8q that satisfies minimality, then dpx,x1q “ fn

i“0δ pxi ,x1iq is a metric.
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Proof. Assume thatδ is a metric. As a consequenceδ px1,x2q “ 0 if and only if x1 “ x2,
δ px1,x2q “ δ px2,x1q andδ px1,x2q` δ px2,x3q ě δ px1,x3q for anyx1,x2,x3 P X. We need to
show thatd satisfies identity of indiscernible, symmetry and triangular inequality.

Identity of indiscernible
Sincef satisfies minimality, thendpx,x1q “ fn

i“0δ pxi ,x1iq “ 0 if and only if δ pxi ,x1iq “ 0 for
eachi. Therefored satisfies the identity of indiscernible ifδ satisfies this property.

Symmetry
From the definitiondpx,x1q “ fn

i“0δ pxi ,x1iq, while dpx1,xq “ fn
i“0δ px1i ,xiq. We obtain that

dpx,x1q “ dpx1,xq if δ pxi ,x1iq “ δ px1i ,xiq for eachi. Therefored satisfies symmetry ifδ satis-
fies symmetry.

Triangular inequality
Sinceδ satisfies triangular inequality, we have thatδ px1

i ,x
2
i q` δ px2

i ,x
3
i q ě δ px1

i ,x
3
i q for each

i P t1, . . . ,mu. Consequently,fm
i“1δ px1

i ,x
2
i q `f

m
i“1δ px2

i ,x
3
i q ě f

m
i“1δ px1

i ,x
3
i q since bothf

and` are non-decreasing.

The well known functions, the Hamming distance and thedrastic distance, are both product
metrics that can be defined for anyX. We will give their definitions, as well as introduce
some other product metrics and distances. Some of these functions are defined only for
X “ t0, 1

2,1u, since we are interested in three-valued judgments.

Definition 36 (Hamming product metric).

The Hamming metric is a functionδH : Xˆ X ÞÑ t0,1u, which indicates if two judgments
differ. It is defined as:

δHpa1,a2q “

"

0 when a1“ a2

1 when a1‰ a2
.

The Hamming product metric dH is a function dH : XmˆXm ÞÑ N0, which indicates the
number of judgments on which two sequences differ. It is defined as:

dHpx,x1q “
m

ÿ

i“1

δHpxi ,x
1
iq.

Example 3.3.2.Consider the agendaA“ta1,a2,a3u and the sequences for it: A1“x1, 1
2,0y,

A2“ x
1
2,1,0y, A3“ x1, 1

2,0y.

The Hamming metrics between these sequences are:

dHpA1,A2q “ 2 because the judgments in A1 and A2 differ on issues a1 and a2,

dHpA2,A3q “ 2 also because the judgments in A2 and A3 differ on issues a1 and a2,

dHpA1,A3q “ 0 because the judgments in A1 and A3 are the same on all issues.

The drastic distance between to sequences is one if the sequences are different and zero if
they are the same.
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Definition 37 (Drastic product metric).

The drastic distance is a function dD : XmˆXm ÞÑ N0 defined as:

dDpx,x1q “maxpδHpx1,x
1
1q,δHpx2,x

1
2q, . . . ,δHpxm,x

1
mqq.

Example 3.3.3.Consider the sequences A1, A2 and A3 for the agenda from Example 3.3.2:
A1“ x1, 1

2,0y, A2“ x1,1,0y, A3 “ x1, 1
2,0y.

The drastic metrics between these sequences are:

dDpA1,A2q “ 1,

dDpA2,A3q “ 1,

dDpA1,A3q “ 0.

The Hamming distance does not make a difference by how much two judgments differ, but
whether they differ or not. WhenX “ t0,1u, this is not a problem, but forX “ t0, 1

2,1u,
we might want to consider by how much do two judgments differ.One way to capture this
concept of distance is by theTaxicab metric, a measure introduced by Hermann Minkowski
(1864-1909). The Taxicab metric between two judgment sequences is the sum of the absolute
values of the difference between each judgment pairs in the sequences.

Definition 38 (Taxicab product metric).

A taxicab metric is a function
δT : t0, 1

2,1uˆt0,
1
2,1u ÞÑ t0, 1

2,1u, which indicates by how much do too judgments differ. It
is defined as:

δTpx1,x2q “ |x1´x2|.

The Taxicab product metric is a function dT : t0, 1
2,1u

mˆt0, 1
2,1u

m ÞÑN0 defined as:

dTpx,x1q “
m

ÿ

i“1

δTpxi ,x
1
iq.

Observe that
ř

is an aggregation function that satisfies minimality on the intervalI“ N0.

Example 3.3.4.Consider A1, A2 and A3 for the agenda from Example 3.3.2: A1“ x1, 1
2,0y,

A2“ x1,0,0y, A3“ x
1
2,1,0y.

The Taxicab metrics between these sequences are:

dTpA1,A2q “ |1´1|` |12´0|` |0´0| “ 1
2,

dTpA2,A3q “ |1 ´ 1
2| ` |0 ´ 1| ` |0 ´ 0| “ 11

2,

dTpA1,A3q “ |1´ 1
2|` |

1
2´1|` |0´0| “ 1.

Observation 3.3.5. If A1,A2 P t0,1um then dHpA1,A2q “ dTpA1,A2q

The Taxicab metric does not make a difference whether the judgment is determined, 1/0 or an
abstention. With choosing the metric the designer chooses how to treat the abstentions with
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respect to judgments “yes” and “no”. By choosing the Hammingor the drastic metric, the
abstentions are treated as equal to the “yes” and “no” judgments. The “distance” functions
can be defined to treat the abstentions differently.

The distancemO assigns the distance zero from any judgment to an abstention, thus consid-
ering an abstention to equal to “yes” when compared to a “yes”judgment and “no” when
compared to a “no” judgment.

Definition 39 (Optimistic metric).

The optimistic distance is a function
mO : t0, 1

2,1u
mˆt0, 1

2,1u
m ÞÑ t0,1u defined as

mOpx,x1q “
m

ÿ

i“1

tδTpxi ,x
1
iqu.

Observation 3.3.6.The function mO satisfies non-negativity, symmetry and reflexivity, but it
does not satisfy identity of indiscernible. The functionfpxq “ p

ř

˝t uqpxq does not satisfy
minimality.

Example 3.3.7.Consider the agenda from Example 3.3.2 and the judgment setsA1, A2 and
A3 for this agenda: A1“ x1, 1

2,0y, A2“ x
1
2,

1
2,0y, A3“ x0, 1

2,0y.

The optimistic metrics between these sequences are:

mOpA1,A2q “ 0`0`0“ 0,

mOpA2,A3q “ 0`0`0“ 0,

mOpA1,A3q “ 1`0`0“ 1.

In all the metrics we presented, the number assigned to a pairof judgment sequences is
always obtained by comparing only the two sequences in the pair. (Duddy and Piggins, 2011)
introduce a more complex metric for complete judgment sets as a functiong : AÓ01ˆA

Ó01,
that is not a product metric. Their metric is defined in the following way. LetG“pAÓ01

,Eq be
a graph where the vertices are the judgment sequences inA

Ó01. The set of edgesE P AÓ01ˆ
A
Ó01 consists of pairspA1,A2q P E for which there exists noA P AÓ01 such thatdHpA1,A2q “

dHpA1,Aq`dHpA,A2q. A metricgpA1,A2q is the number of edges in the shortest path between
A1 andA2.

We can extend the metric of (Duddy and Piggins, 2011) to incomplete judgments by using a
graphG3“pA,Eq and allowing for an edge to exist betweenA1 andA2 if an only if there exists
noA P A such thatdTpA1,A2q “ dTpA1,Aq`dTpA,A2q. We call this metricdG. We calculate
gpA1,A2q as the number of edges in the shortest path betweenA1 andA2. However, whether
this metric is meaningful depends on the semantics of the ternary logics. For instance, for
the logics of Kleeney or Łukasiewicz, and a classical|ù3, there is a judgment sequence at
a Taxicab distance12 or at a Hamming distance 1 for each judgment sequence inA. This is
because a judgment setÂ is consistent when̂AYR*3K is false or unknown to be false,i.e.,
evaluated to1

2.

Other distances and metrics can be defined.
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3.3.3 Weights

Different agents may not be equally competent, or able, to give judgments on all agenda is-
sues. Enriching the judgment aggregation problem representation with a collection of weights
captures this variety. There are three possible types of weights that can be considered: weight
associated with an agent, weight associated with an agenda issue and weight associated with
a judgment,i.e., with a pagent, issueq pair. All types of weights can be represented with a
weight matrix. Given a set of agentsN and an agendaA, a weight matrixW is a rwi, j snˆm

matrix. The elements ofW, wpi, jq P R`, are the weights assigned to the judgments given by
i P N for ana j P A.

One interpretation of the judgment weights is that of the weight representing reputation or
perceived accuracy of an agenti regarding issuea at a given timet. The reputation can be
defined simply as the ratio between the number of times an agent is asked to make a judgment
on issuea j before time momentt and the number of times, untilt has his judgment been
confirmed. Assume thatrpi, j, tq P r0,1s is the normalized reputation of agenti regarding
a j P A. Weights can be constructed from reputationrpi, j, tq aswi, j ptq “ 1` rpi, j, tq, thus
maintaining thatwi, j ě 1. When the reputation of the agent is 0, namely none of his judgments
is confirmed, his weight is 1, because the opinion of this agent still needs to be considered.

The cases when no weights are supplied, when weights associated with an agent are supplied,
or when weights associated with an agenda issue are supplied, can all be represented as a
special case ofW. If no weights are given, thenW “U , whereU is such that for eachi and
j, wi, j “ 1.

If the weights associated with an agent are given then for each i, wi,1 “ wi,2 “ ¨¨ ¨ “ wi,m.
In judgment aggregation problems that use this type of weights, the reputation of the agents
is set beforehand and does not depend on the agenda.E.g., for a set of three agents and an
agenda of three issues the matrixW is a possible agent weight matrix.

W“

»

–

1 1 1
1.2 1.2 1.2
0.2 0.2 0.2

fi

fl

If the weights associated with agenda issues are given then for eachj, w1, j “w2, j “ ¨¨ ¨“wn, j .
This type of weights distinguishes between the relevance ofone issue over another. These
weights do not depend on the agent who renders a judgment. If an issuea is more relevant
then issuea1, then the difference in judgments ona is more severe than the difference in
judgments ona1. E.g.,for a set of three agents and an agenda of three issues the matrix W is
a possible issue weight matrix.

W “

»

–

1 2 1.5
1 2 1.5
1 2 1.5

fi

fl

Consider the so called “truth-functional” agendas, which can be partitioned into a set of
premises and a set of conclusions. Based on this partition, one can distinguish between
premise-based rules, which place higher importance on the premises and conclusion-based
rules that place higher importance on the conclusions. According to the premise-based ag-
gregation rule defined in (Dietrich and Mongin, 2010), the collective judgments on the issues
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from the set of premises are the judgments supported by a strict majority. We can use the
weights to force a rule aggregator to be premise-based, by increasing the weights on the
premises, or conclusion based, by increasing the weights onthe conclusions.

In this thesis we work under the assumption that the weights in W are specified by the agent
who aggregates the judgments. The presence of judgment weights in an aggregation problem
implies that one pre-established agent or service aggregates the judgments centrally. This im-
plication is due to the collective judgments selected depending on who assigns the associated
weights.

Lastly the weights can be used to represent aggregation problems in which not all agents are
allowed to give judgments on all agenda issues. If the aggregating agent is not interested in
the judgment ona j of agenti, then he should setwpi, jq “ 0. The zero weight can also be
used in the case when the agents fail to report a judgment on a given issue due to for instance
technical difficulties in communication.

3.3.4 Distance-based rules, the generalization

We can now “lift” the definition of the premise-based procedure along the two directions and
construct a new family of weighted distance-based judgmentaggregation rules.

Definition 40. LetA “ ta1, . . . ,amu be an agenda,R a set of constraints, N a set of agent
names, andApA,R, |ù3q the set of all consistent three-valued judgment sequences for A and
R. Letd be an aggregation function, and d a product metric. The metric d is constructed from
an aggregation functionf that satisfies minimality and a distanceδ . A weighted distance-
based aggregation rule is a function∆d,d : A

n ˆ pR`qnˆm ÞÑ PpAq, defined as:

∆d,dpπ ,Wq “ argmin
APA

dn
i“1f

m
j“1 wpi, jq ¨δ pApa j q,π i, jq.

Example 3.3.8.Consider the profileπ from Example 3.4.1 for agents N“ t1,2,3u. Let the
weight matrix be W.

π “
1
2
3

a1a2a3
»

–

1 1
2

1
2

1 0 0
0 0 0

fi

fl W “
1
2
3

a1a2a3
»

–

1 3
2 2

1 4
3

5
4

1 3
2

7
4

fi

fl

We used “ f “
ř

and δ “ δT . The sum of weighted distances between A1 “ π⊲1, and
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each sequence ofπ, whenf“
ř

is:

ř3
i“1

ř3
j“1wpi, jq ¨δTpA1▽a j ,Ai▽a jq

“
ř3

i“1pwpi,1q ¨δTpA1▽a1,Ai▽a1q
`wpi,2q ¨δTpA1▽a2,Ai▽a2q
`wpi,3q ¨δTpA1▽a3,Ai▽a3qq

“ pwp1,1q ¨δTpA1▽a1,A1▽a1q`wp1,2q ¨δTpA1▽a2,A1▽a2q`wp1,3q ¨δTpA1▽a3,A1▽a3qq
` pwp2,1q ¨δTpA1▽a1,A2▽a1q`wp2,2q ¨δTpA1▽a2,A2▽a2q`wp2,3q ¨δTpA1▽a3,A2▽a3qq
` pwp3,1q ¨δTpA1▽a1,A3▽a1q`wp3,2q ¨δTpA1▽a2,A3▽a2q`wp3,3q ¨δTpA1▽a3,A3▽a3qq
“ p1 ¨ |1´1|` 3

2 ¨ |
1
2´

1
2|`2 ¨ |12´

1
2|

` 1 ¨ |1´1|` 4
3 ¨ |

1
2´0|` 5

4 ¨ |
1
2´1|

` 1 ¨ |1´0|` 3
2 ¨ |

1
2´0|` 7

4 ¨ |
1
2´1|

“ 0`0`0`0` 4
6`

5
8`

6
8`

3
4`

7
8

“ 3.66

If the weight matrix contains weights associated with an agent, we can define a weighted
aggregation rule without the requirement thatd is a product of distances. LetV be a weight
tupleV “ rwsnˆ1 containing the weight of each agent.

Definition 41. An agent-weighted distance-based aggregation rule is a function
∆d,d

V : A
n ˆ pR`qn ÞÑ PpAq, defined as:

∆δ ,d
V pπ,Vq “ argmin

APA

dpw1 ¨dpA,π⊲1q, . . . ,wn ¨dpA,π⊲nqq.

The co-domain of the rules∆ must be a power set ofA. However, we can define the rules
∆ for a profileπ P t0, 1

2,1u
nˆm instead ofπ P An, without much modification. This means

that the distance-based judgment aggregation rules can be applied to sequences which are not
consistent for the chosen logic. Miller (2008) studied the case when each agent is allowed to
use his ownsubjective rulesRi for the judgments he produces. In addition to this variation,
one can also conceive the case when each agent uses individual subjective semantics. Our
rules∆d,d can be applied to both of these two cases. The definition of∆d,d does not explicitly
consider the ternary logic semantics. This concern is resolved by defining the setA. The
difference between aggregating sequences consistent in for instance Post logic (Post, 1921)
and Kleeney logic (Kleene, 1938) is that the co-domain of∆d,d is different for each of these
logics.

3.4 (Non)Inclusion relationships between specific rules

Each combination ofd,f andδ gives rise to another aggregation rule, however not all of
these rules are meaningful. We call a rulemeaninglessif for every profile, except the profile
in which π1 “ π2 “ ¨¨ ¨ “ πn, each judgment set that is in the profile is also selected as a
collective judgment set. Namely, a rule is meaningless whenfor all π P An and for alli P N,
π⊲i P ∆d,dpπ,Uq. For instance, combiningΠ with any distance function gives rise to a
meaningless rule, since for eachπ P An we obtain that∆d,Πpπ,Uq “ π. Combiningmax
with dD gives rise to a meaningless rule as well, since unlessπ1 “ π2 “ ¨¨ ¨ “ πn we obtain
∆d,Πpπ ,Uq “ A.
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Combiningmaxwith dh or dt we obtain a rule that behaves as a plurality voting rule, namely
it selects the judgment sequence that is supported by the largest number of agents, regardless
of how big this number is with respect to the total number of agentsn. When such a sequence
does not exist, the entire profile is selected.

To useΠ we need to use a function whose domain isr1,`8q instead ofr0,`8q. One such
function ismP : t0,1umˆt0,1um ÞÑ N defined as:

mPpx,x1q “Πm
i“12δH px1,x

1
i q
.

We can then obtain an operator∆mp,Π. However, for every profileπ, ∆mP,Πpπ,Wq selects
the same judgment sets as∆dH ,

ř

pπ ,Wq: it is enough to observe that for any three judgment
sequencesA, A1 andA2, from t0, 1

2,1u
m it holds

m
ÿ

i“1

w1,i ¨δHpApiq,A1piqq ď
m

ÿ

i“1

w1,i ¨δHpApiq,A2piqq

if and only if
m

ź

i“1

w1,i ¨2
δHpApiq,A1piqq ď

m
ź

i“1

w1,i ¨2
δHpApiq,A2piqq

.

We can construct a judgment aggregation function for the intervalI“ r1,`8q as

Π˚pxq “Πn
i“1pxi`1q.

UsingΠ˚ “Π˝g, wheregpxq “ x`1, we can obtain meaningful judgment aggregation rules.

We can illustrate the specific rules that can be obtained withthe metrics and aggregation
functions that we introduced through an example.

Example 3.4.1. Consider the agendaA and corresponding setA from Example 3.2.2, and
the profile:

π “

»

–

1 1
2

1
2

1 0 0
0 0 0

fi

fl

Table 3.1 gives the results for∆dH ,dpπ ,Uq, Table 3.2 gives the results for∆dD,dpπ ,Uq, Table
3.3 gives the results for∆dT ,dpπ ,Uq, and Table 3.4 gives the results for∆mO,dpπ ,Uq. The
dark gray fields are the minima in each column corresponding to an aggregation rule. For this
π , all rules selectx1,0,0y. However this is not the case with all profiles.



66 Chapter 3 Developing weighted ternary distance-based judgment aggregation rules

A dHpA,x1, 1
2,

1
2yq dHpA,x1,0,0yq dHpA,x0,0,0yq

ř

Max Gmax Π˚ AM
x0,0,0y 3 1 0 4 3 (3,1,0) 8 1.33
x 1

2,0,0y 3 1 1 5 3 (3,1,1) 16 1.66
x0,0, 1

2y 2 2 2 6 2 (2,2,2) 27 2
x 1

2,0,
1
2y 2 1 2 5 2 (2,2,1) 18 1.66

x1,0,0y 2 0 1 3 2 (2,1,0) 6 1
x0,0,1y 3 2 1 6 3 (3,2,1) 24 2
x1,0, 1

2y 1 1 2 4 2 (2,1,1) 12 1.33
x 1

2,0,1y 3 2 2 7 3 (3,2,2) 36 2.33
x1, 1

2,1y 1 1 3 7 3 (3,3,1) 16 2.33
x0, 1

2,0y 2 2 1 5 2 (2,2,1) 18 1.66
x 1

2,
1
2,0y 2 2 2 6 2 (2,2,2) 27 2

x0, 1
2,

1
2y 1 3 2 6 3 (3,2,1) 24 2

x 1
2,

1
2,

1
2y 1 3 3 7 3 (3,3,1) 32 2.33

x1, 1
2,0y 1 1 2 4 2 (2,1,1) 12 1.33

x0, 1
2,1y 2 3 2 7 3 (3,2,2) 36 2.33

x1, 1
2,

1
2y 0 2 3 5 3 (3,2,0) 12 1.66

x 1
2,

1
2,1y 2 3 3 8 3 (3,2,2) 48 2.66

x1,1,1y 2 2 3 7 3 (3,2,2) 36 2.33

Table 3.1: The Hamming metric between the sequences inπ and the elements ofA.
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A dDpA,x1, 1
2,

1
2yq dDpA,x1,0,0yq dDpA,x0,0,0yq

ř

Max Gmax Π˚ AM

x0,0,0y 1 1 0 2 1 (1,1,0) 4 0.66

x 1
2,0,0y 1 1 1 3 1 (1,1,1) 8 1
x0,0, 1

2y 1 1 1 3 1 (1,1,1) 8 1
x 1

2,0,
1
2y 1 1 1 3 1 (1,1,1) 8 1

x1,0,0y 1 0 1 2 1 (1,1,0) 4 0.66

x0,0,1y 1 1 1 3 1 (1,1,1) 8 1
x1,0, 1

2y 1 1 1 3 1 (1,1,1) 8 1
x 1

2,0,1y 1 1 1 3 1 (1,1,1) 8 1
x1, 1

2,1y 1 1 1 3 1 (1,1,1) 8 1
x0, 1

2,0y 1 1 1 3 1 (1,1,1) 8 1
x 1

2,
1
2,0y 1 1 1 3 1 (1,1,1) 8 1

x0, 1
2,

1
2y 1 1 1 3 1 (1,1,1) 8 1

x 1
2,

1
2,

1
2y 1 1 1 3 1 (1,1,1) 8 1

x1, 1
2,0y 1 1 1 3 1 (1,1,1) 8 1

x0, 1
2,1y 1 1 1 3 1 (1,1,1) 8 1

x1, 1
2,

1
2y 0 1 1 2 1 (1,1,0) 4 0.66

x 1
2,

1
2,1y 1 1 1 3 1 (1,1,1) 8 1

x1,1,1y 1 1 1 3 1 (1,1,1) 8 1

Table 3.2: The drastic metric between a sequence inπ and the elements ofA.

If a rule is not meaningless, how can we determine if it selects the same collective judgment
sequences as another rule? In Chapter 2 we defined the equivalence and set inclusion of
judgment aggregation rules through the logical theory of the rules. The majority of the rules
based on minimization select incomplete judgment sets. Thelogical theory based comparison
is adequate there since it compares the collective judgments selected by the two rules that are
being considered.

The distance-based judgment aggregation rules always select at least one collective judgment
for each agenda issue, therefore a more adequate relation analysis between the rules is one
that considers which judgment sequences as a whole are selected and not the individual judg-
ments. We introduce a variant of rule relations, considering a rule to be more discriminant
than another rule when the set of sequences selected by the first rule always includes the set of
sequences selected by the second rule, under the same profileand weight matrix. We define
this rule relations concept formally.

Definition 42 (Rule Relations). Let F1 and F2 be two judgment aggregation rules defined as
F1 : SnˆpR`qnˆm ÞÑ PpSq and F2 : SnˆpR`qnˆm ÞÑ PpSq.

We say that rule F1 is included in rule F2, denoted F1Ă F2, if for everyπ P Sn and
W P pR`qnˆm it holds that F1pπ ,Wq Ă F2pπ ,Wq.

A rule F1 is incomparable with rule F2, denoted F1 ff F2, if there exists a pairπ P Sn and
W P pR`qnˆm such that F1pπ ,Wq Ć F2pπ ,Wq and F2pπ ,Wq Ć F1pπ ,Wq.

A rule F1 is equal to rule F2, denoted F1 “ F2, if for everyπ P Sn and WP pR`qnˆm it holds
that F1pπ ,Wq “ F2pπ ,Wq.
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A dTpA,x1, 1
2,

1
2yq dTpA,x1,0,0yq dTpA,x0,0,0yq

ř

Max Gmax Π˚ AM
x0,0,0y 2 1 0 3 2 (2,1,0) 6 1
x 1

2,0,0y 11
2 11

2
1
2 31

2 11
2 (11

2,
1
2,

1
2) 9.375 1.16

x0,0, 1
2y 11

2 11
2

1
2 31

2 11
2 (11

2,1
1
2,

1
2) 9.375 1.16

x 1
2,0,

1
2y 1 1 1 3 1 (1,1,1) 8 1

x1,0,0y 1 0 1 2 1 (1,1,0) 4 0.6
x0,0,1y 2 2 1 5 2 (2,2,1) 18 1.6
x1,0, 1

2y
1
2

1
2 11

2 21
2 11

2 (11
2,

1
2,

1
2) 5.645 0.83

x 1
2,0,1y 11

2 11
2 11

2 41
2 11

2 (11
2,1

1
2,1

1
2) 15.625 1.5

x1, 1
2,1y

1
2 11

2 21
2 41

2 21
2 (21

2,1
1
2,

1
2) 13.125 1.5

x0, 1
2,0y 11

2 11
2

1
2 31

2 11
2 (11

2,1
1
2,

1
2) 9.375 1.16

x 1
2,

1
2,0y 1 1 1 3 1 (1,1,1) 8 1

x0, 1
2,

1
2y 1 2 1 4 2 (2,1,1) 12 1.3

x 1
2,

1
2,

1
2y

1
2 11

2 11
2 31

2 11
2 (11

2,1
1
2,

1
2) 9.375 1.16

x1, 1
2,0y

1
2

1
2 11

2 21
2 11

2 (11
2,

1
2,

1
2) 5.625 0.83

x0, 1
2,1y 11

2 21
2 11

2 51
2 21

2 (21
2,1

1
2,1

1
2) 21.8751.83

x1, 1
2,

1
2y 0 1 2 3 2 (2,1,0) 6 1

x 1
2,

1
2,1y 1 2 2 5 2 (2,2,1) 18 1.66

x1,1,1y 1 2 3 6 3 (3,2,1) 24 2

Table 3.3: The taxicab metric between a sequences inπ and the elements ofA.

A mOpA,x1, 1
2,

1
2yq mOpA,x1,0,0yq mOpA,x0,0,0yq

ř

Max Gmax Π˚ AM
x0,0,0y 1 1 0 2 1 (1,1,0 ) 4 0.66
x 1

2,0,0y 0 0 0 0 0 ( 0,0,0) 1 0
x0,0, 1

2y 1 1 0 2 1 (1,1,0 ) 4 0.66
x 1

2,0,
1
2y 0 0 0 0 0 ( 0,0,0) 1 0

x1,0,0y 0 0 1 1 1 (1,0,0 ) 2 0.33
x0,0,1y 1 2 1 4 2 (2,1,1 ) 12 1.33
x1,0, 1

2y 0 0 1 1 1 (1,0,0 ) 2 0.33
x 1

2,0,1y 0 1 1 2 1 (1,1,0 ) 4 0.66
x1, 1

2,1y 0 1 2 3 2 (2,1,0) 6 1
x0, 1

2,0y 1 1 0 2 1 (1,1,0 ) 4 0.66
x 1

2,
1
2,0y 0 0 0 0 0 ( 0,0,0) 1 0

x0, 1
2,

1
2y 1 1 0 2 1 (1,1,0 ) 4 0.66

x 1
2,

1
2,

1
2y 0 0 0 0 0 ( 0,0,0) 1 0

x1, 1
2,0y 0 0 1 1 1 (1,0,0 ) 2 0.33

x0, 1
2,1y 1 2 1 4 2 (2,1,1 ) 12 1.33

x1, 1
2,

1
2y 0 0 1 1 1 (1,0,0 ) 2 0.33

x 1
2,

1
2,1y 0 1 1 2 1 (1,1,0 ) 4 0.66

x1,1,1y 0 2 3 5 3 (3,2,0 ) 12 1.66

Table 3.4: The optimistic metric between the sequences inπ and the elements ofA. Note
that since the sequence in which all judgments are1

2 will always be closest to any judgment
sequence, we can disregard it.
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We show the inclusion properties of the distance-based aggregation rules built upon the spe-
cific aggregation functions we considered.

Proposition 3.4.2. ∆d,
ř

“ ∆d,AM for d such thatf“
ř

.

Proof. Forně 1

n
ÿ

i“1

m
ÿ

j“1

wpi, jq ¨δ pA▽a j ,Ai▽a jq ă
n

ÿ

i“1

m
ÿ

j“1

wpi, jq ¨δ pA1▽a j ,Ai▽a jq

if and only if

1
n

n
ÿ

i“1

m
ÿ

j“1

wpi, jq ¨δ pA▽a j ,Ai▽a jq ă
1
n

n
ÿ

i“1

m
ÿ

j“1

wpi, jq ¨δ pA1▽a j ,Ai▽a jq.

Proposition 3.4.3. ∆d,maxĂ ∆d,Gmaxand∆d,GmaxĆ ∆d,max for d such thatf“
ř

.

A dHpA,x1,0,0yq dHpA,x1,1,1yq dHpA,x0,0,0yq Max Gmax
x0,0,0y 1 3 0 3 (3,1,0)
x0,1,0y 2 2 1 2 (2,2,1)
x1,0,0y 0 2 1 2 (2,1,0)
x1,1,1y 2 0 3 3 (3,2,0)

Table 3.5: The Hamming metrics between the sequences inπ and the elements ofA. The
dark gray fields are the minima in the corresponding column.

Proof. For x1, . . . ,xn,y1, . . . ,yn P R
` if Gmaxpx1, . . . ,xnq ă Gmaxpy1, . . . ,ynq then the first

element ofGmaxpx1, . . . ,xnq is smaller or equal to the first element ofGmaxpy1, . . . ,ynq. Since
the first elements ofGmaxpx1, . . . ,xnq is maxpx1, . . . ,xnq and the first element of
Gmaxpy1, . . . ,ynq is maxpy1, . . . ,ynq. Consequently, if

Gmaxni“1

m
ÿ

j“1

wpi, jq ¨δ pA▽a j ,Ai▽a jq ăGmaxni“1

m
ÿ

j“1

wpi, jq ¨δ pA1▽a j ,Ai▽a jq

then

maxni“1

m
ÿ

j“1

wpi, jq ¨δ pA▽a j ,Ai▽a jq ďmaxni“1

m
ÿ

j“1

wpi, jq ¨δ pA1▽a j ,Ai▽a jq.

To show that∆d,GmaxĆ ∆d,max, it is sufficient to give an example ofπ. Considerd“ dH and
W “U . LetA“ ta1,a2,a3u, R“ ta3Ø a1^a2u and

π “

»

–

1 0 0
1 1 1
0 0 0

fi

fl

.
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As it can be observed in Table 3.5,∆dH ,maxpπ,Uq “ tx1,0,0y,x0,1,0yu, while
∆dH ,Gmaxpπ ,Uq “ tx1,0,0yu.

Proposition 3.4.4. ∆d,Gmaxff ∆d,
ř

for d such thatf“
ř

.

Proof. We give a counter-example.

LetA“ ta1,a2,a3u, andA“ tx0,0,0y,x0,1,1y,x1,0,0y,x1,1,0yu, d“ dH , W “U and

π “

»

–

1 1 0
1 1 0
0 0 0

fi

fl

.

As it can be observed in Table 3.6,∆d,Gmaxpπ,Uq “ tx1,0,0yu while
∆d,maxpπ ,Uq “ tx1,1,0yu.

A dHpA,x1,1,0yq dHpA,x1,1,0yq dHpA,x0,0,0yq Gmax
ř

x0,0,0y 2 2 0 (2,2,0) 4
x0,1,1y 2 2 2 (2,2,2) 6
x1,0,0y 1 1 1 (1,1,1) 3

x1,1,0y 0 0 2 (2,0,0) 2

Table 3.6: The Hamming metrics between the sequences inπ and the elements ofA. The
dark gray fields are the minima in the corresponding column.

Proposition 3.4.5. ∆d,
ř

ff ∆d,Π˚
where d is such thatf“

ř

.

Proof. We give a counter-example.

Let A “ ta1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14u be an agenda. The set of all
consistent judgment sets for itA is given in Table 3.7.

A“ {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14 }

A

A1“ {a1,  a2,  a3, a4,  a5,  a6, a7,  a8,  a9, a10,  a11,  a12, a13, a14 }
A2“ { a1, a2,  a3,  a4, a5,  a6,  a7, a8,  a9,  a10, a11,  a12, a13, a14 }
A3“ { a1,  a2, a3,  a4,  a5, a6,  a7,  a8, a9,  a10,  a11, a12, a13, a14 }
A4“ { a1,  a2,  a3,  a4,  a5,  a6,  a7,  a8,  a9,  a10,  a11,  a12,  a13, a14 }
A5“ { a1,  a2,  a3,  a4,  a5, a6,  a7, a8,  a9,  a10,  a11,  a12,  a13,  a14 }

Table 3.7:The setA of consistent judgment sets for agendaA.

Let the profileπ be such thatπ⊲1“ A1, π⊲2“ A2 andπ⊲3“ A3. As it can be observed in
Table 3.8,∆dH ,

ř

pπ ,Uq “ tA1
,A2

,A3u, while ∆dH ,Π˚
pπ,Uq “ tA4u.

Proposition 3.4.6. ∆d,Gmaxff ∆d,Π˚
for d such thatf“

ř

.

Proof. Consider the same example ofπ as in the proof of Proposition 3.4.5;
∆dH ,Gmaxpπ ,Uq “ tA1

,A2
,A3u, while ∆dH ,Π˚

pπ,Uq “ tA4u.
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AP A dHpA,A1q dH pA,A2q dH pA,A3q
ř

Π˚

A1 0 8 8 16 81

A2 8 0 8 16 81
A3 8 8 0 16 81

A4 5 5 5 15 216

A5 8 6 4 18 315

Table 3.8: The sum and product of Hamming metrics from an element in the set A to each of the
agent’s judgment sequences.

3.5 Representational abilities of∆d,d

In this section we discuss the expressiveness of∆d,d in terms of judgment aggregation prob-
lems it can be applied to. We show how the co-domain can be controlled to obtain desirable
properties for the collective judgment sequences. We also show how one can emulate the
premise and conclusion based procedures using the∆d,d rules.

3.5.1 Co-domain restrictions for∆d,d

A desirable property of an aggregation rule is to aggregate incomplete judgment sets but
select a complete collective judgment set. This means we want a judgment aggregation rule
that has incomplete judgment sets in its domain, but only complete judgment sets in its co-
domain. The co-domain of the∆d,d rules is the set of all consistent judgment sequences
A. As a consequence, this property of completeness of the collective judgment sets is not
satisfied by the∆d,d family. However we can extend the definition of∆d,d to include the
co-domain as an additional parameter of the function.

Definition 43. Let XĎA be the subset of judgment sequences that satisfy a certain property.
A X-restricted distance-based judgment aggregation rule is the rule
Λd,d : AnˆRnˆmˆPpAq ÞÑ PpPpAqq defined as:

Λd,dpπ ,W,Xq “ argmin
APX

dn
i“1pf

m
j“1wi, j ¨δ pAp jq, pi, j qq.

To ensure that the selected judgment sequences are complete, one needs to setX “ A
Ó01.

Restricting the co-domain can also be used to engineer that all collective judgment sets adhere
to the view of the majority on particular agenda issues. As weknow from the impossibility
results in judgment aggregation such as (Dietrich, 2007; Pauly and van Hees, 2006), for most
logics, the issue-majoritarian set is not always a consistent judgment set. However, for some
subset of agenda issuesBĂ A, majority-adherence can be consistent and guaranteed. This
subsetB must be such that for alla P B and any valuation,BztauYR*3 a.

3.5.2 Emulating other judgment aggregation rules withΛd,d

The first two judgment aggregation “rules” are the premise-based and conclusion-based pro-
cedure presented in (Kornhauser and Sager, 1993), under thenames “issue-by-issue voting
and “case-by-case voting” respectively. These rules are applicable to agendasA that can be
partitioned to a set of premisesAp and a set of conclusionsAc.
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Of the two procedures, the premise-based one has been more extensively studied in, for in-
stance (Dietrich and Mongin, 2010; Mongin, 2008; Endriss etal., 2010b). According to the
premise-based procedure, the collective judgment on a premise is the judgment supported
by a majority of agents. According to the conclusion-based procedure, only the collective
judgments on the conclusions are derived, by selecting thatjudgment for each conclusion
that is supported by a majority of agents. Due to the “mandatory” incompleteness of the
selected judgment sets, this procedure is not much considered in the literature. We extended
the conclusion-based procedure with a distance-based procedure in (Pigozzi et al., 2009) to
obtain collective judgments on the premises as well. Here webuild on the work presented in
(Pigozzi et al., 2009).

When the judgments are three-valued, there are two ways to define the majority function.
One is them1 function which is used when aggregating binary profiles in Chapter 2.

Definition 44. Let N1 “ ti | π i, j “ 1u and N0 “ ti | π i, j “ 0u. The function
m1 : A

n ˆ pR`qnˆm ˆ A ÞÑ t0,1u is defined as:

m1pπ ,a jq “

$

&

%

1 iff
ř

iPN1
wi, j ą

ř

iPN0
wi, j

0 iff
ř

iPN1
wi, j ă

ř

iPN0
wi, j

1
2 iff otherwise

The m1 function undefined when
ř

iPN1
wi, j “

ř

iPN0
wi, j and biased against the undecided

judgment, namely the12 is only selected if the number of agents who render judgment 1is
the same as the number of agents who render the judgment 0. An unbiased majority function
can be defined as well.

Definition 45. Let N1 “ ti | π i, j “ 1u, N1
2
“ ti | π i, j “

1
2u and N0 “ ti | π i, j “ 0u. The

unbiased, or absolute, majority function m2 : AnˆpR`qnˆmˆA ÞÑ t0,1u defined for aPA
as:

m2pπ,a jq “

$

’

&

’

%

1 iff
ř

iPN1
wi, j ą

ř

iPN0
wi, j `

ř

iPN1{2
wi, j

0 iff
ř

iPN0
wi, j ą

ř

iPN1
wi, j `

ř

iPN1{2
wi, j

1
2 iff otherwise

Ma jpπ ,Wq “ xm2pπ▽1,Wq, . . . ,m2pπ▽m,Wqy

The functionm2 is undefined when there is no one judgment that is supported bya majority
of agents in a pair-wise compartment (with the other two judgments). For ternary judgment
profiles we can define as many premise-based procedures as there are majority functions that
can be defined.

Definition 46. Given a profileπ P An, an agendaA “ tap
1, . . . ,a

p
kuYA

c andR. The biased
premise-based procedure B́PBP and the unbiased premise-based procedure U´PBP is
defined as

B´PBPpPq “ tm1pπ ,apq | ap PApuYtac | ac PAc
,tm1pπ,ap

1q, . . .m1pπ ,ap
kquYR |ù3 acu;

U´PBPpPq “ tm2pπ,apq | ap PApuYtac | ac PAc
,tm2pπ ,a

p
1q, . . .m2pπ,a

p
kquYR |ù3 acu.
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Another way to view the premise- and conclusion-based procedures is as rules in which
the adherence to majority is guaranteed for the set of premises, or the set of conclusions
correspondingly. We can represent and extend the premise- and conclusion-based procedures
through a distance-based aggregation ruleΛd,d.

The premise-based procedure is only applicable for those profiles P for which the set of
premises is logically independent. The premise sub-profileπ p is the matrix obtained from
the sub-sequences containing only judgments on the premises. Intuitively,π p is the matrix
obtained when fromπ by removing the columns corresponding to the elements ofA

c.

E.g., let agendaA be such thatAp “ tp, pÑ qu andAp “ tqu. If π is a profile forA, then
π p is the premise only sub-profile.

π “

»

–

1 0 0
1 1

2
1
2

0 1 1

fi

fl π p“

»

–

1 0
1 1

2
0 1

fi

fl

We can extend the biased and unbiased premise-based proceduresB´PBPandU´PBP to
weighted distance-based judgment aggregation rules in thefollowing way.

Definition 47 (Extended premise-based procedures). Let Xbp and Xup be co-domain restric-
tions defined as:
Xbp: A P Xbp if and only if Apaq “m1pπ ,aq for all a PAp

Xup: A P Xup if and only if Apaq “m2pπ ,aq for all a PAp.

The biased and unbiased premise-based weighted aggregation functions are defined as:
b´ pbppπ,Wq “ Λd,dpπ,W,Xbpq and
u´ pbppπ,Wq “ Λd,dpπ,W,Xupq.

If the agenda is such that the judgments on the conclusions are uniquely determined by the
judgments on the premises, then the choice ofd andd are irrelevant. Otherwise there will be
as many premise-based procedures as there arepd,dq pairs.

In the similar manner we can define two extended conclusion-based procedures,b´cbpand
u´cbp.

Definition 48 (Extended conclusion-based procedures). Let the restrictions Xbc and Xuc be
defined as Xbc: A P Xbc if and only if AÓ a corresponds to m1pπ,aq for all a PAc

Xuc: A P Xuc if and only if AÓ a corresponds to m2pπ,aq for all a PAc .

We can define the extended conclusion-based procedures as:

b´cbppπ,Wq “ Λd,dpπ ,W,Xbcq and
u´cbppπ,Wq “ Λd,dpπ ,W,Xucq.

We can go about another way to extend the premise-based procedures, by using∆dT ,
ř

. LetA
be an agenda containing only one issuea, R“H andπ a profile for this agenda. We obtain
thatApA,R, |ù3q “ tx1y,x 1

2y,x0yu.
řn

i“1 |1´Ai▽a| “ |N´|` |N0|,
řn

i“1 |0´Ai▽a| “ |N`|` |N0| and
řn

i“1t|12´Ai▽a|u“ |N`|` |N´|.
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Thev selected by∆dT ,
ř

pπ,Uq corresponds to the unbiased majoritym2pπ ,aq. WhenA has
more issues, then∆dT ,

ř

pπ p
,Uq returns the sequence corresponding to the settm2pP,apq |

ap P Apu because
řn

i“1 δhpA▽ j,π i, jq are minimal for the judgments that correspond to the
unbiased majority, due to

řn
i“1dTpA,Aiq

“
řn

i“1

řm
j“1 δTpA▽ j,π i, jq

“
řm

j“1

řn
i“1 δTpA▽ j,π i, jq.

Therefore, we can define an unbiased premise-based ruleUPBPalso as follows. LetAp “
∆dT ,

ř

pπ p
,Uq. We concatenate to the sequenceAp, the sequence of judgments on the conclu-

sions obtained by deductively closingÂ
p
. We write

UPBPpπq “ ApYx vpaq | a P Ac andÂ
p
Y R |ù3 vpaqy.

Another judgment aggregation rule frequently considered in the literature is thesequential
judgment aggregation procedure(List, 2004a; Dietrich and List, 2007b; Li, 2010). This rule
pre-supposes that there exists a total orderľ over the agenda issues. The agenda issues are
ranked according to some parameter as for example, relevance of the issue. The sequential
procedure consists in applying the majority functionm1 to a subset of the agenda, starting
from the issue ranked highest according toľ and continuing down the order until the judg-
ments on the remaining issues are determined by them1pπ,aq already calculated. If the order
is not total, then we can apply theΛd,d rules to ensure that the collective judgments on the
preferred issues correspond withm1pπ,aq. We can usem2 as well.

3.6 Computational complexity of winner determination

Determining the complexity of thewinner determination problemfor social choice rules is
one of the fields of research in the focus of computational social choice (Chevaleyre et al.,
2007). The winner determination problem in voting theory isthe problem of deciding whether
a particular candidate is selected as the winner for a given profile of votes when a particular
voting rule is used. The computational complexity of the winner determination problem is
used as an indication of how difficult it is to determine the output from a particular social
choice rule in the “worst case” profiles.

Endriss et al. (2010b) define the winner determination problem for judgment aggregation
rules in terms of collective judgments instead of collective judgment sets. Given a num-
berK, a profileπ, an agendaA and a judgment for agenda issuea, the winer determination
question is whether there exists a judgment sequenceA P AÓ01 such thatApaq “ vpaq and the
distance fromA to the profile is smaller or equal thanK. Endriss et al. (2010b) show that
this winner determination problem, ford “ dH , d “

ř

and binary profiles, is solvable by a
non-deterministic Turing machine in polynomial time.

In judgment aggregation, the winner determination problemcan be defined as the problem
of deciding whether a given judgment set is selected as the collective judgment set when a
particular judgment aggregation rule is applied to a given profile of judgments. This is the
approach we take because the distance based rules generate collective judgments for each
issue. When the judgment aggregation rule is resolute, and the collective judgment sets are
necessarily complete, it is a good choice to define the winnerdetermination problem as in
(Endriss et al., 2010b) since by checking for each judgment whether it is selected as collective
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or not, once can compute the entire collective judgment sets. However, when the judgment
aggregation rule is irresolute, or the incomplete judgmentsets can be selected as collective,
this approach of checking judgment by judgment does not leadto computing a collective
judgment sets.

We define thejudgment rule winner determination problemand state it for an instance of an
agendaA, set of rulesR, and a judgment aggregation ruleF : A

n ˆ pR`qnˆm ÞÑ PpAq in
the following way.

Definition 49 (WinDetfor F).

Let F be a judgment aggregation rule F: A
n ˆ pR`qnˆm ÞÑ PpAq. We consider an agenda

A of cardinality m, set of rulesR, and a set of agent n names N. The WinDet problem for F
is specified by the following input and output.

Input: Profileπ P pApA,R, |ù3qq
n, sequence APApA,R, |ù3q and weight matrixWP pR`qnˆm.

Output: true if and only if AP Fpπ ,Wq.

We show the computational complexity of theWinDetproblem for∆d,d andW“U without
fixing thed andd.

Proposition 3.6.1. If d and d are computable in polynomial time then WinDet for∆d,d is in
ΣP

2 .

Proof. Σp
2 is in the second level of polynomial-time hierarchy, see Figure 3.1.

Figure 3.1: The polynomial time hierarchy, under the commonassumption thatP‰NP. The
arrows denote inclusion.

Σp
2 is the class of all decision problems that can be solved by a non-deterministic Turing ma-

chine in polynomial time,i.e.,NP Turing machine, that has access to a non-deterministic ora-
cle that takes polynomial time to respond to problems sent toit, i.e.,NP oracle (Papadimitriou,
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1994, pg. 425). Each leveli of the hierarchy is determined according to the following formu-
las, where the exponent is the class of the oracle:

• ∆P
i “ PΣP

i´1

• ΣP
i “ NPΣP

i´1

• ΠP
i “ coNPΣP

i´1

We prove the proposition by showing an algorithm forWinDetfor ∆d,d.

Algorithm: WinDetpπ,Aq

1. guess a valuationv for the atoms inA;

2. if v is a model forA and not ExistBetterpπ,Aq
then returnptrueq else returnp f alseq;

Oracle: ExistBetterpπ,Aq

1. guess A1 P t0, 1
2 ,1um;

2. guess a valuationv1 for the atoms inA;

3. if v1 is a model forA1 and dpdpA1,π1q, . . . ,dpA1,πnqq ą dpdpA,π1q, . . . ,dpA,πnqq then returnptrueq
else returnp f alseq;

A distance from a judgment sequenceA to a profileπ is the output ofdn
i“1dpA,π⊲iq. The

algorithm proceeds as follows. Recall thatA can contain both atomic and non-atomic formu-
las. First, a valuation for the atoms inA is guessed. We check that the valuation is a model
for A, i.e.,such that for its corresponding judgment setÂ it holdsÂYR*K. Then we make
a call to theNP oracle who returns a Boolean answer to the question of whether a judgment
sequence exists that is closer to the profile thanA. If such a sequence is found,A is not among
the selected collective judgment sets.

The oracle determines its answer in the following way. Firsta judgment sequenceA1 is
guessed and then a valuation for the atoms inA1 is guessed. We ensure thatA1 is consistent
and then we compare the distance fromA1 to the profile and the distance fromA to the profile.
The algorithms and the result can be easily adapted for the weighted case of∆d,d

W .

The assumption we make ford andd is that they are computable in polynomial time. The
distances and aggregation functions we introduced in Section 3.3 are computable in polyno-
mial time, with the possible exception of the distancedG proposed in (Duddy and Piggins,
2011).

To calculatedGpA1,A2q, one has to determine the shortest path between the verticescorre-
sponding toA1 andA2 in the un-weighted bidirectional graphG “ pAÓ01

,Eq. Finding the
shortest path in a graph with non-negative weights can be solved using the Dijkstra’s algo-
rithm (Dijkstra, 1959) in quadratic time over the number of vertices. However, complexity is
added by constructing the graphG. The setE is the set of edges defined aspA1,A2q P E if and
only if there exists noAPAÓ01 such thatdHpA1,A2q “ dHpA1,Aq`dHpA,A2q. Consequently,
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to constructG one has to check, for eachA1 andA2 that there is noA between them. We
conjecture that this problem is not solvable in polynomial time.

In the weighted case, a weight matrixW is also a part of the input. Iff andδ are computable
in polynomial time with respect to the size ofπ andW, then so isd, and the above result can
be easily adapted.

Let us define ascoreof a A P A, with respect to a weight matrixW and a profileπ to be the
distance from A toπ:

spA,π,Wq “ dn
i“1 f

m
j“i wi, j ¨δ pA▽a j ,π i, jq.

Depending onW and d, the number of possible scores can be known. For instance, for
a weight matrix in whichwi, j “ 1 for all i and j, and the Hamming distance, the number
of possible scores is exactly the cardinality of the agendam plus one. If the number of
possible scores for∆d,d is known in advance and bounded by a polynomial inn,m then
computingWinDet for ∆d,d is in ΘP

2 . ΘP
2 “ PNPrlog ns is the class of problems solvable by a

polynomial-time deterministic Turing machine asking at mostOplog nq adaptive queries to
anNP oracle).1

The (conditional) membership inΘP
2 can be demonstrated by the following variation of the

algorithm.

For an ordered setX, let medpXq denote the median ofX, X` denote the subset ofX from
medpXq up, andX´ the part belowmedpXq. LetVal be the set of possible scores.

Algorithm: WinDetpπ,Aq

1. Poss:“ Val;

2. repeat

3. k :“ medpPossq;

4. if Existpπ,Posś q
then Poss:“ Posś else Poss:“ Poss̀ ;

5. until |Poss| “ 1;

6. if spA,π,Wq “ medpPossq
then returnptrueq else returnp f alseq;

Oracle: Existpπ,Possq

1. guess A1 P t0, 1
2 ,1um and a valuationv;

2. if v is a model forA1 and spAprime
,π,Wq P Possthen returnptrueq else returnp f alseq;

According to this algorithm, we do a binary search to find the minimal scorespA1,π,Wq that
can be assigned to someA1 P A. The binary-search algorithm can be executed in logarithmic
number of steps, with respect to the size ofVal and that is why there are logarithmic number
of calls made to the oracle. If the score of the candidateA is this minimal score thenA is
among the sequences selected by∆d,dpπ ,Wq.

Endriss et al. (2010a) show that their winner determinationproblem for the premise-based
procedure is decidable in polynomial time. The complexity does not change when we con-
sider ourWinDetfor theB´PBPpPq andU´PBPpPq rules.

1I would like to thank an anonymous reviewer for the workshop of Social Choice and Artificial Intelligence held
in conjunction with the 22nd International Joint Conference on Artificial Intelligencefor hinting the property and
sketching the proof.
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Proposition 3.6.2. The WinDet problem for B́ PBPpPq and U´PBPpPq is in P.

To prove this proposition, it is sufficient to give a description of an algorithm that decides if
ÂPB´PBPpPq or ÂPB´PBPpPq. First we check whether the candidateÂ is consistent. This
is a model checking problem for ternary logic which can be solved in polynomial time. Then,
for each judgment fora j in Â

p
we check whether it corresponds to the biased or unbiased

majority of π p▽a j . This can be done inOpm¨nq time.

The complexity of a winner determination problem only indicates how difficult it is to ver-
ify that a judgment sequence is selected. In judgment aggregation, it would be of interest
to determine the complexity of thesearch problem. In a decision problem, we look for a
confirmation whether a given output can be produced by a function. In a search problem, we
instead look for the output that a function produces for a given argument.

TheWinDetproblem for∆dT ,
ř

while W “U is (still) in NP. This can be proved by slightly
modifying the proof presented in (Endriss et al., 2010a).

Theorem 3.6.3. The WinDet problem for∆dT ,
ř

while W“ U is in NP for Kleene and
Łukasiewitz logic.

Proof. Endriss et al. (2010b) reduce their winner determination problem to the well known
NP hard problem of integer programming, see for instance (Williams, 2009, Chapter 2). We
can do the same. We write a variablexi P t0,1,2u for eacha P A andxr P t0,1,2u for each
element ofr P R. The constraints forxr is xr ą 0 for eachj. The constraints forxi depend
on the ternary logic used. We show the constraints for the Kleene and Łukasiewitz logic.
The Kleene logic observes the relations between the connectives so we can give only the
constraints for and^:

a2“ a1 : x2 “ 2´x1

a3“ a1^a2 : x3ď x1,x3 ď x2,x1`x2ď x3`2

a3“ a1Ø a2 : x1`x2ď x3`2,x1`a3ď x2`2

xr ą 0 (3.1)

For the Łukasiewitz logicϕ Ñ ϕ ”  p ϕ^ϕq does not hold, hence we need to specify the
constraints forxi for all of the connectives:

a2“ a1 : x2 “ 2´x1

a3“ a1^a2 : x3ď x1,x3 ď x2,x1`x2ď x3`2

a3“ a1_a2 : x3ě x1,x3 ě x2,x1`x2ě x3`2

a3“ a1Ñ a2 : x3 ď 2,x3ă 2´x1`x2,x1`x2ď x3`2

a3“ a1Ø a2 : x1`x2ď x3`2,x1`a3ď x2`2,x2`x3ď x1`2,2ď x1`a2`x3

xr ą 0 (3.2)

We omit the requirement in the proof of (Endriss et al., 2010b) that a for particular judgment
a j , the constraintx j “ 1 is added because we are not interested if one particular judgment is
selected as collective or not. We set the scoreK to be the score of any of the sequences in the
profile. The rest of the proof can be used unchanged.
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Let π P An, W“U , andA P A. Let

n1pAp jq,π▽ jq “ #ti | δ pAp jq´π i, jq “
1
2

n2pAp jq,π▽ jq “ #ti | δ pAp jq´π i, jq “ 1 (3.3)

Ford“ dT it holds that

n
ÿ

i“1

dTpA,π⊲iq “
n

ÿ

i“1

m
ÿ

j“1

δTpAp jq,π i, jq

“
n

ÿ

i“1

m
ÿ

j“1

|Ap jq´π i, j |

“
m

ÿ

j“1

p¨n1pAp jq,π▽ jq`2n2pAp jq,π▽ jqq (3.4)

Ford“ dH it holds that

n
ÿ

i“1

dHpA,π⊲iq “
n

ÿ

i“1

m
ÿ

j“1

δHpAp jq,π i, jq

“
n

ÿ

i“1

m
ÿ

j“1

|rAp jq´π i, j s|

“
m

ÿ

j“1

n2pAp jq,π▽ jqq (3.5)

To compute a winner under∆dT ,
ř

we need to find a sequenceA P ApA,R, |ù3Lq, or
A P ApA,R, |ù3Kq correspondingly, characterized by variablesx1, . . . ,xm that minimizes the
sum

n1px1,π▽1q`2 ¨n2px1,π▽1q` ¨ ¨ ¨`n1pxm,π▽mq`2 ¨n2pxm,π▽mq.

For the casedT we need to minimize the sum

n2px1,π▽1q` ¨ ¨ ¨`n2pxm,π▽mq.

To this end we introduce an additional set of integer variablesy j ą 0 for j P r1,ms. We ensure
thaty j “ n1px j ,π▽ jq`2 ¨n2px j ,π▽ jq by adding the constraints :

p@ j ďmq n1px1,π▽1q`2 ¨n2px j ,π▽ jq ď y j

p@ j ďmq n1px1,π▽1q`2 ¨n2px j ,π▽ jq ě y j (3.6)

or the constraints

p@ j ďmq n1px1,π▽1q`2 ¨n2px j ,π▽ jq ď y j

p@ j ďmq n1px1,π▽1q`2 ¨n2px j ,π▽ jq ě y j (3.7)
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correspondingly.

Now we need minimize
m

ÿ

j“1

y j ď K

subject to constraints (3.1) and (3.6) for Kleene logic anddT , to constraints (3.1) and (3.7)
for Kleene logic anddH , to constraints (3.2) and (3.6) for Łukasiewicz logic anddT , and to
constraints (3.2) and (3.7) for Łukasiewicz logic anddH . This integer program is feasible if
and only ifA is a winner for∆d,

ř

pπ ,Uq.

3.7 Conclusions

Judgment aggregation rules used by hierarchical groups should be able to aggregate incom-
plete judgment sets into complete judgment sets regardlessof the number of agents or type
of agenda. The rules should also be able to aggregate weighted judgments. In this chapter we
develop a family of weight-sensitive distance-based judgment aggregation rules that satisfy
these requirements.

A distance-based judgment aggregation rule is fully specified by specifying a pairpd,dq of
product metricd (specified by another aggregation functionf and a metricδ ) and aggre-
gation functiond. We present examples of distance functions and aggregationfunctions.
While the Hamming and Drastic distances have already been used in judgment aggrega-
tion, the Taxicab distance is a new option. From the five aggregation functions we pre-
sented,

ř

, maxandGmaxhave been already introduced in the literature of belief merging
by (Konieczny and Pino-Pérez, 1999), butAM andΠ˚ are new. When applied to the same
profile, AM gives the same results as

ř

. The ruleΠ˚, however, gives rise to truly new
aggregation operators. We summarize the (non) inclusion results between the families of
distance-based aggregation rules in Table 3.9.

∆d,
ř

∆d,AM ∆d,max ∆d,Gmax ∆d,Π˚

∆d,
ř

= Ă ‰ ‰ ‰
∆d,AM = = ‰ ‰ ‰
∆d,max ‰ ‰ “ Ă ‰

∆d,Gmax ‰ ‰ Ą = ‰

Table 3.9:The summary of the (non)inclusion results ford being a product metric constructed using
f “

ř

.

In this chapter we also discuss the computational complexity of the winner determination
problem for the distance-based aggregation rule. For an unspecifiedd andd the complexity
is ΣP

2 , which can be considered as high sinceΣP
2 in the second level of the polynomial time

hierarchy (Papadimitriou, 1994, pg. 425). This complexityis lowered toΘP
2 when certain

distances and aggregation operators are used, such asdH andΣ. In Section 3.5.2 we intro-
duced the extended premise-based procedure. The complexity of the winner determination
problem for this procedure is considerably lower, but the premise-based procedure is not ap-
plicable to all agendas. Endriss et al. (2010a) show that checking whether an agenda is “safe”
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is a problem in the complexity classΠP
2 , which is in the same level in the hierarchy asΣP

2 .
Consequently, checking if the premise-based procedure canbe applied safely is more difficult
than using the procedure (Endriss et al., 2010a). The distance-based aggregation rules have a
higher complexity, but they can always be applied.

Based on the complexity analysis in Section 3.6 we can make the conclusion that extending
a distance-based rule from binary to ternary judgments doesnot influence the complexity of
theWinDetproblem for the rule. However, extending the rule from unweighted to weighted
judgments can influence theWinDetcomplexity.

Compared to Chapter 2, here we do not generate as many specificrules. However, we do give
a “template” for many weighted distance-based rules, each specified by a pair of aggregation
functions and a metric. Therefore we need to be able to distinguish among all possible specific
rules that can be generated using this “template”. This means that we need to know how to
select the aggregation functionsd andf, and a metricδ so that the resulting rule is adequate
for a given decision-reaching problem.

In part we answer the question of selectingd, f andδ by the complexity analysis of the
WinDetproblem. For well-behaved rule in terms of complexity of theWinDetproblem,d,
f andδ should be computable in polynomial time and the co-domains of bothd andf
should be enumerable. However this characterization ofd, f andδ is still very general. In
the next chapter we define various structural and relationalproperties that enable us to further
specifyd,f andδ and distinguish further among weighted distance-based rules.
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4

Selecting judgment aggregation rules

Abstract. We need a way to distinguish between the judgment aggregation
rules we constructed. To accomplish this we qualify the judgment aggregation
rules by the properties they satisfy. In the judgment aggregation literature such
properties have been studied from a combinatorial, which properties are mutu-
ally consistent, or characterization point of view. One typically studies which
minimal set of properties can be satisfied by a judgment rule.Alternatively one
studies the properties that characterize all rules that select collective judgment
sets from a desirable set of judgment sets. Compared with properties studied in
voting theory, not many properties in judgment aggregationhave been consid-
ered for judgment aggregation rules. In this chapter we construct properties for
judgment aggregation rules and we study which of our rules satisfy them.

4.1 Introduction

In Chapters 2 and 3 we introduced many judgment aggregation rules producing distinct judg-
ment sets for the same profile. How can we choose which rule to use for a given multi-agent
system group decision problem? A judgment aggregation ruleis a function that assigns a
non-empty set of collective judgment sets to a profile of individual judgments. How good is
a specific judgment aggregation rule for a particular problem?

The conventional approach to qualifying aggregation rulesin social choice theory is a theo-
retical analysis of properties; one conceptualizes, defines and studies (un)desirable properties
for the rules. In this chapter we take the theoretical approach to qualifying judgment ag-
gregation rules. In social choice theory, one studies whichminimal set of properties can be
satisfied at the same time by a non-dictatorial or non-oligarchic judgment aggregation rule,
such is the work of (Dietrich and List, 2008a; Nehring and Puppe, 2010b), or the properties as
a way to characterize the rules that select from a specific collection of judgment sets, such as
(Grandi and Endriss, 2010, 2011; Nehring et al., 2011; Nehring and Pivato, 2011). This gives
rise to impossibility results along the line of the Arrow’s theorem (Arrow, 1963, Chapter 3).

In this chapter we are interested in constructing desirableproperties for judgment aggregation
rule and in analyzing which of the rules introduced in Chapters 2 and 3 satisfy the constructed
properties. Each aggregation context gives rise to its own set of necessary, desirable, and
undesirable properties for a rule.

The properties of a judgment aggregation rule can be classified in two large groups:structural
characteristicsandrelational properties. The structural characteristics are the properties that
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are satisfied by the profile being aggregated and by the collective sets that are the aggregate,
i.e., these are properties of the domain and co-domain of the judgment aggregation rule. The
relational properties are the properties that hold betweenthe input profile and each of the
assigned judgment sets. It is mainly the relational properties that have been considered in the
judgment aggregation literature.

The first desirable properties considered for judgment aggregation are universal domain,
anonymity and systematicity (List and Pettit, 2002), directly “imported” from the prefer-
ence aggregation conditions of Arrow (Arrow, 1963, Chapter3). Further properties have
been considered: independence of irrelevant information (Dietrich, 2006a), monotonicity
properties (Nehring and Puppe, 2010a; Dietrich and List, 2005; List and Puppe, 2009), and
(Dietrich and List, 2008a) as well as unanimity properties by for instance (Dietrich and List,
2008b; List and Puppe, 2009).

In the judgment aggregation literature (List and Polak, 2010), but also in the abstract and
binary aggregation literature (Dokow and Holzman, 2010a; Grandi and Endriss, 2011), one
considers a judgment aggregationfunctionto be a function which associates a profile of bi-
nary judgments to a unique complete set of binary judgments,Figure 4.1 a). The listed
properties, universal domain, anonymity, systematicity,the monotonicity and the unanimity
properties, are defined for such judgment aggregation functions. In Chapter 2 we defined
judgment aggregation rules which are functions that associate a profile of binary judgments
to set of a possibly incomplete judgment sets, Figure 4.1 b). In Chapter 3 the judgment aggre-
gation rules are extended to functions that associate a pairof profiles, of ternary judgments
and associated weights, to a set of sequences of ternary judgments, Figure 4.1 c).

Figure 4.1: Illustration of the different ways to define judgment aggregation functions.

The structural properties of judgment aggregation, particularly those referring to the domain,
can be considered without drastically adapting the definition available in the literature. How-
ever, for studying relational properties one needs to construct definitions for judgment ag-
gregation rules that correspond to the properties defined for judgment aggregation functions.
The main culprit for these difficulties is theirresolutenessof judgment aggregation rules. A
judgment aggregation rule isresolutewhen for every profile, and every weight matrix in the
case of a weighted rule, the aggregate is a singleton set; andirresolute otherwise.

Consider for instance the unanimity principle which statesthat if all agent rendered the same
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judgment for issuea PA then this is the judgment fora in the collective judgment set. Since
we have more collective judgment sets, is the unanimity principle satisfied if the unanimous
judgment is contained in at least one, most of, or all of the collective judgment sets? We need
to define the relational properties for the generalized irresolute version of judgment aggrega-
tion rules. We construct these definitions by first defining when does a property of a resolute
rule corresponds to a property of an irresolute rule. As hinted by the example of the unanim-
ity property, there can be several versions of an irresoluterule properties that correspond to
a given resolute rule property. We consider the most common properties encountered in the
judgment aggregation literature.

A common concern when constructing a social choice rule is its response to manipulative
agents. An agent is manipulative if he choses the information to submit (opinions, judg-
ments, preferences, votes, etc.) instead of being honest, with the purpose of ensuring that the
aggregate is one he prefers. A social choice rule isstrategy-proofwhen none of the agents
can benefit by being manipulative. Manipulability of judgment aggregation rules is more
difficult to study compared to that ofe.g., voting theory, since the agents are not modeled
to hold preferences over the judgment sets. The research on manipulability of judgment ag-
gregation function, by Dietrich and List (2005) and Endrisset al. (2010b), is conducted by
making the assumption that the smaller the distance betweenan agent’s judgment set and a
collective judgment set, the more that agent “prefers” thatcollective judgment set. The same
approach is taken by Everaere et al. (2007) for studying the manipulability of distance-based
belief merging operators.

Apart from the properties considered in the judgment aggregation literature, there are many
interesting properties that can be imported from voting theory. These are of interest for
judgment aggregation rules as well, both from social-theoretic and computational viewpoint.
In particular we can outline the property ofseparability(Smith, 1973), also calledconsistency
by (Young, 1975) and theindependence of clonesproperty (Tideman, 1987). The property
of separability in voting theory states that, given two profiles of votes for the same set of
candidates, if a candidate is among the winner of the both profiles, then the same candidate
is among the winners of the profile obtained by combining the both profiles. This property
is desirable from a computational point of view. Aggregating smaller profiles of judgments
is more efficient than aggregating large profiles. If a rule that satisfies separability is used, a
very large group of agents can be split and their profiles aggregated separately. Comparing
the winners from each profile can eliminate the need to aggregate the joint profile of all the
agents.

The property of independence of clones in voting theory states that when a candidate is added
to the set of candidates, and this candidate is identical to acandidate already in the set, the
winner of the election does not change. There are no candidates in judgment aggregation, but
the independence of clones can be defined for agenda items. Indeed, if two agenda issues are
logically equivalent, then the collective judgment on the both equivalent issues should be the
same, regardless the profile. We define the separability and independence of clones properties
in a judgment aggregation framework.

The manipulability of a social choice rule is an important issue when the outcome of the
rule constrains in some way the behavior of the agents. For example, a person in a group of
friends, choosing a restaurant for dinner by voting on a selection of restaurants, is expected
by social norm to go to the restaurant that is selected by the voting rule, even if he does not
particularly prefer it. In an agreement reaching setting, an agent is constrained to abide by the
results of the judgment aggregation,e.g., participate in solving the problem once a solution is
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agreed on. However, we made the assumption that the agents are non-manipulative and thus
we are not concerned with this aspect of the judgment aggregation rules.

In some aggregation contexts it is possible to evaluate the performance of a judgment aggre-
gation rule experimentally. Consider Example 4.1.1.

Example 4.1.1. A group of three agents needs to agree on whether there is a firein the
building they occupy. They consider the following set of issues:

• fire is observed ( f ),

• smoke is observed (s),

• the alarm went off (a).

The agenda isA “ t f ,s,au and the constraints areR “ tsÑ f ,pa^ sq Ñ f u. The robots
interpret their perceptual data to construct an opinion regarding the truth-values of f , s and
a. Since the perceptual data can be inconclusive or even wrong due to sensor malfunction,
the robots may observe an aP A as true even when a is false, or observe a as false even
when it is true. However, regardless of what the robots observe, there is a unique factual
truth-value assignment of f , s and a that corresponds to the actual state of the world.

Truth-trackingis the process of establishing these unique truth-values that correspond to the
actual state of the world (Hartmann et al., 2010). How good a judgment aggregation rule is
can be measured with respect to how good the rule is at truth-tracking, namely how often it
is the case that the collective judgment set assigns values that correspond to the actual state
of the world.

If the aggregation context is such that truth-tracking is the goal of the collective decision
then a good judgment aggregation rule is one that is good at truth-tracking. To ascertain the
truth-tracking quality of a rule, one needs to construct a simulation or experiment in which
one can compare the number of total aggregations with the number of aggregations in which
the collective judgment set produced by said rule are faithful to the truth. The experimental
approach to qualifying judgment aggregation rules in termsof truth-tracking is addressed in
(Ganesan, 2011).

This chapter is structured as follows. In Section 4.2 we givea definition of an aggregator
rule that generalizes the aggregators considered in Chapters 2 and 3. We also define when
a property defined for one type of rule corresponds to a property defined for another type of
rule. In Section 4.3 we define and analyze the structural properties considered in the judg-
ment aggregation literature. In Sections 4.4 and 4.5 we define and analyze the first relational
properties studied in judgment aggregation: independenceof irrelevant information, neutral-
ity and anonymity. In Section 4.6 we define and study majority-adherence properties, in
Section 4.7 unanimity adherence properties, in Section 4.8monotonicity properties and in
Section 4.9 separability properties. In Section 4.10 we give the definitions of properties that
can be desirable for a judgment aggregation rule, but we do not study how these properties
are satisfied by the rules we considered in Chapters 2 and 3. Lastly in Section 4.11 we give
an overview of which properties are satisfied by which rules and relate aggregation contexts
with structural and relational properties that are advantageous for rules used in these contexts.
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4.2 Preliminaries

We begin by constructing a general definition of a judgment aggregation rule. The rules
introduced in Chapters 2 and 3, but also judgment aggregation functions in other literature,
e.g., (List and Polak, 2010; Dokow and Holzman, 2010b; Grandi andEndriss, 2011), are a
special case of this general rule. Using this definition we can define properties of rules that
are applicable for all categories of rules.

Definition 50. Let N be a set of n agent names, T a finite enumerable set of truth-values,
Ł a T-valued logic with an entailment operator|ùT , A Ď L an agenda of m elements and
RĂL a set of constraints.ApA,R, |ùLq is the set of all sequences from Tnˆm that satisfy the
constraintsR and are consistent with respect to|ùT . LetR` be the interval of realsr0,`8q
and SI ,SII Ď ApA,R, |ùLq. A weighted judgment aggregation rule is a function

F : Sn
I ˆpR

`qnˆm ÞÑ PpSII q.

We have so far worked with three types of setsSI andSII .

Example 4.2.1. Let the set S2 be the set of all consistent and complete (binary) judgment
sequences. Namely, S2“ ApA,R, |ùq Ă t0,1um, where|ù is the classical propositional logic
entailment operator. A judgment aggregation function (binary aggregation rule, abstract
aggregation rule) (List and Polak, 2010; Dokow and Holzman,2010b; Grandi and Endriss,
2011) can be defined as

f : Sn
2 ˆ t1unˆ m ÞÑ S2.

Example 4.2.2. Let S3 “ ApA,R, |ù3q Ă t0, 1
2,1u

m, where|ù3 is a classical entailment op-
erator for some three-valued logic. The rules in Chapter 3 can be defined as

∆d,d : Sn
3 ˆ pR`qnˆm ÞÑ PpS3q.

Example 4.2.3. Let SL “ ApA,R, |ù3Lq Ă t0, 1
2,1u

m be the set of all ternary judgment se-
quences consistent with respect to the ternary Łukasiewiczlogic semantics (Łukasiewicz,
1920; Urquhart, 2001). We can define the rules based on minimization in Chapter 2 trough
Definition50 using SL as a co-domain.

Recall that most of these rules in Chapter 2 are such that the selected collective judgment sets
are incomplete. Each judgment set A incomplete on a judgmentfor a P A can be replaced
with two complete judgment sets A` and A´ such that aP A` and a P A´; the resulting
judgment sets being consistent under ternary Łukasiewicz logic semantics.

According to the semantics of the Łukasiewicz ternary logic, one can think of the truth-values
as sets of classical truth-values, namely0“ tFu, 1“ tTu and 1

2 “ tT,Fu. The third value is
in a sense interpreted as a variable that can be replaced witheither true or false. Therefore,
the co-domain of the aggregation rules from Chapter 2 is equivalent toPpSLq. The rules in
Chapter 2, can be defined as

R : Sn
2ˆt1u

nˆm ÞÑ PpSLq.

Observe that S2,SL Ď ApA,R, |ù3Lq.

The relational properties of judgment aggregation rules that can be encountered in the litera-
ture are defined for functions that are resolute. How can a relational property defined for res-
olute rules be “lifted” to irresolute rules? Moreover, if wehave a definition of relational prop-
erty for irresolute rules, how does this property relate to aproperty defined for resolute rules?
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To answer this question we introduce the concept oflifting between properties. Observe that,
when restricted to the (possibly empty) domainA

n
1 “ tπ | π P An

c and|Fpπ ,Uq| “ 1u, F is a
resolute rule. Recall thatU was the weight matrix in which all weightswpi, jq “ 1. We con-
sider the unweighted caseW “U only since the resolute rules considered in the literature,
and the properties defined for them, are unweight.

In addition to the difference in output cardinality, the resolute rules defined in the literature
are defined for binary judgments, while the rules defined in Chapter 3 are defined for ternary
judgments. Therefore, when constructing a definition of lifting, we also need to consider the
relation between the setsS for which the aggregators are defined.

Definition 51. Let the function f: Sn ÞÑ S be a resolute rule and let (γ) be a property for
such defined functions. Let F: Sn

I ˆpR
`qnˆm ÞÑ PpSII q be a judgment aggregation rule that

satisfies some property (χ). The sets S, SI and SII are such that SĎSI and SĎSII . A property
(χ) lifts a property (γ) if (γ) is satisfied by F for everyπ P Sn such that|Fpπ ,Uq| “ 1.

For a relational property, there will always be more than onepossible (χ) property that lifts
the same (γ) property due to the irresoluteness of the judgment aggregation rules. In the next
chapters we construct properties by lifting the most commonproperties for resolute rules.

4.3 Structural properties

Once we have the definition of a rule, we can consider its structural properties. The type
of judgments being aggregated characterizes the input,i.e., the domain, of a judgment ag-
gregation rule. We can distinguish between two orthogonal types: thevalue-typeand the
weight-type. The value-type specifies the values that the judgments in the profile can take.
We have considered binary and ternary judgment profiles. Multi-valued profiles are consid-
ered in (Pauly and van Hees, 2006) and (Li, 2010). The weight-type specifies the weights
that can be associated with the profile. We considered unweight profiles, agent-associated
weights, agenda issue associated weights and judgment weights.

One structural property considered in the judgment aggregation literature isuniversal domain,
defined in (List and Pettit, 2002) for judgment aggregation functions. The universal domain
is satisfied when the judgment aggregation function is defined for all profiles of complete
and consistent judgment sets. Universal domain is simple togeneralize, since it only refers
to the rule’s domain. All introduced judgment aggregation rules satisfy universal domain by
construction.

Definition 52. A judgment aggregation rule F from Definition 50 satisfies theuniversal
domainif and only if, for everyA,R and|ùL, SI Ď ApA,R, |ùLq.

Collective rationality(List and Puppe, 2009) is another structural property considered in the
literature. Collective rationality states that only rational collective judgments are admissible
as outputs. This means that the judgment aggregation rule always selects consistent judgment
sets. This property is also easy, when compared to other properties, to define for the judgment
aggregation rules of Definition 50.

Definition 53. A judgment aggregation rule F from Definition 50 satisfiescollective ratio-
nality if and only if, for everyπ P SN

I and WP pR`qnˆm, Fpπ ,Wq Ď ApA,R, |ùLq.
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The judgment aggregation rules of Definition 50 satisfy collective rationality by construction.

The output,i.e.,the co-domain, of a judgment aggregation rule is also characterized by value-
type as well,e.g., binary in the case off , Łukasiewicz ternary in the case ofR, ternary in the
case of∆. The value-type of the output is expressed trough a propertycalledcompleteness
(List and Puppe, 2009). A judgment aggregation function satisfies completeness if it always
selects complete judgment sets. We give a formal definition for rules.

Definition 54. LetAÓ01 be the binary restriction of the setApA,R, |ùLq. A judgment aggre-
gation rule F from Definition 50 satisfiescompletenessif and only if, for everyπ P SN

I and
W P pR`qnˆm, Fpπ,Wq Ď A

Ó01.

Most of the rules we defined do not satisfy completeness. The exceptions are the rulesRMWA

andRdH ,max in Chapter 2.

Additionally, the output is characterized by the cardinality, namely how many sequences are
included in the output. According to cardinality, we distinguish between resolute rules that
are also referred to as functions and always select a unique judgment sequence, and irresolute
rules. All the rules we introduced in Chapters 2 and 3 are irresolute by construction. As mul-
tiple impossibility results in judgment aggregation show,resolute rules that satisfy some min-
imal desirable conditions can only be defined for restricteddomains (List and Polak, 2010;
Dietrich and List, 2010). We refer to resolute rules asfunction aggregatorsand irresolute
rules asrule aggregators.

4.4 Independence of irrelevant information

One of the first properties considered in judgment aggregation (List and Pettit, 2002) is the
property of systematicity. An unweight function aggregator for binary judgments satisfies
systematicity if it satisfiesindependence of irrelevant information1 andneutrality. The prop-
erties of systematicity and in particular independence of irrelevant information have been
among the most debated in the judgment aggregation literature, with (Dietrich and List, 2005;
Nehring and Puppe, 2005) deeming this property desirable, and (Chapman, 2002) discussing
its controversies.

In voting theory, the property of neutrality states that theorder of the candidates in the candi-
date set has no bearing on who is selected as the winner. In judgment aggregation, if it is to be
a counterpart of the one in voting theory, then the property of neutrality should state that the
collective judgment selected for a collection of individual judgments does not depend on the
particular issue for which those judgment are rendered,i.e., the order in which the issues in
the agenda are given, does not influence the collective judgment set obtained. In judgment ag-
gregation neutrality, when considered together with independence of irrelevant information,
is taken to mean that each issue is aggregated using the same aggregation rule for each issue.
Indeed, this latter view on neutrality is a consequence of the voting counterpart neutrality in
the presence of independence of irrelevant information.

We illustrate the voting counterpart neutrality with an example. Consider the following two
profiles for some agendaA“ ta1,a2,a3u andA1 “ ta2,a1,a3u correspondingly:

1Independence of irrelevant information is also sometimes called independence of irrelevant alternatives.
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π1“

»

–

1 0 0
0 1 0
1 1 1

fi

fl π2 “

»

–

0 1 0
1 0 0
1 1 1

fi

fl

Observe that the judgments fora1 in π1 are the same as the judgments fora2 in π2. Assume
that a rule f is applied to bothπ1 and π2, A1 “ f pπ1q and A2 “ f pπ2q. If f is neutral,
then necessarilyA1p1q “ A2p2q, A1p2q “ A2p1q andA3p3q “ A3p3q. None of the rules we
defined considers the order of issues inA when selecting the collective sequences, therefore
by construction our rules satisfy neutrality.

The property of independence of irrelevant information states that the collective judgment on
each issue depends only on the individual judgments for thatissue, and not on the judgments
rendered for the other issues in the agenda.

We call two matrixesM1 andM2 j ´ equalwhenM1▽ j “ M2▽ j. Two profilesπ1 andπ2

over the sameN, A andR area j -equalwhenπ1▽ j “ π2▽ j for a a j P A. We illustrate the
property of independence of irrelevant information using thea1-equal profilesπ1 andπ2 of
three agents for agendaA“ ta1,a2,a3u.

π1“

»

–

1 0 0
0 1 0
1 1 1

fi

fl π2 “

»

–

1 0 0
0 0 0
1 1 1

fi

fl

It holdsπ1▽a1“ π2▽a1 andπ1▽a2‰ π2▽a2. Let f pπ1q “ A1 and f pπ2q “ A2. If f satisfies
the independence of irrelevant information, thenA1▽a1“ A2▽a1.

There are many ways in which we can lift the function aggregator definition of the indepen-
dence of irrelevant information property. The first one is byconsidering a bijective relation
between the outputs of the aggregator on twoa j -equal profiles.

Definition 55. A judgment aggregation rule F satisfies (III-1) when for eacha j -equal
profiles and weight matrices,π1, π2 and W1,W2 correspondingly there exists a bijection
bf : Fpπ1,W1q ÞÑ Fpπ2,W2q such that if bf pAq “ A1, then A▽ j “ A1▽ j.

Another way to lift the independence of irrelevant information is by assuring that a collective
judgment fora j , assigned according to some collective sequence for the profile π1, is also
included in some collective sequence forπ2.

Definition 56. A judgment aggregation rule F satisfies (III-2) when for eachj-equal profiles
and weight matrices,π1, π2 and W1,W2 correspondingly, if A▽ j “ x for all A P Fpπ1q then
A1▽ j “ x for all A1 P Fpπ2q.

When (III-2) is satisfied, (III-1) may not be. ConsiderA“tp,q, p^q, ru,R“H, N “ t1,2,3u,
and the followingr-equal profiles:
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p q p^q r
Agent 11 1 1 0
Agent 20 1 0 1
Agent 31 0 0 1

Fpπ1,Uq 0 1 0 1
1 0 0 1

p q p^q r
Agent 10 0 0 0
Agent 20 0 0 1
Agent 30 0 0 1

Fpπ2,Uq 0 0 0 1

In this case (III-2) is satisfied, but (III-1) is not because abijection cannot exist between sets
of different cardinality. If (III-1) is satisfied, then (III-2) is necessarily satisfied. Consider
these otherr-equal profiles, now forN“ t1,2,3,4u:

p q p^q r
Agent 11 0 0 0
Agent 21 0 0 0
Agent 30 1 0 1
Agent 41 1 1 1

Fpπ1,Uq 1 0 0 0
0 1 0 1

p q p^q r
Agent 10 0 0 0
Agent 20 0 0 0
Agent 30 0 0 1
Agent 40 0 0 1

Fpπ2,Uq 0 0 0 0
0 0 0 1

In this case, (III-2) is the one that is satisfied. The property (III-1) is trivially satisfied since the
condition thatA▽ j “ x for all A P Fpπ1q fails. Other lifting of the independence of irrelevant
information can be constructed as well. We do not dwell further on the independence of
irrelevant information since the construction of our rulesis such that we can expect none of
them to satisfy the introduced (III-1) and (III-2). As an illustration, consider an example for
∆dH ,

ř

. Consider the the setA “ tp1,0,0q,p0,1,0q,p0,0,0q,p1,1,1qu and the profilesπ and
π˚:

π “

»

–

0 0 0
0 0 0
1 1 1

fi

fl π˚ “

»

–

1 0 0
0 1 0
1 1 1

fi

fl

.

We have thatAi▽a2“A˚i ▽a3, for all i P t1,2,3u. However,∆dH ,

ř

pπ ,Uq “ tAu “ tp0,0,0qu,
while ∆dH ,

ř

pπ˚,Uq “ tA˚1 ,A
˚
2 ,A

˚
3u “ tp0,1,0q,p1,0,0q,p1,1,1qu.

4.5 Anonymity

Another property considered among the first in judgment aggregation is that of anonymity.
The property of anonymity states that the outcome of the function aggregator does not change
regardless of how one permutes the order of the judgment setsin the profile. Since this prop-
erty does not hinge on the cardinality, input and output type-value of the function aggregator,
we can construct the most simple lifting. We begin by definingwhen a matrix is a permutation
of another matrix.

Definition 57. Let Mnˆm and M1nˆm be matrices, letx “ x M⊲1, . . . ,M⊲ n y and
x1 “ x M1⊲1, . . . , M1⊲ n y. M1 is a permutationσ of M, denotedrMsσ if and only if
x1 “ rxsσ , for a permutationσ .

Definition 58. A judgment aggregation rule F from Definition 50 satisfiesanonimityif for
everyπ P Sn

I ,W P pR`qnˆm, and every permutationσ , Fpπ,Wq “ Fprπsσ , rWsσ q.
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The rules based on minimization are anonymous because the row order of the matrix is not
considered when selecting the collective output (andrUsσ “U for everyσ ). In the case of
the rules from Chapter 3, whether the rule is anonymous depends on the aggregation function
used to construct it.

Proposition 4.5.1. If d is a symmetric aggregation function (see Definition 31), then ∆d,d

satisfies anonymity.

Proof. Assume thatd is symmetric function. A functiond is symmetric if and only if
dpxq“dprxsσq for everyx P In and permutationσ . It follows thatdpx1, . . . ,xnq“dpy1, . . .ynq
for any two sequences of rational numberspx1, . . . ,xnq andpy1, . . . ,ynq such thaty is some
permutationσ of x.

Consider aπ P An andW P pR`qnˆm and a permutationσ . Let A P A and letspA,π ,Wq
denote the score ofA with respect toπ⊲i andW calculated as

spiq “ fm
j“1wi, j ¨δ pAp jq,π i, j⊲1q.

The scores forrπsσ andrWsσ are denotedsσ piq. The sequencesx sp1q, . . . , spnq y and
xsσ p1q, . . . ,sσ pnqy are permutations of each other. Therefore, it follows from the symmetry
of d that

dpsp1q, . . . ,spnqq “ dpsσ p1q, . . . ,sσ q.

Consequently,A P ∆d,dpπ ,Wq if and only if A P ∆d,dprπsσ , rWsσ q.

4.6 Adherence to majority

In Chapter 2 we already introduced one relational property,the majority-preservation. A
judgment aggregation rule satisfies majority-preservation if a judgment aggregation rule al-
ways selects as a collective set the issue-majoritarian setwhenever this set exists and is con-
sistent, with respect toR.

There are two possible ways of qualifying a collective judgment set in terms of majority
in individual judgments. The first way is to look at the individual judgment sets as atomic
information. In this case, a collective judgment set adheres to the majority if more than half
of the agents have this judgment set as their individual set.In the literature of distance-based
belief merging (Konieczny and Pino-Pérez, 1999, 2002, 2005) such majority-adherence rules
are calledmajoritarian. More-precisely, an operator is defined to be majoritarian when there
is a numberk, such that whenk agents have the same belief base, the result of the merging
includes that belief base.

The second approach is to consider the judgment set as a divisible and the individual judg-
ments as the atomic information. In this case, a collective judgment set adheres to the majority
if, for each judgment in it, there are more than half agents who rendered that judgment. This
is how we defined the property of majority-preservation in Section 2.1.1.

The majority-preservation property in binary judgment aggregation, as we define it in Sec-
tion 2.1.1, corresponds to a well-known property in voting theory, theCondorcet winner prop-
erty. In this section we begin with a discussion on the relations between majority-preservation
in binary judgment aggregation and the Condorcet winner property in voting theory.
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In the presence of abstentions there are many different notions of majority on a single issue.
For each of these notions we can define an issue-majoritarianset and study if a distance-
judgment aggregation rule selects it as a collective judgment set. In this section we dis-
cuss different majority notions and consider two majority adherence properties, majority-
preservation and majoritarianism, for a rule aggregator defined in Definition 50. We study
which of the rules from Chapter 3 are adherent to majority.

4.6.1 Condorcet winner property and judgment aggregation

A voting rule satisfies the Condorcet winner property if it selects as a winner the candidate
that defeats every other candidate in a pairwise comparison, whenever such candidate ex-
its (Condorcet, 1785; Young and Levenglick, 1978). What is the counterpart of Condorcet
winner in judgment aggregation?

In a judgment aggregation context, the Condorcet winner property cannot be directly consid-
ered since no preferences between judgments or judgment sets are supplied. However, the
translation of a voting problem to a judgment aggregation problem used in (Dietrich and List,
2007a) can be used to “translate” the Condorcet winner property. This translation is for judg-
ment aggregation in which only binary judgments are allowed. For each pair of optionsa and
b we use a propositionp that is true whena is preferred tob and false whenb is preferred to
a. In this manner only strict preference orders can be translated.

Figure 4.2: Illustration of a Condorcet winner.

Consider as an example three agents that choose from among three options: the star, the
square and the circle. In this case we need three propositions in the agenda:p1 to denote that
the star is preferred to the square,p2 to denote that the star is preferred to the circle andp3 to
denote that the square is preferred to the circle. For instance, the rejection ofp2 denotes that
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the circle is preferred to the star. In color (on the left-hand side), is the profile of individual
preferences. Figure 4.3 illustrates how the preferences from Figure 4.2 are transformed into
a judgment aggregation profile using this translation. While for the top profile no Condorcet
winner exists, the Condorcet winner of the bottom profile is the star. In gray, on the right-
hand side we give the pairwise comparisons. As it can be observed in the figure, the judgment
set that contains all the majority-supported judgments corresponds to a preference order in
which the top ranked alternative is the Condorcet winner.

Figure 4.3: Transforming the voting problem into a judgmentaggregation problem. The
Condorcet winner corresponds to the proposition majoritarian judgment set.

The majority-preservation property in Definition 6 is the judgment aggregation counterpart,
for binary judgment aggregation problems, of the Condorcetwinner property, as it was also
observed by Nehring et al. (2011).

4.6.2 Majoritarian rules

Let us consider a judgment sequence to be an indivisible whole. A rule aggregator is majori-
tarian when it necessarily selects, as a collective judgment sequence, the sequence supported
by the majority of agents, when such a sequence exists. We only define the majoritarian
property for underweighted judgments, namely whenW “U . WhenW ‰U then the notion
of majoritarian rule is difficult to define if the weights are not agent-associated. To define
when a rule is majoritarian for weighted judgments, the weights should be associated with
an agent. When weights are associated with issues or with judgments, then these should be
transformed into agent associated weights. It is not straightforward how this transformation
should be done. Simply summing up the weights on the judgmentor on the issue could be
one way. Another way is to find the average of the judgment weights for one agent. Yet a
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third way is to consider the maximum weight assigned to a judgment made by an agent. The
minimum of the judgment weights can also be considered a goodcandidate, etc.

We can consider at least two notions of a sequence being supported by a majority in a profile.
The first is theabsolutemajority and the second is thesimple majority.

A sequenceA is supported by an absolute majority, in a profile forn agents, if there are more
than half of the agents that selectedA than any other sequence inA. We define this formally.

Definition 59. Let π P An. An absolute majority is a partial function Ma : An ÞÑ A defined
as

Mapπq “
"

A iff #ti|π⊲i “ Au ą t n
2u`1

unde f ined otherwise

A sequenceA is supported by a simple majority, when there are more agentsin the profile
supportingA when compared to any other sequenceπ⊲i in the profile.

Definition 60. Letπ P An. A simple majority is a partial function Ms : An ÞÑ A defined as

Mspπq “
"

A iff #ti|π⊲i “ Au ą #ti|π⊲i “ A1u for all A1 P A s.t. A1 ‰ A
unde f ined otherwise

If a sequence is supported by an absolute majority, then it isalso supported by a simple
majority, but the reverse does not hold.

Example 4.6.1.Consider the profilesπ1, π2 andπ3 on Figure 4.4.

π1“

E1,E2

E3

E4

E5

a1 a2 a3 a4 a5
»

—

—

–

1 0 0 1 1
0 0 0 1 1
0 1

2 1 1
2 1

0 0 1 0 0

fi

ffi

ffi

fl

π2“
E1,E2

E3,E4

E5

a1 a2 a3 a4 a5
»

–

0 0 1 0 1
0 0 0 1 1
0 1

2 1 1
2 1

fi

fl π3“
E1,E2,E3

E4

E5

a1 a2 a3 a4 a5
»

–

0 0 1 0 1
0 0 0 1 1
0 1

2 1 1
2 1

fi

fl

Figure 4.4: Examples for different notions of majority.

The sequencex1,0,0,1,1y is supported by a simple majority inπ1, while the absolute major-
ity is undefined for this profile. For the profileπ2 both majorities are undefined. The sequence
x0,0,1,0,1y is supported by both the simple and the absolute majority forπ3.

From Example 4.6.1 we can observe that it does not take many agents for a sequence to
be supported by a simple majority, in fact two are enough. Thesimple majority is a very
weak notion when the number of available sequences is comparably larger than the number
of agents. Therefore we define the property of majoritarianism using the absolute majority
notion.

Intuitively, a judgment aggregation rule is majoritarian if for every profileπ it selects as a
collective sequence the sequenceMapπq wheneverMapπq is defined. Consider the property
of majority-preservation we give in Chapter 2. If a ruleR, is majority-preserving, then it is
necessarily majoritarian. Therefore we give the formal definition of majoritarianism for the
distance-based judgment aggregation rules.
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Definition 61. A judgment aggregation rule∆d,d is majoritarian when for allπ P An, if
Mapπq exists, then Mapπq P ∆d,d.

A weaker form of majoritarianism can also be defined by requiring Mapπq “ ∆d,d instead of
Mapπq P ∆d,d.

Not all aggregation functionsd give rise to majoritarian rules.

Proposition 4.6.2. If d is a metric, then∆d,
ř

is majoritarian.

Proof. Assume, without loss of generality, since
ř

is symmetric, that for the firstk“ n
2`1

agentsi it is the case thatπ⊲i “ Ai “ A, while A j ‰ A for j ‰ i. We need to show that, for all
A1 P A,

n
ÿ

i“k`1

dpA,Aiq ď p
n
2
`1q ¨dpA1,Aq`

n
ÿ

i“k`1

dpA1,Aiq. (4.1)

n
ÿ

i“k`1

dpA,Aiq ď 2dpA1,Aq` p
n
2
´1q ¨dpA1,Aq`

n
ÿ

i“k`1

dpA1,Aiq. (4.2)

Sinced is a metric, for everyi it holds that

dpA,Aiq ď dpA1,Aq`dpA1,Aiq, and consequently

n
ÿ

i“k`1

dpA,Aiq ď
n

ÿ

i“k`1

dpA1,Aq`
n

ÿ

i“k`1

dpA1,Aiq.

The inequality 4.2 can be rewritten as follows:

n
ÿ

i“k`1

dpA,Aiq ď 2dpA1,Aq` p
n
2
´1q ¨dpA1,Aq`

n
ÿ

i“k`1

dpA1,Aiq. (4.3)

Observe that

p
n
2
´1q ¨dpA1,Aq “

n
ÿ

i“k`1

dpA1,Aq for k“ n
2`1.

SincedpA1,Aq ą 0, the inequality 4.3 is satisfied.

Proposition 4.6.3. If d is a metric, then∆d,Π˚
is majoritarian.

Proof. Whenx,y,zPR`, if xď y`z, thenx`1ďpy`1q`pz`1q andx`1ďpy`1q¨pz`1q.
Therefore, the proof of Proposition 4.6.2 can be used to prove this proposition as well.

Assume, without loss of generality sinceΠ˚ is symmetric, that for the firstk“ n
2`1 agents

i it is the case thatAi “ A, while A j ‰ A for j ‰ i. We need to show that, for allA1 P A,

n
ź

i“k`1

p1`dpA,Aiqq ď ¨p1`dpA1,Aqqp
n
2`1q ¨

n
ź

i“k`1

p1`dpA1,Aiqq (4.4)

Sinced is a metric, for everyi it holds that

dpA,Aiq ď dpA1,Aq`dpA1,Aiq,but also, since the metrics are positive non-null numbers
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p1`dpA,Aiqq ď p1`dpA1,Aqq ¨ p1`dpA1,Aiqq,and
n

ź

i“k`1

p1`dpA,Aiqq ď
n

ź

i“k`1

p1`dpA1,Aqq ¨
n

ź

i“k`1

p1`dpA1,Aiqq.

The inequality 4.4 can be rewritten as follows:

n
ź

i“k`1

p1`dpA,Aiqq ď ¨p1`dpA1,Aqq2 ¨
n

ź

i“k`1

p1`dpA1,Aqq ¨
n

ź

i“k`1

p1`dpA1,Aiqq (4.5)

Proposition 4.6.4. ∆d,max is not majoritarian.

Proof. Consider the profile in the proof of Proposition 3.4.4. Two out of three agents select
the sequencex1,1,0y, however,∆dH ,maxpπ ,Uq “ tx1,0,0yu.

Corollary 4.6.5. ∆d,Gmax is not majoritarian.

Proof. A consequence of∆d,Gmaxpπ,Wq Ď ∆d,maxpπ ,Wq.

The propositions we show are unsurprising since they have been shown to hold for distance-
based belief merging operators, see for instance (Konieczny and Pino-Pérez, 2002).

4.6.3 Majority-preservation

It is straightforward to extend the majority-preservationproperty from unweight to weighted
binary judgments. Instead of counting how many agents support a given judgment, we need
to consider the sum of the weights of the agent who support theparticular judgment. The
challenge is in defining the majority-preservation property for ternary, and in principle multi-
valued, judgment profiles. The reason for this challenge lies in the many possible ways in
which majority on an issue can be defined in the multi-valued case.

Consider for instance the judgments inπ▽a1 andπ▽a2 in Figure 4.5. Two judgment majority
functions we define in Section 3.5. The first,m1: is the biased-majority from Definition 44.
This majority considers only the number of agents who acceptand reject an issue but not
those who abstain on an issue. It is defined for everyπ▽i ternary vector of judgments. Using
this majority on the issuesa1 and a2 from Figure 4.5, one accepts botha1 and a2. This
majority is biased against the judgment1

2. Another way to define judgment majority ism2

from Definition 45: a majority supports a judgment on an issueif there are more agents that
select this judgment then any other for that issue. Using this judgment majority on the issues
a1 anda2 from Figure 4.5, one acceptsa1 but abstains regardinga2. This majority is not
biased against the judgment1

2, but it can be considered biased in favor of1
2 since both the

judgment1
2 and 1 fora2 are supported by an equal number of agents. This majority is also

defined for everyπ▽i vector of ternary judgments.

More versions of total judgment majority functions can be constructed. For instance, a func-
tion can be defined to combine the biased and unbiased majority based on the numberk of
agents that abstain on the issue in question:
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Figure 4.5: Illustration of the different ways to define majority on a single issue.

m3pπ▽aq “

"

m1pπ▽aq iff #ti|πi,a“
1
2u ď k

m2pπ▽aq iff #ti|πi,a“
1
2u ą k

Them3 can also be considered to be a quota rule (Dietrich and List, 2007b).

We can also define the simple and the absolute majority for judgments on an issue. The
intuition behind these two majority functions is the same asin the previous section, where we
define them for judgment sequences. A judgment is supported by a simple majority when it
is supported by more agents than any other judgment in a pair-wise comparison. A judgment
is supported by an absolute majority when there are strictlymore than half of the agents
supporting it. The un-biased majority can be obtained from the absolute majority when12
is assigned to all profiles for which the absolute majority isundefined. The simple majority
supported judgment is the same as the absolute majority supported judgment, whenever both
are defined. All these different notions of majority collapse into one when the judgments are
binary.

If a judgment is supported by a simple majority, then it is supported by an absolute majority,
and also by an un-biased majority. The judgment majority functions are voting rules applied
to choose from the set of optionst0, 1

2,1u. The judgment supported by a simple majority is
in fact a Condorcet winner. For these reasons we use, and givethe definition of, the weighted
simple majority on a judgment.

Definition 62. Let π P An, N a set of agents,A an agenda, a set of values T“ t0, 1
2,1u and

x P t0, 1
2,1u. We define the set Nxp jq “ ti | π i, j “ xu and the value Vxp jq “

ř

iPNxp jqwpi, jq.

The simple judgment majority, on aj PA, is a function ms : A ˆ A
nˆpR`qnˆm ÞÑ t0, 1

2,1u
defined as:

mspa j ,π ,Wq “
"

x iff Vxp jq ąVyp jq for any yP t0, 1
2,1u, x‰ y

undefined otherwise

˙

For each judgment majority function, we can define a corresponding issue-majoritarian se-
quence and also a majority-preservation property.
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Definition 63. Let m be a judgment majority function. Given a profileπ, for an agendaA
and weight matrix W, the issue majority set Ma jpπ ,Wq “ xmpa,π,Wq | a P Ay. If there is
π▽ j such that mpa j ,π,Wq is undefined, then Ma jpπ ,Wq does not exist.

We can further distinguish between strong and weak majority-preservation. A rule is strongly
majority-preserving when it selects the setMa jpπ ,Wq as a unique collective judgment set for
π andW, wheneverMa jpπ ,Wq is consistent and exists. A rule is weakly majority-preserving
if it includesMa jpπ ,Wq among the collective judgment sets, wheneverMa jpπ ,Wq is consis-
tent and exists.

Definition 64 (Weak and strong majority-preservation). A judgment aggregation
rule F : Sn

I ˆ pR
`qnˆm ÞÑ SII is strongly majority-preservingwhen, if Ma jpπ ,Wq exists and

Ma jpπ ,Wq P SII , then Fpπ,Wq “ Ma jpπ ,Wq. The rule F isweakly majority-preserving
when, if Ma jpπ ,Wq exists and Ma jpπ ,Wq P SII , then Ma jpπ ,Wq P Fpπ,Wq.

As implied from their definitions, the weak majority-preservation is satisfied whenever the
strong majority-preservation is satisfied, but the reverseimplication does not hold. The
rules we defined in Chapter 2, with the exception ofRdH ,max, satisfy the strong majority-
preservation property. In this section we show which of the∆d,d aggregators satisfy the weak
and strong, majority-preservation, with respect to the thesimple judgment majority function.
From the specific aggregation functions and metrics we considered, we obtain rules that are
either strongly majority-preserving or do not satisfy thisproperty at all.

We first prove that∆dH ,

ř

and∆dT ,
ř

are strongly majority-preserving. The proof presented is
more detailed than needed, but we construct it in this mannerto be able to use it later to build
a conjecture regarding what characteristics ofd andd give rise majority-preserving∆d,d.

Proposition 4.6.6. If d“f“
ř

then∆d,d satisfies the simple strong majority preservation
for δH andδT .

Proof. We first prove that simple strong majority-preservation holds for single issue agendas
and than generalize to arbitrary large agendas.

Let us first consider an agenda with one issueA“ ta1u. Let x,y,zP t0, 1
2,1u such thatx‰ y,

y‰ zandx‰ z.

If xxy “ ∆
ř

,dpπ ,Wq then (4.6) holds.

n
ÿ

i“1

ÿ

j “ 1mpwpi, jq ¨δ px, pi, j qq ă
n

ÿ

i“1

ÿ

j “ 1mpwpi, jq ¨δ py, pi, j qq (4.6)

Note that (4.6) holds also whenz is used instead ofy. We can simplify (4.6) as (4.7).

n
ÿ

i“1

pwpi,1q ¨δ px, pi,1qq ă
n

ÿ

i“1

pwpi,1q ¨δ py, pi,1qq (4.7)

Since
ř

is an associative function, we can rewrite (4.7) as (4.8).
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ÿ

p
ÿ

iPNx

pwpi,1q ¨δ px,xqq,
ÿ

iPNy

pwpi,1q ¨δ px,yqq,
ÿ

iPNz

pwpi,1q ¨δ px,zqqq ă

ÿ

p
ÿ

iPNx

pwpi,1q ¨δ py,xqq,
ÿ

iPNy

pwpi,1q ¨δ py,yqq,
ÿ

iPNz

pwpi,1q ¨δ py,zqqq (4.8)

We can rewrite (4.8) as (4.9).

ÿ

p0,δ px,yq ¨

Vypa1q
hkkkkikkkkj

ÿ

iPNy

wpi,1q,δ px,zq ¨

Vzpa1q
hkkkkikkkkj

ÿ

iPNz

wpi,1qq ă
ÿ

p0,δ px,yq ¨

Vxpa1q
hkkkkikkkkj

ÿ

iPNx

wpi,1q,δ py,zq ¨

Vzpa1q
hkkkkikkkkj

ÿ

iPNz

wpi,1qq (4.9)

If δ “ δH , thenδ px,yq “ δ py,zq “ δ px,zq “ 1 and (4.9) becomes (4.10).

ÿ

p0,Vypa1q,Vzpa1qq ă
ÿ

p0,Vxpa1q,Vzpa1qq (4.10)

From (4.10) (and non-decreasing of
ř

) follows (4.11).

Vypa1q ăVxpa1q (4.11)

Since (4.10) holds if we swapzandy, (4.12) also follows from (4.10).

Vzpa1q ăVxpa1q (4.12)

If the inequalities (4.11) and (4.12) hold, thenMa jpπ ,Wq exists andMa jpπ ,Wq “ xxy.

Considerδ “ δT . We have the following cases:
(case1.1):x“ 0, y“ 1

2 andz“ 1
(case1.2):x“ 0, y“ 1 andz“ 1

2
(case2.1):x“ 1

2, y“ 1 andz“ 0
(case2.2):x“ 1

2, y“ 0 andz“ 1
(case3.1):x“ 0, y“ 1 andz“ 1

2
(case3.2):x“ 0, y“ 1

2 andz“ 1

We apply each of these cases on (4.10), obtaining (4.13), each line corresponding to each
case.



4.6 Adherence to majority 103

1
2
¨Vypa1q`Vzpa1q ă

1
2
¨Vxpa1q`

1
2
¨Vzpa1q

Vypa1q`
1
2
¨Vzpa1qq ăVxpa1q`

1
2
¨Vzpa1q

1
2
¨Vypa1q`

1
2
¨Vzpa1qq ă

1
2
¨Vxpa1q`Vzpa1q

1
2
¨Vypa1q`

1
2
¨Vzpa1qq ă

1
2
¨Vxpa1q`Vzpa1q

Vypa1q`
1
2
¨Vzpa1qq ăVxpa1q`

1
2
¨Vzpa1q

1
2
¨Vypa1q`Vzpa1qq ă

1
2
¨Vxpa1q`

1
2
¨Vzpa1q

(4.13)

We can simplify (4.13) into (4.14).

Vypa1q ăVxpa1q´Vzpa1q

Vypa1q ăVxpa1q

Vypa1q ăVxpa1q`Vzpa1q

Vypa1q ăVxpa1q`Vzpa1q

Vypa1q ăVxpa1q

Vypa1q`Vzpa1qq ăVxpa1q

(4.14)

In all cases except (case2.1) and (case2.2), we can use the same reasoning as in the case ofδx

to conclude thatx is supported by a simple majority inπ if defined.

The case (case2.1) gives the same inequality as (case2.2). Since we can swapy andz, for
(case2.1) and (case2.2) we obtain that

Vypa1q ăVxpa1q`Vzpa1q

Vzpa1q ăVxpa1q`Vypa1q

(4.15)

The (4.15) are possible whenVzpa1q “ Vypa1q. We can haveVypa1q ě Vxpa1q or Vypa1q ă
Vxpa1q. If Vypa1q ě Vxpa1q thenmspa1,π ,Wq is undefined andMpπ ,Wq does not exist. If
Vypa1q ăVxpa1q then alsoVzpa1q ăVxpa1q andmspa1,π ,Wq “ x. ConsequentlyMa jpπ ,Wq “
xxy.

Now let us assume thatA hasm elements. Assume thatMpπ ,Wq exists andMpπ ,Wq “ A˚,
A˚ P A. From the proofs for|A| “ 1 we obtain that, for anyA P A, A ‰ A˚, and every
j P t1, . . . ,mu, (4.16) holds.

n
ÿ

i“1

wpi, jq ¨δ pA˚p jq, pi, j q ď
n

ÿ

i“1

wpi, jq ¨δ pAp jq, pi, j q (4.16)
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From (4.16) and the non-decreasingness of
ř

, we obtain (4.17).

ÿ

j “ 1m
n

ÿ

i“1

wpi, jq ¨δ pA˚p jq, pi, j q ď
ÿ

j “ 1m
n

ÿ

i“1

wpi, jq ¨δ pAp jq, pi, j q (4.17)

Inequality (4.17) is equivalent to (4.18).

n
ÿ

i“1

ÿ

j “ 1mwpi, jq ¨δ pA˚p jq, pi, j q ď
n

ÿ

i“1

ÿ

j “ 1mwpi, jq ¨δ pAp jq, pi, j q (4.18)

From (4.18) we can conclude that ifMpπ ,Wq P A, then∆d,
ř

“ Mpπ ,Wq, for d “ dH and
d“ dT .

We show that the rest of the examples of distance-based ruleswe considered do no satisfy the
weak, and with that neither the strong, majority-preservation property. For the non majoritar-
ian rules this result is implied.

Proposition 4.6.7. ∆d,max and∆d,Gmaxare not (weakly) majority-preserving.

Proof. It is sufficient to observe that if a sequence in the profile is supported by an absolute
majority of agents then each judgment in that sequence is suported by a simple majority.
Therefore, the counter-examples that show that∆d,max and∆d,Gmax are not majoritarian, are
also counter-examples that show that these rules are not majority-preserving.

More interesting is the case ofd “ Π˚ and ∆dD,
ř

. These rules are majoritarian, but not
majority-preserving.

Proposition 4.6.8. ∆dH ,Π˚
and∆dT ,Π˚

are not (weakly) majority-preserving.

Proof. One binary counter-example suffices for bothdH anddT . LetA“ ta1,a2,a3,a4u and

A“

"

x1,1,1,1y, x0,0,0,0y, x1,1,0,0y,
x0,0,1,1y, x1,0,1,0y

*

.

Consider the profile

π “

»

—

—

—

—

—

—

—

—

–

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We have thatMa jpπ ,Uq “ tx1,0,1,0yu. However there exists anA P A such that

n
ź

i“1

p1`dHpA,π⊲1q, . . .1`dHpA,π⊲nqq ă
n

ź

i“1

p1`dHpA
m
,π⊲1q, . . .1`dHpA

m
,π⊲nqq.
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Namely

7
ź

i“1

p1`dHpA
m
,π⊲1q, . . .1`dHpA

m
,π⊲7qq “ 3 ¨3 ¨3 ¨3 ¨3 ¨3¨1“ 729, but

7
ź

i“1

p1`dHpπ⊲1,π⊲1q, . . .1`dHpπ⊲1,π⊲7qq “ 1 ¨1 ¨1 ¨5 ¨3¨3¨3“ 675, and

7
ź

i“1

p1`dHpπ⊲3,π⊲1q, . . .1`dHpπ⊲3,π⊲7qq “ 675.

Proposition 4.6.9. ∆dD,
ř

is not (weakly) majority-preserving.

Proof. We show that there is a profileπ such thatMa jpπ ,Wq R ∆dD,
ř

pπ ,Wq ‰ma jpπq but
Ma jpπ ,Wq P A. LetA“ ta,aÑ pb^cq,b,cu. The setA for A is

A“

"

x0,1,0,0y, x0,1,0,1y, x0,1,1,0y, x1,0,1,0y,
x0,1,1,1y, x1,0,0,0y, x1,0,0,1y, x1,1,1,1y

*

Consider the following profile,a1 denotes the expressionaÑ pb^cq:

π “
1
2
3

a a1 b c
»

–

0 1 0 0
0 1 1 1
1 1 1 1

fi

fl

.

The Ma jpπ ,Uq “ tx0,1,1,1yu is an element ofA, however it is not among the outputs of
∆dD,

ř

pπ ,Uq, as shown on Table 4.1.

A P A dDpA,A1q dDpA,A2q dDpA,A3q
ř

x0,1,0,0y 0 1 1 2
x0,1,0,1y 1 1 1 3
x0,1,1,0y 1 1 1 3
x0,1,1,1y 1 0 1 2
x1,0,0,0y 1 1 1 3
x1,0,0,1y 1 1 1 3
x1,0,1,0y 1 1 1 3
x1,1,1,1y 1 1 0 2

Table 4.1: The sum of Hamming metrics from an element inA to each of the judgment
sequences.∆dD,

ř

pπ ,Uq “ tx0,1,0,0y,x0,1,1,1y,x1,1,1,1yu .

The simple judgment majority function is not defined for every columnπ▽ j in a profile. How
can we define a total judgment majority function and not violate the majority-preservation
of the distance-based rules that satisfy it? To form this question differently, which default
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judgment should be assigned when the majority is undefined. Since a distance-based merging
rule selects the judgment that minimizes distances, the default judgment should be the one in
the set of valuationsT which is at a minimal distance from each other judgment inT. In the
case ofδT the default judgment should be12, while in the case ofdH , both 0 and 1 together
should be the default judgment.

Example 4.6.10.Consider for example2 the single-issue profileπ and weight matrix W.

π “

»

–

1
1
2
0

fi

fl W “

»

–

5
1
5

fi

fl

The simple majority is undefined for thisπ. We obtain∆dT ,
ř

pπ,Wq“ x 1
2y, while∆dH ,

ř

pπ ,Wq“
tx1y,x0yu.

We can define the median ofT with respect to a distanceδ .

Definition 65. Let T be a set of values and letδ : TˆT ÞÑ R` be a metric. The median of
T with respect toδ is the set medδ pTq “ tx | x P T and for all y,zP T,δ px,zq ď δ py,zqu.

We can now define a total simple judgment majoritymts function as:

mtspa j ,π ,Wq “
"

x iff Vxp jq ąVyp jq for anyx,y P t0, 1
2,1u, x‰ y

medδ pTq otherwise

˙

An inevitable question to ask at this point is what are the properties ofd, f and δ that
give rise to a majority-preserving∆d,d. It can be conjectured that all majority-preserving
distance-based rules∆d1

,d are such that∆d1
,d “ ∆d,

ř

, for some product metricd constructed
usingf“

ř

.

Let us start with an associative aggregation functiond that satisfies minimality. We obtain
(4.19) by re-writing (4.8) usingd instead of

ř

.

dpdiPNxpwpi,1q ¨δ px,xqq,diPNypwpi,1q ¨δ px,yqq,diPNzpwpi,1q ¨δ px,zqqq ă
dpdiPNxpwpi,1q ¨δ py,xqq,diPNypwpi,1q ¨δ py,yqq,diPNzpwpi,1q ¨δ py,zqqq (4.19)

Inequality (4.19) is equivalent to (4.20).

dpdiPNypwpi,1q ¨δ px,yqq,diPNzpwpi,1q ¨δ px,zqqq ă
dpdiPNxpwpi,1q ¨δ px,yqq,diPNzpwpi,1q ¨δ py,zqqq (4.20)

To derive any relation between (4.20) and the simple majority, there must be a relation
betweend and

ř

. More precisely, there must be an order-preserving mappingbetween
dpxq and

ř

pxq. If such an order-preserving map exists, thendpxq ă dpyq if and only if
ř

pxq ă
ř

pyq. But in this case,∆d,d selects the same judgment, on an single-issue agenda,

2I thank an anonymous reviewer for providing me with this example.
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as∆
ř

,d. As an example, consider the distancemPpx,x1q “ Πm
i“12δHpx1,x

1
i q we defined in Sec-

tion 3.4. This function hasf“Π. Selectingd“Π we do obtain a majority-preserving rule
∆mP,Π “ ∆dH ,

ř

pπ ,Wq.

To do the extension from a single-agenda to an arbitrarily large agenda, namely to go from
(4.17) to (4.18), we need thatf commutes withd. The only functionsf that commute
with

ř

are such thatfpxq is a linear transform of
ř

pxq. Such a function, for instance, is
the arithmetic meanAM. In principle, we can always takef “ d to ensure thatf andd
commute.

The conjecture can be proved by showing the following: thereis no majority-preserving∆d,d

for not commutingd andf.

Although the search for majority-preserving rules is discouraging, the observation made here
can be used to construct other distance-based rules. Instead of aggregating row by row, we
can design a distance-based rule to aggregate column by column. This is what we accomplish
when we swap the order betweend andf, when they commute. The judgment majority rules
use the

ř

to aggregate the judgments in the column. For instance, in the presence of weights
we can usef “ maxto obtain the judgment on an issue that is associated with thehighest
weight. Usingd “ sumthe distance-based rule aggregator will return the sequence with the
highest weighted judgments, whenever such sequence existsand is consistent.

4.7 Unanimity adherence

Unanimity is one of the most natural relational properties in social choice stating that if
all agents submit the same individual information to be aggregated, then the aggregate is
precisely that information. As in the case of majority-adherence, the judgment sequence can
be seen as a whole and agents are unanimous when every agent selects the same judgment
sequence. For instance, a sequence-unanimous profile in this sense is:

π “

»

–

1 0 0 1
1 0 0 1
1 0 0 1

fi

fl

.

Unanimity is a property satisfied by a function aggregators,defined ine.g., (List and Puppe,
2009), when for every profileπ sequence-unanimous onA, f pπq “ A.

The judgment sequence can also be seen as a partitionable collection of judgments and una-
nimity can be considered in the case of profiles in which the agents are unanimous in their
judgments on a given issue. For instance, a judgment-unanimous profile in this sense is:

π “

»

–

1 1 0 1
0 0 0 1
1 0 0 1

fi

fl

.

The judgment-unanimous profiles are considered by a property calledunanimity principle
(Dietrich and List, 2008b). The unanimity principle considers whether the unanimously se-
lected judgment is included in the collective judgment sets. For function aggregators, the
unanimity principle is defined in (Dietrich and List, 2008b)in the following way. For every
profile xA1, . . . ,Any in the domain of the aggregation functionf and allϕ P A, if ϕ P Ai for
all individualsi, thenϕ P f pA1, . . . ,Anq.
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The unanimity principle is a stronger property than unanimity, since all functions that sat-
isfy the unanimity-principle are also unanimous. We lift both the unanimity and unanimity
principle and study when they are satisfied by the rules we introduced.

4.7.1 Unanimity

Unanimity is a relatively weak property in voting theory andpreference aggregation, satis-
fied by virtually all rules. In judgment aggregation, this property is still weak enough to be
satisfied by all the rules we introduce.

Definition 66. A judgment aggregation rule F (Definition 50) is unanimous when for every
W P pR`qnˆm if π is such thatπ⊲1“ ¨¨ ¨ “ π⊲n“ A, then Fpπ,Wq “ tAu.

A profile such thatπ⊲1“ ¨¨ ¨ “ π⊲n“ A is majority-consistent, therefore all the majority-
preserving rules defined in Chapter 2 are unanimous as well. The ruleRdH ,max is a special case
of the rule aggregator∆dH ,max. This aggregator is unanimous as a corollary of the following
proposition.

Proposition 4.7.1. If

1. f satisfies minimality (Definition 32);

2. in f d“dpxq “ k if and only ifx“ 0;

then∆d,d is unanimous.

Proof. Recall that ifd satisfies minimality, then it has a unique minimumk “ 0 for x1 “
x2“ ¨¨ ¨ “ xn “ 0. WhenA1“ A2“ ¨¨ ¨ “ An “ A andf satisfies minimalitydpA,Aiq “ 0. If
d satisfies minimality, thendpdpA,A1q, . . . ,dpA,Anqq “ 0 . Every other judgment sequence
will have a score higher than 0. The aggregation functionΠ˚ has a unique minimum ink“ 1,
but since the only values for whichΠ˚pxq “ 1 whenx P pR`qn arex1 “ ¨¨ ¨x2 “ 0, the rule
∆d,Π˚

is unanimous as well.

4.7.2 Unanimity principle

We lift the unanimity principle of (Dietrich and List, 2008b) to two properties which we call
theweakand thestrong unanimity principle.

Definition 67. Let W be some weight matrix. A judgment aggregation rule F satisfies:

• weak unanimity(WU) when, for everyπ such thatπ1, j “ ¨¨ ¨ “ πn, j “ x for a aj P A,
there exists a AP Fpπ,Wq such that Ap jq “ x;

• strong unanimity(SU) when, for everyπ such thatπ1, j “ ¨¨ ¨ “ πn, j “ x for a aj PA,
for all A P Fpπ,Wq, Ap jq “ x.

If (SU) is satisfied byF , then so is (WU).

We show which of the rules based on minimization from Chapter2 and the distance based
rules from Chapter 3 satisfy (WU) and (SU). We consider the rules: RMSA (Definition 11),
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RMCSA (Definition 12),RMWA (Definition 15),RRA (Definition 16),RY (Definition 17),RRY

(Definition 19) andRMNAC (Definition 23). The ruleRdH ,max (defined in Section 2.2.4) we
consider as part of the distance based rules. We do not analyze the rulesRIY (Definition 18)
andRMR (Definition 21) since these rules are very weak. Namely theserules select a very
large number of collective judgment sets and are more (with respect to their theories) general
than most rules.

Proposition 4.7.2. RMSA satisfies weak unanimity but not strong unanimity.

Proof. Let P be a profile on an agendaA, andϕ PA on which all agents give the same judg-
mentx. There always exists a maximal consistent sub-agenda, withrespect to set inclusion,
that containsϕ . Consequently there exists a judgment set inRMSApPq that containsx.

As a counter-example forRMSApPq satisfying strong unanimity, consider the profileP of the
proof of Proposition 2.3.5.RMSA does not satisfy strong unanimity, becausea R TRMSApPq.

Proposition 4.7.3. RMCSAdoes not satisfy weak (or strong) unanimity.

Proof. Consider again the profileP of the proof of Proposition 2.3.5. The only maxcard
consistent sub-agenda ofP contains a (and does not containa). ConsequentlyRMCSA does
not even satisfy weak unanimity.

Proposition 4.7.4. RMWA does not satisfy weak (or strong) unanimity.

Proof. See again the counterexample that can be found in (Pigozzi etal., 2009), which we
presented in the proof of Proposition 2.3.8.

Proposition 4.7.5. RRA satisfies strong (and weak) unanimity.

Proof. Let P be a profile andYPĎA be the subset of the agenda consisting of all elements on
which there is unanimity among the agents. Because individual judgment sets are consistent,
the conjunction of all elements ofY is consistent. Now, when computingRRApPq, the ele-
ments ofY are considered first, and whatever the order in which they areconsidered, they are
included inδ because no inconsistency arises. Therefore, for allα PYP and allÂ P RRApPq,
we haveα P Â.

Proposition 4.7.6. RY satisfies strong (and weak) unanimity.

Proof. Observe that ifα is unanimously accepted by all agents in the setN, it is consequently
unanimously selected by all consistent subsets ofN.

Proposition 4.7.7. RRY satisfies strong (and weak) unanimity.

Proof. Similar as the proof of Propositions 4.7.6. Ifα is in all judgment sets for a profileP,
thenα is in all judgment sets for any super-profile ofP constructed by repeating the judgment
sets fromP.
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Proposition 4.7.8. RMNAC does not satisfy weak (nor strong) unanimity.

Proof. Again consider the agenda and profileP in the proof of Proposition 2.3.8. Since
RMNACpPq “ RMWApPq, this example of a profile is a counter-example forRMNAC satisfying
weak unanimity as well.

Not all ∆d,d satisfy unanimity. We consider thed given in Section 3.3.2 and thed given in
Section 3.3.1.

Proposition 4.7.9. ∆dD,d satisfies the strong unanimity principle.

Proof. Recall that the drastic metric is defined asdpA,A1q “ 0 if A“1 anddpA,A1q “ 1 oth-
erwise. As a consequence of this definition and the non-decreasing ofd, A P ∆dD,dpπ,Wq, if
and only if there exists ani such thatA“ π i , i.e., Ais necessarily in the profile.

Proposition 4.7.10.∆d,
ř

does not satisfy the weak unanimity principle for dP tdT ,dHu.

Proof. It is sufficient to give a counter-example forW “U . We consider the same example
as in the proof of Proposition 3.4.5. As it can be observed in Table 3.8, although the agents
are unanimous onAi▽a13“ 1, the only value fora13 is A4▽a13“ 0.

Proposition 4.7.11.∆d,max does not satisfy the weak unanimity principle for dP tdT ,dHu.

Proof. As we did in the proof of Theorem 4.7.10, here also it suffices to give the counter-
example forW“U . Consider the agendaA“ ta1,a2,a3,a4,a5,a6,a7u. The set of consistent
judgment setsA is given in Table 4.2, first column. Let the profile consist of the judgment
sets:
Â1“ ta1, a2, a3,a4, a5, a6, a7u;
Â2“ t a1,a2, a3, a4,a5, a6, a7u;
Â3“ t a1, a2,a3, a4, a5,a6, a7u.

It is the case that a7 P Â1,  a7 P Â2 and a7 P Â3. However, as it can be observed from
Table 4.2, the rule∆dH ,max selects a unique judgment set that does not contain a7.

Â P Â dH pÂ, Â1q dHpÂ, Â2q dHpÂ, Â3q max

ta1,  a2,  a3, a4,  a5,  a6,  a7u 0 4 4 4
t a1, a2,  a3,  a4, a5,  a6,  a7u 4 0 4 4
t a1,  a2, a3,  a4,  a5, a6,  a7u 4 4 0 4
t a1,  a2,  a3,  a4,  a5,  a6, a7u 3 3 3 3

Table 4.2: Themaxof Hamming metrics from an element in the setÂ to each of the agent’s
judgment sets. The judgment set chosen by the rule∆dH ,maxdoes not contain the unanimously
selected a7.

Proposition 4.7.12.∆d,Π˚
does not satisfy the weak unanimity principle for dP tdT ,dHu.



4.7 Unanimity adherence 111

Proof. We give a counter-example for∆dH ,Π˚
whenW “ U . Consider an agendaA. The

set of all consistent judgment sequences, forA, is given in the first column (from the left) in
Table 4.3.

A P A
A1“ p1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1q
A2“ p0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1q
A3“ p0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1q
A4“ p0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1q
A5“ p0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1q
A6“ p0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1q
A7“ p0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0q

Table 4.3: The set of consistent judgment sentences forA.

Consider the profileπ whereπ⊲i “ Ai for i P r1, . . . ,6s. All the judgment sequences are
unanimous on the last issue, assigning it a judgment 1. However, as it can be observed from
Table 4.4, the judgment sequence selected by∆dH ,Π˚

is A7 which assigns a judgment 0 to the
last sequence.

AP A dHpA,A1q dH pA,A2q dH pA,A3q dHpA,A4q dH pA,A5q dH pA,A6q Π˚

A1 0 8 8 8 8 8 59 049
A2 8 0 8 8 8 8 59 049
A3 8 8 0 8 8 8 59 049
A4 8 8 8 0 8 8 59 049
A5 8 8 8 8 0 8 59 049
A6 8 8 8 8 8 0 59 049
A7 5 5 5 5 5 5 46 656

Table 4.4: TheΠ˚ of Hamming metrics from an element in the setA to each of the agent’s
judgment sequences. The judgment sequence chosen by the rule ∆dH ,Π˚

is A7 for which
A7▽a25“ 1 although in the profileAi▽a25“ 0 for all i.

We can observe that in general, whether the unanimity-principle is satisfied by a distance-
based rule does not depend on the properties ofd andd, but rather on the ratio between
the cardinality of the agenda on one side, and the number of agents and associated weights
for each judgment, on the other side. Letx be the judgment supported by all agents fora
in a profileπ . Unanimity-preservation will be satisfied always when the minimal value of
dn

i“1wpi, jqδ py,πq for y‰ x, is larger than the minimal value ofdn
i“1f

n
a j‰a wpi, jqδ py,πq.

These conditions for unanimity-preserving are very strict, therefore they are not included as
a proposition.
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4.8 Monotonicity properties

In voting theory monotonicity is a standard property considered for voting rules. When a
voting rule is monotonic, an improvement in the ranking of the winning alternative,ceteris
paribus, does not diminish that alternative’s likelihood of being awinner. When the purpose
of aggregation is to select an alternative that is representative of the individual input, then it
is desirable that additional support for an input should notmake that input less likely to be
the aggregate (Nurmi, 2004).

In judgment aggregation monotonicity has also been considered as a desirable relational prop-
erty. There are three versions of monotonicity defined for function aggregators:monotonicity
on an agenda issueas a property imposed on an aggregation function (List and Puppe, 2009),
monotonicityas a property imposed on a subset of the agenda (to address manipulability is-
sues) (Dietrich and List, 2005), andmonotonicity on a judgment setby (Dietrich and List,
2008a). The first property is the strongest, subsuming the other two.

The monotonicity property defined for function aggregatorsin (List and Puppe, 2009) can be
lifted to monotonicity for rule aggregators in the following way.

Definition 68 (Monotonicity). A profile P1 is called an i-variant of profile P when for all
i‰ j, i, j P r1,ms, Âj PP if and only ifÂ j PP1. A judgment aggregation rule F is monotonic

when, for every P, P1 P Sn
I such that P“ pÂ1, . . . , Âi , . . . , Ânq and P1 “ pÂ1, . . . , Â

1
i , . . . , Ânq

its i-variant, and a WP pR`qnˆm if there is an aPA such that

• a R Âi ;

• a P Â
1
i ;

• a P TFpPq;

then aP TFpP1q and FpP1,Wq “ FpP,Wq.

The monotonicity property defined as above is a very strong property. There are no con-
straints imposed on̂A

1
i with respect toÂi , therefore it can happen thatÂ

1
i X Âi “H and for

rules that do not satisfy independence the collective judgment set can be affected on more
issues than justϕ . We can define a weaker monotonicity property and we considerwhether
our rules satisfy it. The intuition behind our new property is closer to the intuition behind the
monotonicity property as studied in voting theory. Namely,theceteris paribusimprovement
in the support for a judgment that is already included in all collective judgment sets, should
not diminish that judgment’s likelihood of being in all collective judgment sets. This is the
property of insensitivity to reinforcement of collective judgments.

First we define when a profile is anα-improvement of another profile for the case of
T Ď t0, 1

2,1u.

Definition 69. Given two profilesπ,π 1 P An, α P t0,1u and aj PA, the profileπ 1 is called
an α-improvementof π when

• for all k‰ i and for all r ‰ j πk,r “ π 1k,r ;

• π i, j ‰ α;
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• π 1i, j “ α.

For binary judgments, the conditionπ i, j ‰ α implies thatπ i, j “  α. We do not consider
reinforcements for the judgment1

2.

Consider for example the agendaA“ ta1,a2,a3u, R“ tpa1^a2q Ø a3u, |ù3L (Łukasiewicz
logic) andN “ t1,2,3u. The profilesπ 1 andπ2 are correspondingly a 0-improvement and
1-improvement ofπ for a1.

π “

»

–

1
2 0 0
0 1 0
1 1

2
1
2

fi

fl π 1 “

»

–

0 0 0
0 1 0
1 1

2
1
2

fi

fl π2 “

»

–

1 0 0
0 1 0
1 1

2
1
2

fi

fl π3 “

»

–

1
2 0 0
0 1 1
1 1

2
1
2

fi

fl

The profileπ3 is not a improvement ofπ since it is not inA3.

As with the other relational properties, many versions of insensitivity to reinforcement prop-
erty can be defined. We construct two versions.

Definition 70 (IR-s). Let α be a judgment for aP A. F satisfiesstrict insensitivity to
reinforcement of collective judgements Iif for all α-improvement profilesπ 1 P Sn

I of π P Sn
I if

[for all A P Fpπ ,Wq, Apaq “ α] then Fpπ,Wq “ Fpπ 1,Wq.

Definition 71 (IR). Letα be a judgment for aPA. F satisfiesinsensitivity to reinforcement
of collective judgements Iif for all α-improvement profilesπ 1 P Sn

I of π P Sn
I if [for all A P

Fpπ,Wq, Apaq “ α] then [for all A1 P Fpπ,Wq, A1paq “ α] .

If a ruleF is monotonic, then it satisfies (IR-s). IfF satisfies (IR-s), then it satisfies (IR).

We show which of the rules based on minimization from Chapter2 satisfy (IR-s). We do not
considerRIY andRMR. The rules from Chapter 3 we analyze with respect to (IR).

Proposition 4.8.1. RMSA and RMCSAsatisfy (IR-s).

Proof. We considerRMSA. Assume thatα P TRMSApPq andP1 anα´ rein f orcementof P.

LetYĎA be a maximal agenda for whichPÓY is majority-consistent. Becauseα P TRMSApPq,
we must haveα P Y. P1ÓY must be majority-consistent as well due to the conditions of
Definition 69. Moreover

MpP1ÓYq “MpPÓYq. (4.21)

From (4.21) it is infered that

all maximal majority-consistent sub-agendas forP1 contain some maximal

majority-consistent sub-agenda forP1. (4.22)

LetYĎA be a maximal agenda for whichP1ÓY is majority-consistent. Ifα RMpP1ÓYq thena
fortiori α RMpPÓYq, which contradicts (4.22). Therefore,α PMpP1ÓYq, and because of (4.22),
it is also a maximal majority-consistent sub-agenda forP. We have shown that the maximal
majority-consistent sub-agendas forP andP1 coincide, thereforeRMSApPq “ RMSApP1q. The
proof forRMCSAcan be generated in exactly the same way.

Proposition 4.8.2. RRA satisfies (IR-s).
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Proof. Let α P A and assume thatα P TRRApPq. Then all sub-agendas inRRApPq contain
α. Let P1 be anα-improvement ofP. ThenNpP1,αq ą NpP,αq, NpP1, αq ă NpP, αq,
whereas for allϕ ‰ α, α, NpP1,ϕq “ NpP,ϕq. Note that iněP1 , α appears either at an
earlier position or in the same position as iněP. Therefore, ifą1 is an order refiningěP1 ,
whenα is considered iną, otherwise there would be an orderą refiningěP resulting in a
sub-agenda not containingα. Thereforeα belongs to all sub-agendas inRApP1q.

Proposition 4.8.3. RMWA i.e., ∆dH ,

ř

, satisfies (IR-s).

Proof. Let P be a profileP “ pÂ1, . . . , Âk, . . . , Ânq. Let theα-reinforcement ofP be a profile
P1 “ pÂ

1
1, . . . , Â

1
k, . . . , Â

1
nq “ pÂ1, . . . , Â

˚
k , . . . , Ânq. Let Â be the set of all consistent and

complete judgment sets over an agendaA. Let us defineDpÂ,Pq “
řn

i“1dHpA,Aiq.

We have the following assumptions:

• α R Âk,

• α P Â
˚
k ,

• for all ψ PA,ψ R tα, αu it holdsψ P Âk iff ψ P Â
˚
k ,

• α P Â, for all Â P RdH ,ΣpPq.

We first show that all the judgment setsÂPRdh,ΣpPq are such that̂APRdh,ΣpP1q and that there
exists noÂ

1
P Â such that:α P Â

1
, Â
1
R Rdh,ΣpPq, but Â

1
P Rdh,ΣpP1q.

Let the score of the winner judgment setsÂ for P be c, namely letc“
řn

i“1dHpA,Aiq, for all

Â P Rdh,ΣpPq. We have that, for all̂A
1
P Â, when the cardinality of the pre-agenda ism:

dHpA1,Akq “m´|ÂkX Â
1
|,

dHpA1,A˚k q “m´|Â
˚
k X Â

1
|.

Let Â
1
P Â be such thatα P Â

1
. SincedHpAk,A˚k q “ 1, we have that|ÂkX Â

1
|´ |Â

˚
k X Â

1
| “ 1.

HencedHpA1,Akq “ 1`dHpA1,A˚k q and

DpÂ
1
,Pq “ 1`DpÂ

1
,P1q. (4.23)

For all the winnerŝA for P, we obtain thatDpÂ,Pq “ 1`DpÂ,P1q, hence

DpÂ,P1q “ c´1. (4.24)

If an Â
1
R Rdh,ΣpPq, thenDpÂ

1
,Pq ą c and due to 4.23,DpÂ

1
,P1q ą c´1. We can conclude

that there is nôA
1
P Â such thatα P Â

1
andÂ

1
R Rdh,ΣpPq but Â

1
P Rdh,ΣpP1q.

We now show that there exists noÂ
2
P Â such thatα R Â

2
andÂ

2
RRdh,ΣpPq butÂ

2
P Rdh,ΣpP1q.

We construct a proof by contradiction, starting with the assumption that there exists such a
Â
2
P Rdh,ΣpP1q.

SinceÂ
2
R Rdh,ΣpPq, we obtain
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DpÂ
2
,Pq ą c. (4.25)

Sinceα P Â
˚
k andα R Â

1
, we obtaindHpA2,Akq ă dHpA2,A˚k q and consequently

DpÂ
2
,Pq ă DpÂ

2
,P1q. (4.26)

Putting together inequalities 4.25 and 4.26 we obtain

DpÂ
2
,P1q ą c (4.27)

However, the inequality 4.27 and inequality 4.24 are contradictory with the assumption that
Â
2
RRdh,ΣpPq. This completes the proof thatRdh,Σ is insensitive to reinforcement of collective

judgements.

Proposition 4.8.4. RY does not satisfy (IR-s).

Voters p q p^q r
2ˆ + + + +
2ˆ + - - +
1ˆ + - - +
4ˆ - + - -

MpPq + + - +

Voters p q p^q r
2ˆ + + + +
2ˆ + - - +
1ˆ - - - +
4ˆ - + - -

MpPq - + - +

Table 4.5:P on the left, and the p-reinforcementP1 on the right used to show thatRY does
not satisfy (IR-s).

Proof. We use a proof by counter-example. Let the agenda beA“ tp,q, p^q, ru. Consider
the profileP in Table 4.5.P is not majority-consistent, but removing any voter who hasp in
her judgment set suffices to restore consistency, thereforeRYpPq “ tq, pp ^ qqu.

Consider the p-reinforcementprofileP1, Table 4.5 right-most.RYpP1q “ t p,q, pp^ qq, ru.
Observe that although pP TYpPq and p P TYpP1q, RYpPq ‰T RYpP1q.

Proposition 4.8.5. RRY does not satisfy (IR-s).

Proof. Consider again the profileP given on Table 4.5. We obtainRRYpPq by adding the
fourth judgment set once, so that it appears five times in the profile instead of four.
RRYpPq “ tq, pp ^ qqu, henceTRRYpPq |ù  p and TRRYpPq * t. Consider the
 p-reinforcementP1 given on Table 4.5.RRYpP1q “MpP1q “ t p,q, pp ^ qq, tu. It can be
observed thatRRYpPq ‰ RRYpP1q.

Proposition 4.8.6. RMNAC does not satisfy (IR-s).
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Voters p q p^q p^ r p^s
1ˆ Â1 ` ` ` ´ ´
1ˆA2 ` ´ ´ ` ´
1ˆ Â3 ´ ` ´ ´ `
MpPq ` ` ´ ´ ´

Voters p q p^q p^ r p^s
1ˆ Â1 ` ` ` ´ ´
1ˆA2 ` ´ ´ ´ ´
1ˆ Â3 ´ ` ´ ´ `
MpP1q ` ` ´ ´ ´

Table 4.6: The profilesP (left) andP1 (right), an example thatRMNAC is not insensitive to
reinforcement of collective judgements.

Proof. Consider the agendaA“ tp,q, p^q, p^ r,q^su and the profileP given in Table 4.6.

There are 6 profilesPi such thatDpP,Piq“ 2, see Table 4.7.RMNACpPq “ ttp,q, p^ q, pp^ rq,
 pp^ squ,tp, q, pp^ qq, pp^ rq, pp^ squ,t p,q, pp^ qq, pp^ rq, pp^ squu.
We have thatTRMNACpPq |ù  pp^ rq.

P1 is a pp^ rq-reinforcement ofP, butRMNACpP1q “ tt p,q, pp^ qq, pp^ rq, pp^ squu,
sinceDpP1,P3q “ 1.

Voters p q p^q p^ r p^s
1ˆ ` ´ ´ ´ ´
1ˆ ` ´ ´ ` ´
1ˆ ´ ` ´ ´ `

MpP1q ` ´ ´ ´ ´

Voters p q p^q p^ r p^s
1ˆ ´ ` ´ ´ ´
1ˆ ` ´ ´ ` ´
1ˆ ´ ` ´ ´ `

MpP2q ´ ` ´ ´ ´

Voters p q p^q p^ r p^s
1ˆ ` ` ` ´ ´
1ˆ ´ ´ ´ ´ ´
1ˆ ´ ` ´ ´ `

MpP3q ´ ` ´ ´ ´

Voters p q p^q p^ r p^s
1ˆ ` ` ` ´ ´
1ˆ ` ` ` ` ´
1ˆ ´ ` ´ ´ `

MpP4q ` ` ` ´ ´

Voters p q p^q p^ r p^s
1ˆ ` ` ` ´ ´
1ˆ ` ´ ´ ` ´
1ˆ ´ ´ ´ ´ ´

MpP5q ` ´ ´ ´ ´

Voters p q p^q p^ r p^s
1ˆ ` ` ` ´ ´
1ˆ ` ´ ´ ` ´
1ˆ ` ` ` ´ `

MpP6q ` ` ` ´ ´

Table 4.7: The profilesPi, i P r1,6s for whichDpP,Piq “ 2. Note thatDpP1,P3q “ 1.

Proposition 4.8.7. RdH ,max does not satisfy (IR-s).

Proof. Consider the agendaA“ tp^ r, p^q,q, tu, the profileP for three agents:
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Voters p^ r p^q q t
1ˆ ´ ` ´ `
1ˆ ` ´ ´ ´
1ˆ ´ ´ ` `

and its pp^qq-reinforcement (in the first voter’s judgment set)P1:

votersp^ r p^q q t
1 ´ ´ ´ `
2 ` ´ ´ ´
3 ´ ´ ` `

As it can be observed from Table 4.8, pp^qq P TRdH ,maxpPq, sinceRdH ,maxpPq “
tt pp ^ rq, pp^qq, q, tu,t pp^ rq, pp^qq, q, tu,tp^ r, pp^qq, q, tuu.
However, as it can be observed from Table 4.9,RdH ,maxpP1q “ tt pp^ rq, pp^qq, q, tu,
t pp^ rq, pp^qq, q, tu,tp^ r, pp^qq, q, tu,t pp^ rq, pp^qq,q, tuu. Thus,
 pp^qq P TRdH ,maxpP1q andRdH ,maxpPq ‰ RdH ,maxpP1q. Furthermore, since qPTRdH ,maxpPq,
but q R TRdH ,maxpP1q, we obtain thatRdH ,maxpPq ‰T RdH ,maxpP1q.

Â P Â dHpÂ, Â5q dHpÂ, Â8q dHpÂ, Â4q max
Â1 t pp^ rq, pp^qq, q, tu 2 1 2 2
Â2 t pp^ rq, pp^qq, q, tu 1 2 1 2
Â3 t pp^ rq, pp^qq,q, tu 3 2 1 3
Â4 t pp^ rq, pp^qq,q, tu 2 3 0 3
Â5 t pp^ rq, p^q, q, tu 0 3 2 3
Â6 t pp^ rq, p^q,q, tu 2 3 2 3
Â7 t pp^ rq, p^q,q, tu 1 4 1 4
Â8 tp^ r, pp^qq, q, tu 3 0 3 3
Â9 tp^ r, pp^qq, q, tu 2 1 2 2
Â10 tp^ r, p^q,q, tu 3 2 3 3
Â11 tp^ r, p^q,q, tu 2 3 2 3

Table 4.8: The max of Hamming metrics from an element in the set Â to each of the agent’s
judgment sets in profileP.

We now consider the∆ rules.

Proposition 4.8.8. If d P tdT ,dHu then∆d,d satisfies (IR).

Proof. Consider a profileπ for A, a β P A, a profileπ 1 which is aβ -reinforcement ofπ.
Thek-th row is the row on whichπ andπ 1 differ. Observe that, forβ P tb, bu or b“  β
pπ 1⊲kq▽b“ vpbq, vpbq P t0,1u andpπ⊲kq▽b P t0, 1

2,1u. Let A P ∆d,dpπ ,Wq, A▽b“ vpbq.
We need to show that allA1 P ∆d,dpπ 1,Wq are such thatA1▽b“ vpbq. We construct a proof
by contradiction.
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ÂP Â dHpÂ, Â2q dHpÂ, Â8q dHpÂ, Â4q max
Â1 t pp^ rq, pp^qq, q, tu 2 1 2 2
Â2 t pp^ rq, pp^qq, q, tu 1 2 1 2
Â3 t pp^ rq, pp^qq,q, tu 1 2 1 2
Â4 t pp^ rq, pp^qq,q, tu 0 3 0 3
Â5 t pp^ rq, p^q, q, tu 2 3 2 3
Â6 t pp^ rq, p^q,q, tu 1 3 2 3
Â7 t pp^ rq, p^q,q, tu 1 4 1 4
Â8 tp^ r, pp^qq, q, tu 3 0 3 3
Â9 tp^ r, pp^qq, q, tu 2 1 2 2
Â10 tp^ r, p^q,q, tu 2 2 3 3
Â11 tp^ r, p^q,q, tu 1 3 2 3

Table 4.9: The max of Hamming metrics from an element in the set Â to each of the agent’s
judgment sets in profileP1.

We use the notation

dwpA,Aiq “
m

ÿ

j“1

wpi, jq ¨δ pA▽a j ,Ai▽a jq,

whereδ P tδH ,δTu.

FromA P ∆d,dpπ,Wq it follows that

dn
i“1 dwpA,π⊲iq ă dn

i“1dwpA
1
,π⊲iq. (4.28)

SincedwpA,π⊲kq ě dwpA,π 1⊲kq it follows, from the non-decreasingness ofd:

dn
i“1 dwpA,π⊲iq ě dn

i“1dwpA,π 1⊲iq. (4.29)

It follows from (4.28) and (4.29) that:

dn
i“1 dwpA,π 1⊲iq ă dn

i“1dwpA
1
,π⊲iq. (4.30)

Assume that there is aA1 P ∆d,dpπ 1,Wq such thatA1▽b‰ vpbq, and as suchA1 R ∆d,dpπ,Wq.
It follows that

dn
i“1 dwpA

1
,π 1⊲iq ă dn

i“1dwpA,π 1⊲iq. (4.31)

From (4.30) and (4.31), it follows that

dn
i“1 dwpA

1
,π 1⊲iq ă dn

i“1dwpA
1
,π⊲iq. (4.32)

From (4.32), sinceπ 1⊲i “ π⊲i, for all i ‰ k, it follows that

dwpA
1
,π 1⊲kq ă dwpA

1
,π⊲kq. (4.33)
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Recall that

dwpA
1
,π 1⊲kq “

m
ÿ

j“1

wpk, jq ¨δ pA1▽a j ,π 1k, j q

and

dwpA
1
,π⊲kq “

m
ÿ

j“1

wpk, jq ¨δ pA1▽a j ,πk, jq

Sinceπ 1k, j “ pk, j , for all a j ‰ b It follows that (4.33) holds, if and only if

δ pA1▽b,π 1k,bq ă δ pA1▽b,πk,bq (4.34)

ForδH , the inequality (4.34) holds only whenδ pA1▽b,π 1k,bq “ 0, however that would imply
thatA1▽b“ π 1k,b which is a contradiction with the assumption thatA1▽b‰ vpbq.

For δT , the inequality (4.34) holds only when it is possible thatδ pA1▽b,π 1k,bq “
1
2 or

δ pA1▽b,πk,bq “ 1. If δ pA1▽b,π 1k,bq “
1
2, thenA1▽b “ 1

2 due tovpbq P t0,1u. How-

ever, ifA1▽b“ 1
2, thenδ pA1▽b,pπ⊲kq▽bq P t0, 1

2u and we reach a contradiction again.

Proposition 4.8.9. ∆dD,d satisfies (IR).

Proof. We make the same assumptions as in Proposition 4.8.8. Consider a profileπ for A,
a β P A, a profileπ 1 which is aβ -reinforcement ofπ. Thek-th row is the row on which
π andπ 1 differ. Observe that, forβ P tb, bu or b“  β pπ 1⊲kq▽b“ vpbq, vpbq P t0,1u
and pπ⊲kq▽b P t0, 1

2,1u. Let A P ∆dD,dpπ ,Wq, A▽b “ vpbq. We need to show that all
A1 P ∆dD,dpπ 1,Wq are such thatA1▽b “ vpbq. We construct a proof by contradiction.

We use the notation

dwpA,Aiq “maxpwi,1 ¨δhpAp1q,Aip1qq, . . . ,wi,m ¨δhpApmq,Aipmqqq.

FromA P ∆dD,dpπq it follows that

dn
i“1 dwpA,π⊲iq ă dn

i“1dwpA
1
,π▽iq. (4.35)

SincedDpA,π▽kq ě dDpA,π 1▽kq it follows, from the non-decreasingness ofd:

dn
i“1 dwpA,π▽iq ě dn

i“1dwpA,π 1▽iq. (4.36)

It follows from (4.35) and (4.36) that:

dn
i“1 dwpA,π 1▽iq ă dn

i“1dwpA
1
,π▽iq. (4.37)

Assume thatA1 P ∆dD,dpπ 1,Wq andA1 R ∆dD,dpπ ,Wq. It follows that

dn
i“1 dwpA

1
,π 1▽iq ă dn

i“1dwpA,π 1▽iq. (4.38)

From (4.37) and (4.38), it follows that
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dn
i“1 dwpA

1
,π 1▽iq ă dn

i“1dwpA
1
,π▽iq. (4.39)

From (4.39), sinceπ 1▽i “ π▽i, for all i ‰ k, it follows that

dDpA
1
,π 1▽kq ă dDpA

1
,π▽kq. (4.40)

The inequality (4.40) is only possible whendDpA1,π 1▽kq “ 0, however that would imply that
A1▽b“ pπ 1⊲kq▽b which is a contradiction with the assumption thatA1▽b‰ vpbq.

4.9 Separability

In addition to the relational properties that are considered in judgment aggregation, and which
we lifted in the previous sections, we can also introduce relational properties inspired by
properties of interest studied in voting theory.

In voting theory, the separability property states that if an alternative is a winner under a
voting rule, for two distinct profiles under the same set of candidates, then that alternative
is a winner, under the same voting rule, for the profile obtained by combining the two pro-
files. The property of separability is defined in (Smith, 1973), also defined as consistency in
(Young, 1975), and it is sometimes called reinforcement as well. This property is best known
as one of the conditions, together with neutrality and anonymity, used by Young in his char-
acterization of scoring social choice rules (Young, 1975).The voting rules that do not satisfy
the separability property are subject to occurrences ofSimpson’s paradox(Blyth, 1972).

In judgment aggregation, the separability property is of interest as well. One reason is that
the separability property is a natural requirement to make:if a judgment set is among the col-
lective judgment sets for profileπ1 and for profileπ2, then it should be among the judgment
sets for the combined profileP.

Since the judgment aggregation sequence can be considered as a solid piece of information
or as divisible collection of judgments, we can define at least two versions of a separability
property in judgment aggregation: sequence-separability(S-s) and issue-separability (S-i).

Definition 72 (Horizontal merge). Let M1 be a n1ˆm matrix and M2 a n2ˆm matrix. The
matrix M is called a horizontal merge of M1 and M2 if M⊲i “ M1⊲i for all i P r1,n1s and
M⊲p j`n1q “M1⊲ j for all j P r1,n2s.

Definition 73 (S-i). A rule F satisfies issue-separabilitywhen for every π P Sn1
I ,

W1 P pR
`qn1ˆm and π P Sn2

I , W2 P pR
`qn2ˆm and their horizontal mergeπ P Sn1`n2

I ,
W P pR`qpn1`n2qˆm if [for all A P Fpπ1,W1q, Ap jq “ α] and [for all A1 P Fpπ2,W2q,
A1p jq “ α], then [for all A2 P Fpπ ,Wq, A2p jq “ α].

Definition 74 (S-s). A rule F satisfiessequence-separabilitywhen for everyπ P Sn1
I ,

W1 P pR`qn1ˆm and π P Sn2
I , W2 P pR`qn2ˆm and their horizontal mergeπ P Sn1`n2

I ,
W P pR`qpn1`n2qˆm if F pπ1,W1qXFpπ2,W2q ‰H, then Fpπ1,W1qX Fpπ2,W2qĎ Fpπ,Wq.

The issue-separability states that if a judgment is in the theory of the rule on a profileπ1

and it is in the theory of profileπ2, both being profiles on the same agenda and constraints,
then the same judgment is in the theory of the horizontal merge ofπ1 andπ2. The sequence-
separability looks at whole sequences instead of judgments. If a sequence is selected as
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collective by a rule forπ1 and the same sequence is selected as collective forπ2, then that
sequence is among the collective sequence selected by the rule for the horizontal merge ofπ1

andπ2.

Unlike with unanimity and unanimity principle, majoritarianism and majority-preservation,
and (IR-s) and (IR), one of the separability properties doesnot imply the other. We study
issue-separability for the rules based on minimization (again not consideringRIY andRMR)
and sequence-separability for the weighted distance-based rules.

For the rules in Chapter 2 we study (S-i) by establishing a general result3 which shows that
majority-preservation and rule (S-i) are incompatible. This result can be seen as the judgment
aggregation counterpart of the result that states that every Condorcet-consistent voting rule
violates reinforcement, see Theorem 9.2 (Moulin, 1991, pg.237).

Proposition 4.9.1.If a rule aggregator is majority-preserving then it violates issue-separability.

Proof. Let Rbe a majority-preserving rule, and assume furthermore thatRsatisfies (S-i). Let
A“ tp,q, p_qu, andP the 10-voter profile as follows:

voters p q p_q
1,2 ` ` `
3,4 ´ ` `
5,6 ` ´ `

7,8,9,10´ ´ ´

Consider the two sub-profilesP1 consisting of voterst1,3,4,7,8u andP2 consisting of vot-
ers t2,5,6,9,10u. P1 and P2 are majority-consistent, withMpP1q “ t p,q, p_ qu and
MpP2q “ tp, q, p_qu. SinceR is majority-preserving, we haveRpP1q “ ttp, q, p_quu
andRpP2q “ ttq, p, p_quu; therefore,p Ø q P TRpP1q andp Ø  q P TRpP2q, from
which, by (S-i),

pØ q P TRpP1YP2q “ TRpPq. (4.41)

Consider now the two sub-profilesP3 consisting of voterst1,2,3u andP4 consisting of vot-
ers 4 to 10. The profilesP3 andP4 are majority-consistent, withMpP3q “ tp,q, p ^ qu
andMpP4q “ t p, q, p ^  qu. SinceR is majority-preserving, we haveRpP3q “
tp,q, p ^ qu andRpP4q “ t p, q, p ^  qu. As a consequence

pØ q P TRpP3q andpØ qP TRpP4q. (4.42)

From (4.42), by separability,

pØ q P TRpP1YP2q “ TRpPq. (4.43)

The equation (4.43) is in contradiction with (4.41).

As a corollary, all the rules based on minimization exceptRdH ,max violate issue-separability.

Corollary 4.9.2. The aggregation rules RY, RMSA, RMCSA, RMWA, RRA, RRY, and RMNAC do
not satisfy (S-i).

3This theorem was proved by Jérôme Lang.



122 Chapter 4 Selecting judgment aggregation rules

The only one of our rules which is not majority-preserving isRdH ,max. However, this one
does not satisfy (S-i) either, which shows that it seems extremely difficult to find a reasonable
judgment aggregation rule that satisfies (S-i).

Proposition 4.9.3. RdH ,max does not satisfy (S-i).

Proof. LetA“ tp,q, r, pÑ pq^ rqu, and the 5-voter profileP:

voters p q r pÑ pq^ rq
1,2,3 ` ` ´ ´
4,5 ` ` ` `

Consider also the two sub-profilesP1 consisting of voters 1, 2 and 3, andP2 consisting of
voters 4 and 5. Observe thatRdH ,maxpP1q “ ttp,q, r, ppÑ pq^ rqquu andRdH ,maxpP2q “
ttp,q, r, pÑ pq^ rquu, thus p P TRdH ,maxpP1q and p P TRdH ,maxpP2q. However,
RdH ,maxpPq“ ttp,q, r, pp Ñ pq^ rqqu,tp,q, r, p Ñ pq^ rqu,t p,q, r, p Ñ pq^ rqu,
tp, q, r, pp Ñ pq ^ rqquu, thereforep R TRdH ,maxpPq.

Regarding sequence-separability and the weighted distance-based rules, there are more posi-
tive results.

Proposition 4.9.4. If d is associative (see Definition 31), then∆d,d satisfies (S-s).

Proof. Let spA,Aiq “ f
m
j“1wpi, jqδ pAp jq,Ai p jqq. Due to associativity

dpspA,A1q, . . . ,spA,Ak1q
looooooooooomooooooooooon

xpAq

,spA,Ak2q, . . . ,spA,Anq
looooooooooomooooooooooon

ypAq

q “ dpdpxpAqq,dpypAqqq.

Due to the non-decreasing ofd, if

xpAq ď xpA1q andypAq ď ypA1q, (4.44)

thendpxpAq,ypAqq ď dpxpA1q,y,pA1qq.

Letπ1 PA
n1, π2 PA

n2,W1 P pR
`qn1 andW2 P pR

`qn2. If A P ∆d,dpπ1,W1q, A P ∆d,dpπ2,W2q,
then (4.44) holds for eachA1 P A and consequentlyA P ∆d,dpπ,Wq for the horizontal merges
π andW.

The functionΠ˚ is not associative, however it satisfies sequence-separability.

Proposition 4.9.5. ∆d,Π˚
satisfies (S-s).

Proof. The proof can be constructed similarly as the proof of Theorem 4.9.4. Observe that
ź

pspA,π⊲1q`1, . . . ,spA,π⊲n1q`1,spA,π⊲pn1`1qq`1, . . .spA,π⊲n2q`1q

can be written as
ź

pspA,π1⊲1q`1, . . . ,spA,π1⊲n1q`1q¨
ź

pspA,π2⊲1q`1, . . . ,spA,π2⊲n2q`1q. (4.45)

Forx1,x2,y1,y2 P R` if x1 ă x2 and y1 ă y2, then x1 ¨y1ď x2 ¨y2. Consequently,
if A P ∆d,Π˚

pπ1,W1q andA P ∆d,Π˚
pπ2,W2q, thenA P ∆d,Π˚

pπ ,Wq.
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4.10 Other properties for judgment aggregation rules

In addition to separability, we can construct other properties that might be desirable for an
aggregation rule to satisfy, inspired by properties studied in voting theory. In this section we
give their definitions.

Tideman (1987) introduced theclone independence criterionfor voting rules. This property
states that when a candidate is added to the set of candidates, and this candidate is identical
to a candidate already in the set, the winner of the election will not change.

There are no candidates in judgment aggregation, but the independence of clones can be
defined for agenda items. Indeed, if two agenda issues are logically equivalent, then the
collective judgment on the both should be the same. An idea that the rule should be insensitive
to agenda clones already appears in (Dietrich, 2006b), where a similar property is defined as
logical agenda manipulation. The difference between our definition and the one in (Dietrich,
2006b) is that in (Dietrich, 2006b) one speaks ofsettled issues, namely issues whose truth-
value is determined by any judgment set (consistent and complete).

Cariani et al. (2008) define a property for function aggregators calledtranslation invariance.
A function aggregator is translation invariant if the collective judgment set does not depend
on the particular language used to model the agenda. Namely,if two agendas are semanti-
cally equivalent and two equal profiles, each for one of the agendas, are aggregated, then the
collective judgment sets selected for each profile should bethe same. Cariani et al. (2008)
prove that whether a function is translation invariant depends on the atoms in the agenda.

We define clones as issues in the agenda that are logically equivalent. All clones are settled
issues, but not all settled issues are clones.

Definition 75 (Clones). Given an agendaA, issues a,a1 P A are clones when for all AP SI ,
Apaq “ x if and only if Apa1q “ x.

Let M be anˆm matrix andY Ă r1,ms a set of columns. The sub-matrixMÓY is
the n ˆ pm´|Y|q matrix obtained by removing the columns inY from M. Consider as an
example the 3̂ 3 matrixM , Y “ t2u andMÓY:

M “

»

–

1 0 0
0 1 0
1 1 1

fi

fl MÓY “

»

–

0 0
1 0
1 1

fi

fl

Definition 76 (IAC). LetA be an agenda containing the clones a and ak, and let Y“ tku. A
judgment aggregation rule F isindependent of agenda cloneswhen for every profileπ P Sn

I ,
if A P Fpπ,Uq and A1 P FppÓY,WÓYq, then for all aj ‰ ak Ap jq “ A1p jq.

Example 4.10.1.LetA “ tp,q, p^q, p^ pu. We can observe that p and p̂p are clones.
Consider the profiles P and the reduced P1 in Table 4.10. On this profile the rule RY is
insensitive to clones, while the rule RMCSA is not.

There are aggregation contexts in which a group of agents needs to make judgments on the
same agenda in various moments in time.

Example 4.10.2.Consider a group of agents that develops and maintains software. The
group needs to make decisions regarding the resources spenton developing and maintaining
the software. Let the issues be:
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p q p^q p^ p
+ - - +
- + - -
+ + + +

RY +
+ +

-
RMCSA + + +

+ - +

p q p^q
+ - -
- + -
+ + +

RY +
+

-
RMCSA + +

+ -
+ -

Table 4.10: The profileP containing the judgments on the clones (left) and the sub-profile P1

without the judgments onp^ p.

• release new version (p),

• fix known bugs (q),

• improve the user interface (s) ,

• advertise the product (t).

Let the relations between these issues be pÑ t, qÑ p and qY s4.

As long as the software is maintained, the group would need tomake decisions on the same
or some of the agenda issues. At a given moment, after eliciting the group opinions on the
full agenda, the group might need to use the decisions regarding p, q and t but determines
that s is not really of interest.

In Example 4.10.2, how should a collective judgment onp change if the agenda, and profile,
is reduced bys? It is intuitively undesirable that the decision onp should change since. We
call this propertyinsensitivity to agenda shrinking.

Definition 77 (IAS). LetA be an agenda, ak P A andY“tku. A judgment aggregation rule
F satisfies thestrong insensitivity to agenda shrinkingwhen for allπ P Sn

I , W P pR`qnˆm

if [ for all A P Fpπ ,Wq and for all k‰ j, Ap jq “ x], then [for all A1 P FpπÓY,WÓYq and for
all k ‰ j, A1p jq “ x].

Example 4.10.3.ConsiderA “ tp,q,qÑ p, pÑ t,s,qY su , the profile P for it, and the
profile P1 for A shrunk for s, given on Table 4.11. As we can observe from the table,
TRMCSApPq |ù p but TRMCSApP

1q * p, hence the rule RMCSAdoes not satisfy the property.

When a rule is based on minimization, we can expect that it will be sensitive to the shrinking
of the agenda for an arbitrary issue, since the removed issuemight share sub-formulas with
other issues, as it was the case in Example 4.10.3. We can consider the insensitivity to agenda
shrinking when the issues removed are atomic and not part of other issues. This property we
call insensitivity to atomic agenda shrinking.

4The connectiveY is the exclusive or, defined asϕ Y ψ ” p ϕ^ψq_pϕ^ ψq.
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p q qÑ p pÑ t s qY s
- - + + + +
- + - + - -
+ + + - - +

RY + -
+ +

- +

RMCSA + + + - +

p q qÑ p pÑ t qY s
- - + + +
- + - + -
+ + + - +

RY +
+ +

- +

RMCSA + + + +
- + + +
- + + +

Table 4.11: The profileP containing the judgments on the full agenda and the sub-profile P1

without the judgments ont.

Definition 78 (IAAS). LetA be an agenda and let YĂ A be the set of the indexes of each
atomic formula pP A that is not a sub-formula for any formulaϕ P AzY. A judgment aggre-
gation rule F is insensitive to atomic agenda shrinking whenfor all π P §n

I , W P pR`qnˆm

if [ for all A P Fpπ ,Wq and for all k‰ j, Ap jq “ x], then [for all A1 P FpπÓY,WÓYq and for
all k ‰ j, A1p jq “ x].

Another aggregation property regarding the agenda is theagenda separation. We first define
what it means for an issue to be independent in an agenda.

Definition 79 (Independence of an issue). An issue a isindependentin an agendaA, when
for any consistent judgment set AĂA andâ P ta, au, Aztau * a and Aztau *  a.

Another way to define independent agenda issues is as conflict-free:a does not belong to any
minimal inconsistent subset ofA. When an agenda contains an independent issuea, then it
is reasonable to expect that, regardless of what the judgments on the other agenda issues are,
the collective judgment ona always coincides with the majority of the judgments regarding
a.

Definition 80 (AS). LetA be an agenda, and aj P A an independent issue. A judgment
aggregation rule F satisfiesagenda separationwhen for everyπ P Sn

I , W P pR`qnˆm if for
all A P Fpπ ,Wq, Ap jq “mpπ▽ j,Wq.

Example 4.10.4.Consider the agendaA “ tp,q, p^ q, ru and the profile for this agenda
given in Table 4.12.

Although this example satisfies the agenda separability property for both the RY and RMNAC

rules, this is not always the case. Finding a counter-example for RY is fairly simple.

The agenda separation property is desirable since it allowsfor profiles to be split into a part
of judgments on dependent and part of judgments on independent issues, with only the judg-
ments on dependent issues to be aggregated.

One property considered in voting theory is the property ofinvulnerability to a no-show
paradox. Fishburn and Brams (1983) define the no-show paradox as “theaddition of identical
ballots with candidatex ranked last may change the winner from another candidate tox”. The
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p q p^q r
+ - - +
- + - +
+ + + -

RY +
+

- +

RMNAC - + - +
+ - - +

Table 4.12: The profileP containing the judgments onA “ tp,q, p^ q, ru and the corre-
sponding outputs fromRY andRMNAC.

no-show paradox occurs when a group of voters is better off bynot voting than by voting
according to its preferences (Nurmi, 2004). Moulin (1988) show that when there are at least
four options (candidates), every voting rule that elects the Condorcet winner must generate
the no-show paradox.

Are judgment aggregation rules susceptible to the no-show paradox as well? We can define
when a rule is invulnerable by the no-show paradox.

Definition 81 (INS). A judgment aggregation rule F satisfies the invulnerabilityto the no-
show paradox when, for everyπ P Sn

I , W P pR`qnˆm and A˚ P SI , V P pR`qm such that
A˚p jq “ x if for all A P Fpπ ,Wq, Ap jq “ x, then for all A1 P Fpπ 1,W1q. The profileπ 1 and
weights W1 are the horizontal merge ofπ with A˚ and W with V correspondingly.

Example 4.10.5.Consider the agendaA “ tp,q, p^qu and the profiles P and P1 given in
Table 4.13. We can observe that pp^qq P TRMNACpPq and pp^qq P TRMNACpP

1q, hence
for this profile RMNAC is invulnerable to the no-show paradox.

p q p^q
+ - -
- + -
+ + +

RMNAC + - -
- + -

p q p^q
+ - -
- + -
+ + +
- - -

RMNAC -

Table 4.13: The profileP (left) and an its extensionP1 (right) with t p, q, pp^qqu.

4.11 Conclusions

In this chapter designed rule aggregator properties and analyzed, with respect to these proper-
ties, the rules we defined in Chapters 2 and 3. We intend to use these properties to distinguish
among the rules from Chapters 2 and 3 correspondingly.

Properties in judgment aggregation have been defined for function aggregators and binary
unweight judgments. We first defined the correspondence between, on one side, a property
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defined for weighted rule aggregators and ternary judgments, and on the other side, a prop-
erty defined for an unweight binary function aggregator. Dueto the irresoluteness of the
rule aggregators, there are multiple rule aggregator properties correspond to each function
aggregator property.

There are not many properties considered in judgment aggregation theory. For each of the
known property we defined at least one corresponding rule property and analyzed which of
our rules satisfies it. The following rule aggregation properties have been included: universal
domain, anonymity, neutrality, independence of irrelevant information, collective rationality,
majority-preservation, majoritarianism, unanimity, unanimity preservation and monotonic-
ity. In addition we considered separability, a rule aggregation property corresponding to a
(separability) property in voting theory.

All the families of judgment aggregation rules we introduced satisfy the structural properties
of universal domain, anonymity, neutrality, and collective rationality. None of the introduced
rules satisfies the independence of irrelevant alternatives (in any of the defined versions). The
relational properties we considered were majority adherence properties, unanimity properties,
monotonicity properties and separability properties. Theresults are summarized in Table
4.14.

Majority
Preservation

Weak
Unanimity

Strong
Unanimity

IR-s S-i

RY X X X no no
RMSA X X no X no
RMCSA X no no X no
RMWA X no no X no
RRA X X X X no

RdH ,max no no no no no
RRY X X X no no

RMNAC X no no no no

Table 4.14: Summary of the results for the social theoretic properties of the judgment aggre-
gation rules.

We considered the same properties for the examples of distances and aggregation functions
we introduced. In Table 4.15 we summarize the results. Withd, when no index is specified,
we denote any product metric and withd any aggregation function.

Whether a property holds for a distance-based rule sometimes depends on the properties of
the chosend andd, as was the case with anonymity and separability. On the other hand,
e.g., whether unanimity-principle is satisfied depends on the ratio between the cardinality
of the agenda and the number of agents. Unanimity holds wheneverd is a function that
satisfies minimality. Majority-preservation holds only for ∆dH ,

ř

and∆dT ,
ř

. The sequence-
separability (S-s) holds for all aggregation functiond which are associative, however, as the
example with the non-associativeΠ shows, there exist non-associative arithmetic aggregation
functions that satisfy (S-s).

The literature of judgment aggregation, see for example (List and Polak, 2010; Pigozzi, 2006),
discusses the anonymity and independence of irrelevant information for distance-based rules,
but does not formally define or prove these properties since it is rather simple to show that
they hold, and not hold respectively. The belief-merging operators are analyzed with re-
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Property Satisfied Not satisfied
Unanimity pd,Σq

pd,maxq
pd,Gmaxq
pd,Π˚q

Weak unanimity principlepdD,dq pdi ,Σq
pdi ,maxq
pdi ,Gmaxq
pdi ,Π˚q
di P tdH ,dTu

Strong unanimity principlepdD,dq
Majoritarian pd,Σq

pd,Π˚q
pd,maxq
pd,Gmaxq

Majority-preserving pdH ,Σq
pdT ,Σq

pdD,Σq
pd,maxq
pd,Gmaxq
pd,Π˚q

IR pd,dq
S-s pd,Σq

pd,maxq
pd,Gmaxq
pd,Π˚q

Table 4.15:The summary of the properties which holds for thed andd examples we introduced.

spect to unanimity and majoritarianism (Konieczny and Pino-Pérez, 1999). In addition to the
aggregation functions and distances considered there, we also introduce theΠ˚, which is ma-
joritarian but not majority-preserving. The rest of the properties, to the best of our knowledge,
have not been previously considered for judgment aggregation rules or functions.

Which properties should a rule aggregator satisfy? The structural properties are desirable in
all the settings, as is the property of unanimity. In all consensual groups it is required that
the adherence to majority properties are satisfied, as well as the unanimity principle at least
in its weak version. The properties of insensitivity to reinforcement are particularly desirable
in contexts in which the agents give judgments on the same issues several times, irrelevant
of weather the group is consensual or hierarchical. A rule insensitive to reinforcement can
save the agents from executing unnecessary aggregations. The properties of separability are
particularly desirable for aggregators used by distributed consensual sub-groups. If a rule
satisfies separability, then the smaller sub-group of agents can aggregate its judgments and
send the result. The whole group may not need to aggregate thewhole profile, but just
consider these sub-results.

For group decision problems, ideally one would prefer resolute rules. However, from the
impossibility results in judgment aggregation, see (List and Polak, 2010) for an overview,
and social choice theory in general, we can conclude that only for restricted domains resolute
aggregators can be constructed. If the domain cannot be restricted, and usually this is the
case, then irresoluteness must be dealt with by tie-breaking mechanisms. If resoluteness
is not feasible, then the rules should at least select a smallnumber of collective judgment
sequences as possible. For this reason, rules such asRIY , RMR and∆d,max are undesirable.
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The rules we consider are in principle all desirable rules. As we can observe from Ta-
bles 4.14 and 4.15, the properties we considered are insufficient to fully distinguish among
the rules. To this end more properties need to be developed. We made the initial efforts along
this path in Section 4.10 where we discussed and defined five new rule aggregator properties.
The family of interesting rule aggregator properties is still not large enough and the search
for these properties is an open question in judgment aggregation theory.

In the third part of the thesis we consider instances of hierarchical and consensual groups
in multi-agent systems and give judgment aggregation basedmodels of decision-making for
these groups. We pair rules from Chapters 2 and 3 with each of these decision-making prob-
lems using the properties we developed in this chapter.





Part III

Applying judgment aggregation
rules in multiagent systems
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5

Recognition-primed group decisions
for hierarchical teams

Abstract. In this chapter we give an example of a hierarchical group de-
cision problem in a multi-agent system context. When operating in uncertain
environments, agents cannot rely on negotiation to reach agreements since the
state of the world might change while they negotiate. We propose a model for
reaching a group decision without negotiation. Our model lifts the Recognition-
Primed Decision (RPD) model, constructed in an experimental psychology, from
a single agent to an agent group. The lifting is executed by embedding judgment
aggregation as a tool for amalgamating individual information. The RPD model
models adaptive behavior. While it executes its actions, the group may adapt the
decisions it acts upon in light of new information. We consider revision strategies
for our group.

5.1 Introduction

Groups of agents need to be able to reach collectively binding decisions in order to coordinate
and cooperate. We consider a hierarchical team of agents. Insuch a team, there exists one
agent that is responsible for producing the group decision.To reach the group decision this
agent needs to consider and combine the opinions of the rest of the team members. How can
a hierarchical team reach collectively binding decisions in an uncertain environment?

According to traditional theory of decision-making, see for example (Peterson, 2009, Chap-
ter 1), making decisions is driven by the concept of rationality associated with the decision-
maker. A rational agent chooses, given his knowledge about the world, those options that are
optimal in the sense that they maximize the agent’s expectedutility. Optimizing is difficult
when the agents’ resources are limited, as initially pointed out by (Simon, 1955, 1956). Fur-
thermore, rationality is a concept associated with a decision-maker (an individual) and it is not
simple to apply this concept to groups, see for instance the analysis of (Stirling and Nokleby,
2009).

People are not good rationalizers (Hardy-Vallèe, 2007, pg. ix), however groups of people
are able to function successfully even when all adequate information is not available, when
their goals are unclear and the procedures they have to follow are poorly defined, consider
for instance firefighters and other emergency rescue teams. In life-threatening situations and
dangerous environments it is desirable to replace human teams with artificial agents. Can

133
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artificial agents be endowed with such skills of decision making and adaptation that people
possess? This question begets another question. How do people make collectively binding
decisions under time pressure, in dynamic conditions and inuncertain environments? Can
we use a model of human decision-making to build a procedure that can be used by artificial
agents?

Using computational modeling,i.e., multiagent based simulation of group-decision making
theories built and studied in experimental psychology, is used to validate and analyze hu-
man decision-making models (Ilgen et al., 2005; Hulin and Ilgen, 2000). The less explored
direction is the use of experimental psychology models to build decision-making or agree-
ment reaching procedures for artificial agents. One reason for this might be found in the
non-simplicity and high non-determinism of the experimental models.

Compared to studies of consensual groups, the hierarchicalteam decision-making is far less
studied in experimental psychology and social sciences (Humphrey et al., 2002). A summary
of theories on how hierarchical team-decision making is done, or should be done, is given
in (Humphrey et al., 2002). A well known model is themulti-level theory of team decision-
makingof (Hollenbeck et al., 1995). This theory however is rather intricate and it would be
difficult to translate into a group-decision making model for artificial agents.

How firefighter commanders make decisions under extreme timepressure was studied by
Klein et al. (2010). They found that, when a commander has prior experience with a problem,
which is usually the case, he acts according to therecognition-primed decision(RPD) model,
summarized on Figure 5.1.

Figure 5.1: The recognition-primed decision model (Klein et al., 2010, pg. 203).

According to the RPD model, a commander tasked with a problemfirst assess the current
situation and then matches the current situation to a prototypical solution based on similarity
of goals, perceptual clues, causal factors and informationabout them.

As a running example we consider the overpass rescue examplegiven in (Klein, 1999, pg. 18).

Example 5.1.1.The overpass rescue(Klein, 1999, pg. 18).

“A lieutenant is called out to rescue a woman who either fell or jumped off a
highway overpass. She is drunk or on drugs and is probably trying to kill herself.
Instead of falling to her death, she lands on the metal supports of a highway sign
and is dangling there when the rescue team arrives.

The lieutenant recognizes the danger of the situation. The woman is semi-
conscious and lying bent over one of the metal struts. At any moment, she could
fall to her death on the pavement below. If he orders any of histeam out to help
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her, they will be endangered because there is no way to get a good brace against
the struts, so he issues an order not to climb out to secure her.

Two of his crew ignore his order and climb out away. One holds onto her
shoulders and the other to her legs.

A hook-and-ladder truck arrives. The lieutenant doesn’t need their help in
making the rescue, so tells them to drive down to the highway below and block
traffic in case the woman does fall. He does not want to chance that the young
woman will fall on a moving car.

Now the question is how to pull the woman to safety.
First, the lieutenant considers using a rescue harness, thestandard way of

raising victims. It snaps onto a person’s shoulders and thighs. In imagining its
use, he realizes that it requires the person to be in a sittingposition or face up.
He thinks about how they would shift her to sit up and realizesthat she might
slide off the support.

Second, he considers attaching the rescue harness from the back. However,
he imagines that by lifting the woman, they would create a large pressure on her
back, almost bending her double. He does not want to risk hurting her.

Third, the lieutenant considers using a rescue strap-another way to secure
victims, but making use of a strap rather than a snap-on harness. However, it
creates the same problems as the rescue harness, requiring that she be sitting up
or that it be attached from behind. He rejects that too.

Now he comes up with a novel idea: using a ladder belt - a strongbelt
that firefighters buckle on over their coats when they climb upladders to rescue
people. When they get to the top, they can snap an attachment on the belt to the
top rung of the ladder. If they lose their footing during the rescue, they are still
attached to the ladder so they won’t plunge to their death.

The lieutenant’s idea is to get a ladder belt, slide it under the woman, buckle
it from behind (it only needs one buckle), tie a rope to the snap, and lift her up to
the overpass. He thinks it through again and likes the idea, so he orders one of
his crew to fetch the ladder belt and a rope, and they tie it onto her.

In the meantime, the hook-and-ladder truck has moved to the highway below
the overpass, and the truck’s crew members raise the ladder.The firefighter on
the platform at the top of the ladder is directly under the woman shouting, ‘I’ve
got her. I’ve got her.’ The lieutenant ignores him and ordershis men to lift her
up.

At this time, he makes an unwanted discovery: ladder belts are built for
sturdy firefighters, to be worn over their coats. This is a slender woman wearing
a thin sweater. In addition, she is essentially unconscious. Then they lift her up,
they realize the problem. As the lieutenant put it, “She slithered through the belt
like a slippery strand of spaghetti.”

Fortunately, the hook-and-ladder man is right below her. Hecatches her and
makes the rescue. There is a happy ending.

Now the lieutenant and his crew go back to their station to figure out what
had gone wrong. They try the rescue harness and find out that the lieutenant’s
instincts were right: neither is usable.

Eventually they discover how they should have made the rescue. They should
have used the rope they had tied to the ladder belt. They couldhave tied it to
the woman and lifter her up. With all the technology available to them, they had



136 Chapter 5 Recognition-primed group decisions for hierarchical teams

forgotten that you could use a rope to pull someone.”

The recognition-primed decision model captures the behavior of the lieutenant in Example
5.1.1. After arriving to the scene, the lieutenant first assesses the situation. He observes that
the problem is “. . . a woman who either fell or jumped off a highway overpass. She is drunk
or on drugs and is probably trying to kill herself. Instead offalling to her death, she lands
on the metal supports of a highway sign and is dangling there .. .”, and “. . . The woman is
semiconscious and lying bent over one of the metal struts. Atany moment, she could fall to
her death on the pavement below.”

The lieutenant matches the current situation to a prototypebased on similarity of goals, per-
ceptual cues, causal factors and information about them. Namely, he is “called out to rescue
a woman”, “ he does not want to chance that the young woman will fall on a moving car.” The
matched prototype generatesexpectanciesand a set of options for a course of action. The ex-
pectancies are a mean of confirming that the selected prototype is adequate. The options are
generated sequentially, with the most typical option beinggenerated first and other options
only being generated if the previous one is rejected. In the overpass rescue example, the first
generated option by the lieutenant is to use a rescue harnessin a standard manner. The second
generated option is to attach the rescue harness to the victim from the back. Once a course of
action is generated, the commander proceeds to evaluate it for plausibility and implements it,
modifies it, or rejects it. In the overpass rescue example, the lieutenant evaluated the use of a
rescue harness and rejected it because “it requires the person to be in a sitting position or face
up and that is not the case. If an option is rejected, the next most available, representative,
and similar one is selected for evaluation.

The RPD model is a relatively simple model and it was developed to describe the behavior of
human resource limited teams. Decisions in conditions likethe ones in which the firefighters
operate must be made fast. Furthermore, the team that makes them must be able to adapt
easily. This is precise the quality of group decision-making that we search for and that cannot
be accomplished by traditional optimization based decision-making. However, there are two
problems in using the RPD model to build a group decision-making procedure for artificial
agents. The first problem is that the commander in the RPD model uses his experience and
associations to match a possible solution and cues that verify it as an adequate solution.
This task is more difficult to perform by an artificial agent than people since people can
use a small number of cases and associations to find solutionsfor a given problem. The
second problem is that although firefighters operate as teams, the RPD is a model of a single
agent. Consequently, a team decision-making procedure based on the RPD model will be
only applicable to groups that solve problems on which they have prior experience.

We want to replace the agents on the ground with artificial agents like robots and drones, but
we can use a person, let us call this personan initiator, to perform the task of the commander.
This way we circumvent the first problem. Since the initiatoris no longer on the scene of the
event, he or she would not be able to assess the situation and verify the expectancies. We
need to lift the RPD model from a single agent to a hierarchical group model. In this chapter
we address this lifting problem.

We consider a mixed human-robot team in which there is one human, calledinitiator, which
has a role similar to the firefighter commander’s role. The rest of the agents are artificial
agents, calledexecutors. Unlike the commander, the initiator is not on the ground andhas to
fully rely on the executors for the following processes:
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1. situation assessment,

2. verifying expectancies, and

3. evaluating potential courses of action.

The challenge in raising the recognition-primed decision making model to the team level
lies in raising these processes to the team level. An adequate collective decision process, or
processes, needs to be specified to accomplish this task.

The recognition-primed decision approach is very fast; Klein estimated that the fire-ground
commanders make around 80 percent of their decisions in lessthan a minute (Klein, 1999,
pg.4). Inevitably, the decision-making can be expected to take longer when there are opin-
ions from various sources to be merged. Collective decisions in multiagent systems can
be reached by argumentation supported negotiation (Rahwanet al., 2003) and social choice
(Chevaleyre et al., 2007). Negotiation requires several rounds of exchanges (of arguments)
between the agents before a decision is reached. It can be used in software agents, but not yet
for robotics. Unlike software agents, embodied agents needto assess the environment, pro-
cess their sensor input and form an opinion. A robot that has to form the opinion, not just pull
it out of his knowledge base, would find itself in “no time to think”. The agreements reached
by embodied agents under time pressure must be done with as little information exchange as
possible. The executor needs to be able to get all, or at leastmost, of the information from
the agents at once and deduce the courses of action from it.

Social choice methods such as voting (Nurmi, 2010) and judgment aggregation (List and Puppe,
2009) require only one round of exchange of information. Theinitiator can apply a social
choice rule to aggregate the executors’ opinions. In the case of the situational assessment,
the agents need to express a judgment whether the cue is present or not. However, not all
executors would be in a position to make a judgment on all cues. The opinions on the cues
entail the opinions on the solution that can be applied, but the judgment made on some cues
may logically constrain the judgments that can be made on theothers. Therefore the initiator
should use judgment aggregation rules, in particular weighted rules for ternary judgments
like the ones we developed in Chapter 3.

This chapter is structured as follows. In Section 5.2 we propose a group decision-making
model based on the recognition-primed decision model. In Section 5.3 we focus on the prob-
lem of reaching collective decisions by judgment aggregation within our model. In Section
5.4 we revisit the overpass rescue example and show how our model can be applied to it. In
Section 5.5 we study the problem of revising the emerging states with new information. In
Section 5.6 we present our conclusions and discuss possiblegeneralizations of the proposed
model to teams with no initiator.

5.2 A conceptual model of reaching recognition-primed group decisions

We construct a conceptual model of recognition-primedgroup decisions for the mixed human-
robots team. The model works under the assumption that all agents are able to communicate
with each other. We begin by describing the possible roles inthe team and the presumed
capabilities of each role.

The model we present here is a prescriptive model for a team recognition-primed reason-
ing for collaborative problem solving in uncertain environments. The recognition-primed
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decision-making model of (Klein et al., 2010) is a prescriptive model of a single agent decision-
making in uncertain environments.

5.2.1 The team

The initiator

We define the initiator as an agent who is able to use his experience in matching a given
problem to a pair of sets: set of goals and a set of corresponding cues for each goal. The cues,
corresponding to one matched goal, identify when this goal is good enough to be adopted in
response to the given problem. For example, given the problem of rescuing the unconscious
woman, the goal to lift her to safety using a rescue harness should be pursued if the woman
is facing up or is in a sitting position. It is not sufficient toonly enlist the cues for a matched
goal. The relational structure between the cues and the goalneeds to be specified as well.

The initiator is able to match a problem with the triplexgoal, cues, relational structurey. In
the remainder of this chapter we will mean both cues and the relational structure when we
speak of a set of cues.

Once a goal is matched, and verified as good enough by evaluating the cues, the initiator
constructs a plan for that goal. We assume that the initiatoris an agent able to generate plans.

The executors

An executor is an agent who is able to generate an opinion for agiven cue based on his
own knowledge, beliefs and percepts. He is able to evaluate the role assigned to him by the
initiator’s plan and identifies the constraints that would inhibit the successful execution of the
tasks assigned to him. The executors are able to pass messages between each other in order
to successfully execute a plan. For instance, during the (hypothetical) execution of the plan
for rescuing the woman by a rescue harness the agent that straps the harness needs to signal
the agent that lifts the woman that he can start lifting.

5.2.2 The process

The left side of Figure 5.2 represents the recognition-primed group decisions (RPgD) model
for the initiator. The right side depicts the model for the process for the executor agent.

The process begins once the initiator recognizes a problem,or is tasked with one. He contacts
the executor agents who are already on site or on stand-by, todetermine who is available
to participate. If the initiator finds sufficient agents, he proceeds to establish a course of
action. He first identifies the team goal(s) by using his experience to find the closest match
of the problem at hand with a goal. The initiator also matchesthe relational structure and
corresponding cues to the proposed goal.

Situational assessment

The next step is the situational assessment with the purposeof goal verification. This step
comes only after the executors arrive at the problem site, ifthey are not already there. The
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initiator assesses the situation by eliciting the executors’ opinions on whether the cues are true
or false, present or not. The cues are thus treated as propositions to which an executor assigns
true or false. The executor can also abstain from assigning avalue. Based on the reported
cue value assignments, the initiator assigns corresponding cue true/false values which he
uses to establish whether the corresponding goal is good enough or not and adopted or not
correspondingly. We propose that the initiator uses a judgment aggregation rule to aggregate
the reported information. If negotiation were to be used to assess the situation, then the
executors would first reach the agreement of each cue value between them and then report
this agreement to the initiator.

The initiator verifies the adequacy of the matched goal, based on the corresponding cue values
obtained by aggregation. He can request only the opinions onthe cues to be aggregated, or
he can consider also the aggregation of the individual conclusions on whether the goal should
be adopted.

Example 5.2.1. Consider the problem of to pulling the woman, from the overpass rescue
example, to safety. Assume that there are five executorstE1,E2,E3,E4,E5u. The initiator first
considers the goal

s2: use a rescue harness.

Based on his experience, the initiator deems s2 a satisfactory solution if and only if at least
one of the following cues are the case:

c2: the victim is in a sitting position,

c3: the victim is in a face-up position,

c4: the victim can safely be shifted in a sitting up position or in a face-up position,

c5: the harness can be attached from the back without hurting the victim.

The initiator further specifies that the cues are subject to the constraintpc2_c3q Ñ c4. The
constraints encodes the “obvious” information that if a victim is already sitting or facing
up, then c4 is trivially the case. The judgments of the executors, regarding the cues, and the
individually entailed judgments regarding s2 are given in Table 5.2.1. The “?” denotes the
case in which the agent has not provided a judgment.

Agents c2 c3 c4 c5 s2

tE1,E2u no no no nono
tE3,E4u no no ? ? ?
tE5u no no no ? ?

Table 5.1: Contributed judgments regarding cues ons2.

In Example 5.2.1 the individual judgments regarding the goal adequacy can be deduced. An
opinion of a goal given explicitly by an executor carries additional information. Assume,
for example, that in the situational assessment for goals2, agentstE3,E4u give an explicit
opinion “yes” ons2. The relation structure is still verified. However, additional information
is conveyed. Namely these agents are of the opinion that at least one ofc4 andc5 must be the
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Figure 5.2: The process of making recognition-primed groupdecisions.

case, but they are unsure which one. If the initiator wants toinclude these “unsupported by
cues” opinions, then he should elicit opinions ons2 explicitly.

If a goal is not adopted, then the executor generates anothergoal (and corresponding cues)
and elicits the opinions of the agents for this set. If the newgoal shares cues with a goal
previously considered, then there is no need to elicit the judgments of the executors on these
cues anew. The initiator keeps generating goals and considering them one by one until a goal
is adopted, as long as the problem persists. If the initiatorruns out of ideas for a possible
solution, then the project can be abandoned, or the initiators can remain on scene expecting
for the situation to change. In the firefighter examples collected by Klein, the commander
always has an all-contingency solution. Thus, for example if a fire cannot be extinguished,
and no rescue is deemed possible, then the firefighters take actions to ensure that the fire can
be left to burn itself out safely. Similar all-contingency solutions can be designed for each
problem domain.
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Plan evaluation

Once a goal is deemed adequate, the initiator proceeds to form a plan. The initiator has
information about the scope of capabilities of an executor,but he does not know the exact
position or state of every executor at a given point in time. Consequently, the initiator makes
a tentative plan based on the information of executor capability he has. He proposes this
tentative plan to each executor.

An executor has two options. One option is to acknowledge theplan, and the role assigned to
him in that plan. By this action he commits himself to executing his assignments. The second
option is to object to the plan. An executor objects by informing the initiator of the constraints
due to which the proposed plan cannot be executed. We observethat the mental simulation,
which is done by the commander in the model of Klein, is, in ourmodel, externalized from
the initiator to the executors.

The initiator considers all constrains given as an objection to a plan in order to devise a new
plan. A plan is approved if and only if there are no objectionsfrom any of the executors.
If the constraints are such that no plan can be devised for thegoal in question, the initiator
attempts to matches a new goal to the problem.

During plan evaluation, an agent evaluates the portions of the plan, which he is expected to
execute. The plan may contain both individual and joint actions that are to be executed. When
the action is individual, no conflict of constraints can arise, since the agent who is intended
to execute the action is taken to have a veto on evaluating theplan for that point.

When the action is joint, all agents involved need to approvethe tentative plan, for the plan
to adopt. An agent is allowed to objects on an action that is not executed by him. There
are two types of objections that can be raised. The first objection is due to a conflict in the
execution of the assigned actions. The second is an objection to the abilities of another agent.
In the case of the latter objection type, the initiator can approach the objection acting ona
cautious modeor on aa brave mode. In a cautious mode he will never approve a plan as
long as there is an objection to it. In a brave mode, the initiator can consider the agent who
executes the action to be the ultimate authority regarding his abilities, and disregard these
types of objections.

Once a plan is approved, the executors proceed with the tasksthat are assigned to them.
After the plan is executed, if the problem still persists, then the initiator attempts to match
the problem with another goal, and verify it based on its corresponding cues. A decision to
adopt or refute a goal, values assigned to cues, or a plan, canbe reconsidered as long as the
problem persists.

5.2.3 Group recognition-primed decision-making and satisficing

Simon (1955, 1956) addressed the question of how a resource bounded agent makes de-
cisions. He argued that a resource-bounded agent should notmaximize expected utilities,
but select the first option that is good enough. An option is good enough when a sufficient
number of indicative criteria are satisfied. This process ofselecting the first good enough
option he called “satisficing”. In contrast to satisficing, traditional decision-making, see for
example (Peterson, 2009, Chapter 1), is the process of first enumerating all possible solutions
for a problem and then selecting from them that solution which is optimal in the sense that
it maximizes the expected utility of the decision-maker. Since its inception, satisficing has
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gathered considerable attention and many variations of this concept have been developed
(Radner, 1975; Matsuda and Takatsu, 1979; Shinzo and Takatsu, 1980; Wierzbicki, 1982;
Haller, 1985; Kaufman, 1990; Brown, 1990; J. and L., 1990; Zilberstein, 1998; Greiner et al.,
2006; Güth, 2010). There is not much study on satisficing forgroups, an exception be-
ing (Stirling and Nokleby, 2009). It is not our intention to analyze all these models and
approaches, but highlight the advantages of satisficing, particularly for decision-making in
groups, and the satisficing aspects of the recognition-primed model.

A satisficing solution is not necessarily an optimal solution in the utilitarian sense.E.g., there
is no evidence that suggests that the solution to use the ropeto lift the victim into safety, in
the overpass rescue example, is necessarily the fastest, cheapest, or safest solution possible.
The lieutenant did not exhaust all the options for saving theunconscious victim; she could
have been pushed on an inflatable trampoline, lifted by a helicopter, etc. The advantages
of pursuing optimal decisions are evident, however in situations in which there is no time
to generate all options and evaluate them, satisficing is a better strategy. Because a course
of action is determined fast, satisficing allows the team to be more adaptive to changes in
its environment. Simon proposed the concept of satisficing but he did not propose a formal
model.

Another argument for using satisficing instead of optimizing in some multi-agent systems set-
tings is that of problems that arise with the concept of rationality. Decision-making is driven
by the concept of rationality associated with the decision-maker. Rationality is a property
of an individual, regardless of whether that individual is taken to be one agent or one team
of agents. In the case of group decision-making, it might be problematic to identify how to
apply the concept of rationality (Stirling and Nokleby, 2009). For the concept of rationality
to be successfully applied to the team members as individuals, the agents must be assumed to
be perfectly competitive. As Arrow (Arrow, 1986, pg. S387) observed:

“rationality in application is not merely a property of the individual. Its use-
ful and powerful implications derive from the conjunction of individual rational-
ity and the other basic concepts of neoclassical theory - equilibrium, competition,
and completeness of markets. [...] we need not merely pure, but perfect com-
petition before the rationality hypotheses has their full power. [...] When these
assumptions fail, the very concept of rationality becomes threatened, because
perceptions of others and, in particular, of their rationality become part of one’s
own rationality.”

For the concept of rationality to be applied to the team as a unit, the agents in the team must
be in perfect cooperation, in the sense that none of them has goals that are not goals of the
team. Observe, for instance, that the safest way of rescue for the victim is not necessarily
the safest way of rescuing the victim for the firefighters. While the team is cooperative, the
members of the team must maintain some level of self-interest when it comes to ensuring
their own safety.

Satisficing, as a concept, can be seen as predominantly associated with the course of action
itself, rather than with the agent who selects the course of action. The solution for the prob-
lem of rescuing the unconscious woman is the one that meets the minimal conditions to be
adopted: it gets the job done and it can be done by the firefighters. The rescue solution that is
optimal needs to maximize both the utility of the team, whichcan be seen as predominantly
cooperative, and the utility of the unconscious woman, whose utility can be seen as competi-



5.2 A conceptual model of reaching recognition-primed group decisions 143

tive with respect to the firefighter. Applying satisficing to groups, regardless of whether they
are cooperative or competitive, is not more problematic than applying it to individuals, as
long as the groups have a way of determining what are the sufficient conditions and whether
they are satisfied. In a hierarchical group, such as the firefighting team, the initiator makes
this decision.

5.2.4 Team adaptation and recognition-primed reasoning

The main characteristic of the firefighters studied by Klein is that they constitute highly adap-
tive teams. Being adaptive is a necessary property of teams that operate in an uncertain en-
vironment. Burke et al. (2006) define team adaptation as a change in team performance, in
response to salient cues, that leads to a functional outcomefor the team. It is further spec-
ified that “team adaptation is manifested in the innovation of new or modification of exist-
ing structures, capacities, and/or behavioral or cognitive goal-directed actions” (Burke et al.,
2006, pg.1190).

The adaptive cycle of the team adaptation model presented in(Burke et al., 2006) is charac-
terized by four core constructs:

1. situation assessment;

2. plan formulation;

3. plan execution, via adaptive interaction processes;

4. team learning.

The adaptive cycle is further characterized byemerging cognitive states, such as shared men-
tal models, “which serve as both proximal outcomes and inputs to this cycle”, (Burke et al.,
2006, pg. 1192).

The recognition-primed agreement model we propose verifiesthe team adaptation model
of Burke et al. (2006). The emerging states in the case of our model are the agreements
regarding goals, value of cues and the adopted/refuted plans. The verification of expectancies
and the valuation of plans are the way in which the emerging states are reconsidered. In the
context of our recognition-primed model, the actions of theteam are based on the emergent
states and the team adaptation is a result of the adaptation,or reconsideration, of the emergent
states. In Section 5.5 we discus the reconsideration of the emerging states.

The process we do not explicitly consider in our model is learning, since we focus on giving
a conceptual model of reasoning and not of learning. However, we can observe that from the
aspect of improving team performance, learning is an important process both for the initiator
and the executors. The initiator can improve his accuracy inmatching a problem with a goal
and cues, while the initiators can learn to improve their plan evaluation and cue observation
accuracy.

The recognition-primed decision model of Klein does not explicitly include the process of
learning either, as it can be observed even on the more detailed depiction of the model given
on Figure 5.3.

However, in the original overpass rescue example, after theproblem is solved,i.e.,the woman
is rescued, the lieutenant analyzes the situation anew to determine that the best course of ac-
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Figure 5.3: The recognition-primed decision model as givenin (Klein, 1999, pg. 27).
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tion was to use a rope to lift the victim. This is when the lieutenantlearnsfrom the experience
by accommodating this new experience with the old ones.

5.3 Collective decision-making problems in the RPgD model

In this section we consider the collective decision-makingproblems that occur in the scope
of the group recognition-primed decision-making model. The result of the group-decision
making are the emerging states which are the decisions on whether to adopt a given plan and
the decision regarding the situation assessment.

5.3.1 Emerging states and reaching agreement on a plan

In our model the initiator depends on the perceptions and opinions of the executors to assess
the situation, verify the expectancies and evaluate a tentative plan. Each executor can have
different knowledge, beliefs and perceptions of the world,which give rise to the possibility
that the executors will give different values to different cues, different opinions on whether a
goal is to be pursued and different views regarding whether aplan is executable. The initiator
needs to “reconcile” the different opinions to be able to coordinate the activity of the team.
The emerging states,i.e., , the presently established collective cue values, adoptedgoals and
approved plans, are obtained as an end product of this “reconciliation” process.

The information requested and submitted regarding the cuesand the goals is of different na-
ture than the information exchange regarding a plan. The cues, and the goal they correspond
to, are binary questions to which an executor answers with “yes”, when he thinks the cue
is present, “no”, when he thinks that a cue is not present, or with abstaining from giving a
“yes” or “no”. The tentative plan evaluation is an information request to which two types of
reply are possible: either an approval of the plan or a constraint which indicates the plan’s
unsuitability.

All agents who are tasked with giving a cue, or opinion on a goal, are expected to produce
an answer, and “yes” and “no” have different meanings from abstaining to reply. Even if the
agents are divided regarding whether a goal should be adopted, the initiator may conclude
to adopt the goal. In contrast, the plan evaluation operatesaccording toqui tacet consentire
videtur1. The constraints from all the agents are taken into account when the initiator forms
the next plan. As long as there is at least one person who objects, a plan cannot be approved.
Due to the latter, the decision to approve a plan is rather simple. A decision on a situation
assessment poses more of a challenge. In the next section we focus on the problem of reaching
these group decisions.

5.3.2 Situation assessment as a judgment aggregation problem

How can the initiator form the decision on whether a goal is adequate or not? The initiator
can first inform the agents of the relational structure that shows how an opinion on a goal
can be deducted and then ask the agents to deduct their own judgments on the goal instead
of assessing the situation by eliciting judgments on the cues. The judgments on the goals can

1A legal expression used to state the convention that in negotiations, the one who has noting to say is taken to be
in agreement with what is proposed.
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then be pooled to determine whether a goal is to be pursued or not. However, this approach is
not an option for adaptable teams. If agreements on the cues are not reached, or known, then
it is difficult to update the goal when the state of the world changes.

When the world changes, it may not be obvious how that affectsthis goal adequacy. The
cues act as criteria for evaluating the adequacy of the proposed goal for the problem at hand.
When the decisions on cues are reached, the changes in the state of the world can be deemed
relevant when the decisions on the cues are inconsistent with them. Not only do the cues
show when a goal should be reconsidered, but also how to be reconsidered. This is why it is
important to reach decisions on the cues as well as on the goals and why we use judgment
aggregation to determine them.

A judgment aggregation problem is specified by an agenda, a set of constraints and a finite
set of agent namesN. The representation of the situation assessment agreementproblem in
judgment aggregation is straightforward.

The judgment aggregation problem is represented using a logic L and an entailment relation
for that logic|ùĎ LˆL. The agenda and the constraints are sets of well formed formulas
from this logic.

Since the goals are considered for adequacy sequentially, the agenda will contain one goal
and arbitrarily many cues. An exception is the case when the goals generated are concurrent
and non-conflicting, in which case they will be generated at the same time and considered
both in the same agenda.

For example, the agreement problem for goals2 can be represented in propositional logic
with agendaA “ tc2,c3,c4,c5,s2u where the cues and goal are represented by propositions,
andR“ tpc2_c3_c4_c5q Ñ s2u. We need a ternary logic to represent the judgments. The
profileπ of individual judgments forA, according to Example 5.2.1, are

E1,E2

E3,E4

E5

c2 c3 c4 c5 s2
»

–

0 0 0 0 0
0 0 1

2
1
2

1
2

0 0 0 1
2

1
2
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Which ternary logic semantics should we use for representing aggregation problems in the
RPgD model? Many ternary logics have been presented in the literature, see for example
(Urquhart, 2001) for an overview of the ones considered basic. In a ternary logic, in addition
to the values assigned to “true” and “false” there is a third value between them. The differ-
ence between the different ternary logics is in the mathematical and philosophical semantics
attached to the intermediately value. In representing judgments on cues, we use the third
value to represent the following cases:

• when an agent abstains from making a judgment on a cue,

• when an agent abstains from sending an opinion whether a goalshould be adopted or
such opinion is not deducible from his judgments on the related cues,

• when a collective judgment on a cue, or goal adoption cannot be determined by the
aggregation rule used.

We consider the basic ternary logics and discuss their adequacy for use as a representational
language for judgment aggregation for situation awareness. The logics we consider are:



5.3 Collective decision-making problems in the RPgD model 147

• the logic of Post (1921),

• the logic of Bochvar (1938),

• the logic of Łukasiewicz (1920)2, and

• the logic of Kleene (1938).

Post (1921) was one of the first to introduce a many-valued logic. In hist-valued system, the
propositions are assigned values fromT “ t0, . . . , t ´ 1u. The lowest value corresponds to
the lowest degree of truth and the highest to the highest degree of truth. Post constructed his
logic in a purely mathematical manner and did not attribute any philosophical analysis to any
of the intermediate values. The semantics of the propositional logic operators is given as:

vp ψq “ vpψq`1(mod t)

vpϕ^ψq “minpvpϕq,vpψqq.

For the case oft “ 3 we obtain a ternary logic in which, 0 denotes “false”, 2 denotes “true”
and 1 is assigned to the intermediary value.

Post’s is not a good logic for representing judgments in the situation assessment context.
Observe that a negated intermediate proposition is assigned the value “true” and the negation
of a “false” proposition is assigned the value “intermediate”. Consider the Example 5.3.1.

Example 5.3.1.An executor is asked to give judgments on the propositions:

a1 the victim is conscious,

a2 the victim is in a safe location,

and then, based on these judgments, usingR “ tp a1^a2q Ø su the initiator deduces this
executor’s opinion on

s send for a ladder-truck.

Assume that the executor from Example 5.3.1 reported the judgment sequenceA“ x0,2,1y,
namely that he finds the victim unconscious and in a stable location. According to the seman-
tics of Post, the value assigned tos is 1, meaning that the executor recommends abstaining
from a course of action even though he did not abstain on any ofthe judgments that determine
if a course of action is to be adopted.

Recall that a judgment sequence is consistent in propositional logic, if for the corresponding
Â, it holds ÂYR * K. We can extend the definition of consistency for a classical ternary
logic entailment operator|ù3 (Cadoli and Schaerf, 1996), straightforwardly. Observe that if
an agenti assigned a value 1 to an issuea, thena R Âi and a R Âi .

In ternary logic, we can havêAYR |ù3 K being true, false or undecided. A judgment se-
quence is inconsistent if and only if̂AYR |ù3 K is false. This means that, if such a|ù3 is
used, the executor could have submitted the judgment setA“ x0,2,0y as well, since it would

2See (Borkowski, 1970) for an English translation and (Urquhart, 2001) for a summary.



148 Chapter 5 Recognition-primed group decisions for hierarchical teams

be consistent. This possibility makes it difficult for the executor to determine what is the
decision regarding the goal.

The negation semantics according to Post is incompatible with the intuitive meaning of ab-
stention, and as consequence, all ternary logics that have this negation semantic are unsuitable
for the representation of judgment aggregation problems.

Bochvar (1938) defended the stance that the intuitive meaning assigned to the third, or inter-
mediate, value is “meaningless”.

According to the Bochvar logic semantics, a value “meaningless” is assigned to every formula
that contains a proposition that is assigned the value “meaningless”. Consequently, when the
executors are not asked to explicitly state their opinion onthe goal, Bochvar logic cannot be
used. Consider again Example 5.3.1, but now assume that the executor reported the sequence
A“ x0, 1

2y. According to the semantics of the Bochvar logic, the sequenceA is consistent
regardless of which value is assigned tos, since the value assigned to a1^a2 is 1

2. For any
value assigned tos the value assigned top a1^a2q Ø s is 1

2. When opinions about the goal
are not directly elicited by the executors, the agents can declare whichever value for the goal.

Bochvar logic may still be used to represent the individual judgment sets, in the case when
the initiator does not care about the individual values assigned to the goal and the cues are
logically not related between themselves, as is the case in Example 5.3.1. However, using
Bochvar logic to represent the collective judgment set is ill-advised since, as soon as there is
an abstention in the collective values of the cues, the initiator will not be able to determine
whether a goal should be adopted.

Łukasiewicz (1920) proposed his ternary logic independently from Post and unlike Post took
the philosophical approach to developing it. According to the semantics he proposed, the
formulas are assigned values fromT “ t0, 1

2,1uwith vpJq “ 1,vpKq“ 0 and the intermediate
value 1

2 assigned to propositions whose truth state is “possible” or“to be determined later”.

Unlike in the logic of Post, here the negation of the intermediate value is the intermediate
value, while the negations ofJ andK are as in classical logic. This is adequate for repre-
senting “true”/“false” judgments and abstentions. Unlikethe logic of Bochvar, a value of an
expression that contains a proposition assigned a value1

2 is not necessarily12. E.g., if that
the collective judgments on the cues for Example 5.3.1 arevpa1q “ 0 andvpa2q “

1
2, then the

consistent collective judgment set isA“ x0, 1
2,0y. An initiator can decide on a adopting a

goal in some cases, even if the collective judgment on some ofthe cues is12.

Using the ternary logic of Łukasiewicz is adequate for representing abstentions that occur
when an agent is undecided regarding a cue or a goal. Considerfor example the case when a
robot has to make a judgment on whether an object is red or not.To do so he has to sample
several readings from his wave length sensor and make a judgment “yes” if the average value
of the readings is greater than 620nm. It can happen that his sensors give contradictory
readings in the samples taken and as a consequence then the robot cannot set a judgment
(without making further analysis). However, if after some period he is asked again for a
judgment on the same cue, the robot might be able to produce a judgment.

The ternary logic proposed by (Kleene, 1938) is another goodcandidate for representing
judgments in the situation assessment context. Kleene assignees the meaning of “unknown”
to the intermediate value. The difference between the semantic of the Kleene logic and that of
Łukasiewicz is in the interpretation of the implicationÑ: while Łukasiewicz deems12 Ñ

1
2 to
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be an expression that is evaluated to 1, according to Kleene,the same expression is evaluated
to 1

2.

Using the ternary logic of Kleene is adequate for representing abstentions that occur when
an agent has no means to determine the judgment regarding a cue or a goal. For instance, a
robot that has no microphone cannot determine the value for acue “sound is coming from the
room” and will report a value12. If after some period the need for a judgment on the same
cue arises, provided he repaired his sensors, the robot willbe able to produce a judgment.

It is not strictly necessary that all the agents use the same ternary logic semantics, but the
|ù3 for the collective judgment sequence must be set so that the set of all consistent judg-
ment sequencesApA,R, |ù3q can be determined. However, using different semantics makes
the reasoning process more complex since the agents have to report the semantics they use.
Furthermore, for different cues the agents may have different reasons for abstaining.

In many scenarios it can be expected that an executor is competent with respect to some
cues and not so competent with respect to others. For instance, a robot can be better able to
determine the position of the victim if he is closer to the victim. The added accuracy can be
due to some particular expertise of the executor. A robot equipped with an infrared vision can
be more precise in estimating whether an immobile victim is dead or alive that a robot making
the same opinion based on movement recognition. A weight canbe assigned by an initiator,
or it can be provided by the executors themselves. In addition to the profile of judgments, a
profile of weights is also going to be available to the initiator.

5.3.3 Rules for aggregating judgments for situation assessment

Which judgment aggregation rules should the initiator use to aggregate the individual judg-
ments on the cues and the goal?

The situational assessment aggregation problem is such that a weighted ternary judgment
aggregation rule is necessary, such as the ones we developedin Chapter 3. Since different
goals, cues and relational structure can be specified, the judgment aggregation rule needs to be
able to handle all agendas without constraints. Also, the agents can submit any combination
of judgments, thus the rule needs to satisfy the universal domain property. Coordinating the
input of the agents towards certain types of profiles requires additional communication thus
slowing down the agreement process.

Based on these requirements, the initiator needs to use the rules∆d,d specified by Definition
43 for thisX as a constraint for the co-domain. The best choice ford andd aredT and

ř

correspondingly, since these choices allow for many desirable properties to be satisfied by
the resulting∆dT ,

ř

and∆dH ,

ř

, see Table 4.15.

The unanimity-principle is not satisfied by∆dT ,
ř

and∆dH ,

ř

, however this is not a bad thing
in this context. If the unanimity on an issue is not respectedby the collective decision, this
is due to the rest of the judgments. It is more important that the initiator selects the “right”
decision than preserve unanimity. For the same reason, majority-preservation is not a required
property either. However, one nice feature of this propertyis that it allows the initiator to fast
determine, in linear time with respect to number of agents and number of cues, the collective
decision by checking if the majority is consistent. In addition, thedH{dT and

ř

selection
has good computational-theoretic properties, particularly when no weights are given to the
judgments, which we showed in Section 3.6.
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Although the agents may abstain on any of the agenda issues, the collective set of judgments
must contains as little abstentions as possible. In particular, the collective judgment regarding
the goal should not be12, because this judgment leaves the initiator with no decision whether
the goal is an adequate solution for the problem or not. Consequently, the judgment aggrega-
tion rule used must be such that all the sequences that it selects are from the restricted domain
XĂA in which the judgment assigned to the goal is either 0 or 1. To achieve this, the initiator
can use the rulesΛdT ,

ř

andΛdH ,

ř

constraining the co-domain toX.

If the initiator does not elicit judgments on the goal, he canalso use one of the premise-
based procedures of Definition 46. The biased procedure is adequate for the brave initiator
mode or when time constraints to reach a decision are particularly severe, while the unbiased
procedure is for the cautious initiator. The premise-basedprocedures cannot be applied to
every agenda, and for some profiles they will generate a value1

2 regarding the goal decision.
However, the premise-based procedures do have the low complexity to their advantage.

5.4 The overpass rescue scenario revisited

In this section we revisit the overpass rescue example and show how our team can reason
when faced with the same problems following the recognition-primed group decision model.
We use Łukasiewicz logic for the judgment aggregation problems.

5.4.1 The sub-goal of securing the victim

The initiator is called to rescue a woman who either fell or jumped off a highway overpass,
and instead of falling to her death, had landed on the metal supports of a highway sign and
is dangling there when five executor agents arrive on the scene. The initiator is in remote
communication with the executors. There are two executors,E1 andE2 on the overpass, and
three in a hook-and-ladder truck,E3,E4, andE5. From the description the initiator got when
called to the rescue, he determines that the team has two concurrent goals:

g1: save the woman and

g2: prevent the woman’s body from falling on a moving car on the highway below her.

Example 5.4.1.As a first sub-goal the lieutenant considers:

s1: team members climbing up to the woman to secure her.

The initiator will have the team adopt sub-goal s1 if the cue, (c1), at least two agents can get
a good brace against the strutsis present, and if the agents think that c1 Ñ s1 is the case.
The cue c1Ñ s1 is the opinion that the s1 can be accomplished if c1 is present. The initiator
assesses the situation, by requesting information from theexecutors,i.e., their opinions on
whethertc1,c1Ñ s1u are the case or not. The replies of the executors are given in Table 5.2.

The initiator uses the profileπ and the weight matrix W in which each each agent is assigned
the weight w“ 9.3´d f v, where d f v is the distance from the victim. We do not assign weights
for the judgments on s1 since these are deduced. The rationale is, the closer the agent is to
the victim, the more reliable his judgment is.
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Agents c1 c1Ñ s1 s1 Distance from victim
tE1,E2u yes yes yes 1m, 1.3m

tE3,E4,E5u no ? ? 7m, 8m, 8.3m

Table 5.2: Contributed opinions and deduced goal opinions regarding cues ons1.

π “

»

—

—

—

—

–

1 1 1
1 1 1
0 1

2
1
2

0 1
2

1
2

0 1
2

1
2

fi

ffi

ffi

ffi

ffi

fl

W “

»

—

—

—

—

–

8.3 8.3 1
8 8 1

2.3 2.3 1
1.3 1.3 1
1 1 1

fi

ffi

ffi

ffi

ffi

fl

The following collective decisions are obtained, with respect to the different rules used. X is
the set of all consistent sequences in which the decision on s1 is either 0 or 1.

ΛdT ,
ř

pπ ,W,Xq “ x1,1,1y
b´ pbppπ,Wq “ x1,1,1y
u´ pbppπ,Wq “ x1,1,1y

Therefore the goal s1 is adopted.

The tentative plan fors1 the executer proposes is thatE1 grabs the legs of the victim andE2

her shoulders, while the rest of the agents execute a traffic blocking procedure. He informs
the agents about this plan. All of the agents approve it and the initiator informs all that this
is the plan to be executed. The agents execute their corresponding actions and inform the
initiator when they are done.

5.4.2 The sub-goal of extracting the victim

As a another sub-goal, the initiator considers how to pull the woman to safety. He first
considers the solution

s2: use a rescue harness.

Based on his experience, the initiator deemss2 a satisfactory solution if and only if at least
one of the following cues are the case:

c2: the victim is in a sitting position,

c3: the victim is in a face-up position,

c4: the victim can safely be shifted in a sitting up position or in a face-up position,

c5: the harness can be attached from the back without hurting the victim.

The initiator requests the executors opinions regarding these cues, and he further specifies that
the cues are subject to the constraintpc2_c3q Ñ c4. The constraints encodes the “obvious”
information that if a victim is already sitting or facing up,thenc4 is trivially the case. The
opinions of the executors are given in Table 5.2.1.
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The initiator uses the profileπ and the weight matrixU .

π “

»

—

—

—

—

–

0 0 0 0 0
0 0 0 0 0
0 0 1

2
1
2

1
2

0 0 1
2

1
2

1
2

0 0 0 1
2

1
2

fi

ffi

ffi

ffi

ffi

fl

The following collective decisions are obtained.X is the set of all consistent sequences in
which the decision ons2 is either 0 or 1. For the premise-based proceduresdT is used as well.

ΛdT ,
ř

pπ,W,Xq “ x0,0,0,0,0y,x0,0,0,1,1y
b´ pbppπ,Wq “ x0,0,0,0,0y
u´ pbppπ,Wq “ x0,0,0, 1

2,
1
2y

If the initiator used the ruleΛdT ,
ř

pπ,W,Xq he needs to break the tie between the decisions
x0,0,0,0,0y andx0,0,0,1,1y. Since the tie is essentially between adopting the goal or not,
he can do so by looking at how many of the deduced judgments forthe goal are for and how
many are against this goal. In this case he will proceed withx0,0,0,0,0y. Using the rule
u´ pbppπ,Wq it can be deduced that the initiator cannot decide ifs2 is a good solution. Let
us assume that the initiator does not want to risk the victim and concludes thats2 is not a
satisfying solution. He generates another possible solution and now considers

s3: use a rescue strap.

The necessary and sufficient conclusions fors3 to be adopted arec2_ c5. He already has
the group decision regarding these two cues and does not needto ask for them again. He
uses the constraintc2_ c5 and determines thats3 is an unsatisfactory solution and proceeds
to generate another one. He now considers to

s4: use a ladder belt.

This new sub-goal is a good solution when all of the followingcues are present:

c6: an agent can climb up the ladder (of the hook-and-ladder truck),

c7: the ladder belt can be sledded under the woman and buckled from behind,

c8: a rope can be tied to the snap,

c9: the woman can be lifted by two agents.

The initiator elicits the opinions of the agents regarding these cues. For the cuesc6, c7 and
c8 he only needs the opinion of the agentsE3, E4 andE5, since these are the ones that can
operate the hook-and-ladder truck equipment. The opinionshe gets are presented in Table
5.4.2.

The initiator uses the profileπ and the weight matrixW .
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Agents c6 c7 c8 c9 s4

tE1u no
tE2u yes

tE3,E5u yes yes yes yesyes
tE4u yes yes yes ? ?

Table 5.3: Contributed opinions and deduced goal opinions regarding cues ons4.

π “

»

—

—

—

—

–

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 1 1

2
1 1 1 1 1
1 1 1 1 1
1 1 1 1

2
1
2

fi

ffi

ffi

ffi

ffi

fl

W “

»

—

—

—

—

–

0 0 0 1 0
0 0 0 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

fi

ffi

ffi

ffi

ffi

fl

The following collective decisions are obtained.X is the set of all consistent sequences in
which the decision ons4 is either 0 or 1.

ΛdT ,
ř

pπ,W,Xq “ x1,1,11,1y
b´ pbppπ,Wq “ x1,1,1,1,1y
u´ pbppπ,Wq “ x1,1,1,1,1y

The initiator announces thats4 is adopted. He proceeds to formulate the tentative plan fors4.
His plan is to orderE3 to fetch the ladder belt and the rope, and both him andE5 to position
himself on the ladder platform. AfterwardsE4 is to lift the ladder. Once the belt is attached
to the woman byE3 or E5, the agent’sE1 andE2 lift the woman. (This way, if the woman
falls he will be attached to the ladder). The initiator proposes this plan to the agents.

AgentE4 object the plan stating that he is not able to operate the ladder. The initiator takes
this constraint into account and proposes another tentative plan, same as the previous, except
now the roles ofE4 andE5 are switched. The new plan is announced to the agents and they
confirm their agreement to it.

The initiator issues the orders with respect to the approvedplan, and sets the momentt1, after
the belt is clasped and the rope tied and the woman had been lifted for couple of centimeters,
as the time to re-evaluate the goal, cues and plan.

5.4.3 Verifying expectancies

At t1, the agentsE1 andE2 have relinquished holding the woman and attempted to lift her
by pulling the rope. The agents need to report any perceived difference with respect to the
estimate for the sub-goal they are currently pursuing,i.e., s4. All agents signal that all cues
are present, but the sub-goal is not being accomplished since the belt slips from the woman.
The initiator revises his cue-goal pattern and includes, asa necessary condition for adopting
s4, the cue

c10: the belt is tightly clasped around the victim.

The agents are unanimous thatc10 is not the case and the initiator announces thats4 is no
longer pursued.
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He now comes up with another solution

s5: use a rope tied around the waste of the victim.

The goals5 is a good solution if, apart from cuesc6 andc9, also the cuec11

c11: a rope can be tied to the victim,

is the case. The initiator asks agentsE3, E4 andE5 for their opinions on whetherc11 is the
case. They unanimously judgec11 as true and the initiators announces thats5 is adopted (all
of the rulesΛd,T

,b´ pbp andu´ pbp satisfy unanimity). He now devises a plan fors5,
which consists of the agents on the ladder platform tying oneend of the rope to the waist of
the victim and throw the other end to the agentsE1 andE2. The agents accept this plan and
proceed with its execution.

5.5 Revision of emerging states

“Members of adaptive teams utilize their pooled resources (i.e.,knowledge gained from learn-
ing) to adjust their actions according to situation requirements” (Burke et al., 2006, pg. 1190).
The adaptation in our model is executed through verifying expectancies and through revising
the situation assessment agreements when new information becomes available.

The collective values assigned to the cues are an estimate ofwhat the state of the world
is, hence the value can be confirmed or refuted by later observations. For instance, as the
executors proceed with executing the plan for goals1, they confirm the estimate onc1, namely
they can get a good brace against the struts. If instead the agents find thatc1 is impossible, the
agreement onc1 would be in contradiction with the observation. Information contradicting
the agreed value of a cue may lead to the change in the decisionto pursue a goal.

After a plan is adopted and execution starts, an agent may report a constraint regarding the
plan. This initiator uses the constraint to adapt the plan. All the executors are informed of the
change. A cause for a plan revision is also the revision in thesituation assessment,i.e.,after
the adopted judgment sequenceA had been revised.

Regardless of whether the update is scheduled,e.g., , after a task is executed, or caused by
a new observation, there are two types of information that can be cause for revision:a new
constrainton an agreed plan, or aa cue value being determined. The revision of agreements
depends on whether the opinions regarding the goal(s) were explicitly elicited or reached as a
deduction from the cue judgments. We first consider the case when the opinions on the goals
were deduced.

Assume that the agenda isA“ AcYAg, whereAc is the set of cues andAg a set of, corre-
sponding, accepted goal(s). LetA be the sequence of agreed values forA, according to which
Apgq “ 1, and letvpaq be the observed value ofa. The initiator needs to revise the sequence
A so that it contains the observed valuevpaq while remaining consistent.

The valuevpaq can be established in two ways. Ifa is subject to a scheduled verification, then
the executors have an opportunity to re-state their judgments ona. The initiator elicits these
judgments and obtainsvpaq by comparingn`wpaq with n´w paq. Recall thatn`w paq denotes the
sum of weights of agents who judge an issuea P A to be true, with respect to some profile
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π and weight matrixW; n´w paq denotes the sum of the weights of the agents who judgea
to be false. Observe that the weight of an agent regarding an issue can change between two
elicitations. The second way to establishvpaq is when an executor directly observes it. A
revision ofA follows.

The revision is a rulef that assigns a consistent judgment set to a judgment setA given the
new value of an agenda issue,i.e.,f : ApA,R, |ùqˆAˆT ÞÑ PpApA,R, |ùqq. We can state
the desirable properties forf, motivated by the need to minimize the resources spent on this
process.

The first property is that a revision should be done only when necessary. LetT “ t0, 1
2,1u

be the set of values with12 denoting the abstention. The revision does not need to be done if
Apaq “ vpaq.

• fpA,vpaqq “ A whenApaq “ vpaq. (Estimates verified)

The revision should beprioritized, namely after the revision,A˚paq “ vpaq, whereA˚ is
the revised judgment sequence. The observed value can only be vpaq “ 0 or vpaq “ 1, but
vpaq “ 1

2 can be obtained by pooling the agent’s opinions. In the case of vpcq “ 1
2, revision

is not needed sincevpcq “ 1
2 does not increase the knowledge of the initiator and a sequence

cannot be made inconsistent by replacing a judgment in it with 1
2. On the contrary, the more

abstentions there are in the agreement, the more difficult itis for the initiator to establish the
course of action.

• fpA,vpaq “ 1
2q “ A. (No increase of information)

• If fpA,vpaqq “ A1, thenA1paq “ vpaq for vpaq ‰ 1
2. (Success)

A potentially desirable property of revision can bestability. If the new information can be
consistently embedded in the old agreed judgment sequence,then the reset of the judgment
sequence should not be changed. This is the property of stability. Let â denote the set
corresponding tovpaq: â“ tau if vpaq “ 1, â“ t au if vpaq “ 0 andâ“H if vpaq “ 1

2.

• If pÂzta, auqY âYR*K thenfpA,vpaqq “ pÂzta, auqY â. (Stability)

However, this property can lead to the initiator revising into a sequence that is not construc-
tive, as it can be illustrated through an example.

Example 5.5.1(Revising an agreement). Consider the goal s2 and assume that this is the
one the agents agreed on pursuing. The agenda isA“ tc2,c3c4,c5,s2u andR“ tpc2_c3_
c4_c5qÑ s2,pc2_c3qÑ c5u; with agreement reached A“ x1,0,0,1,1y. Let vpc2q “ 0 be an
observed new value. If the initiator revises with a rule thatsatisfies stability, then the obtained
revision is A1 “ x0,0,0,1,1y. However, recall thatpc2_c3q Ñ c5 hence it cannot be known
whether the agents, without c2 “ 1 would have the opinion c5 “ 1. This information will
surface once the initiator alters the plan and the agents tryto execute the specified actions.

Stability is still desirable if the cuea on which new information is observed is logically
independent from the other cues. This property isstability of independent cues. Let Ac

denote the sub-sequence ofA containing the judgments on the cues. A cuea is independent
from the rest of the cues inAc if and only if Âczta, au * â is true.
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Assume that the initiator in Example 5.5.2, asked the opinions of the agents regardingc5 only.
The question is how are these new opinions to be integrated inA. One way is to compare
n`w pc5qwith n´wpc5q and embed the resulting value inA1. Another is to ask the agents to apply
the rulef individually and report their revised judgment sequences.When the opinions of the
agents regarding the goal are not deduced, but elicited explicitly, the agents should be given
a chance to revise them individually as well. The initiator aggregates the new sequences,
using the same aggregation rule as in the first aggregation. As a consequence of the stability
of independent cues property, the agents whose initial judgments were confirmed by the new
information do not revise their sequence.

Example 5.5.2(Revising by re-aggregation). Assume that the original profile of judgments
for goal s2 wasπ. Applying the revision individually, agents E3´E5 do not change their
judgments since they had already judged c2 as false. A possible new profile is thusπ˚.

π “
E1,E2

E3,E4

E5

c2 c3 c4 c5 s2
»

–

1 0 0 1 1
0 0 0 1 1
0 1

2 1 1
2 1

fi

fl π˚ “
E1,E2

E3,E4

E5

c2 c3 c4 c5 s2
»

–

0 0 1 0 1
0 0 0 1 1
0 1

2 1 1
2 1

fi

fl

Figure 5.4: The profileπ and a possible revisionπ˚.

The revision is a rule that can select several judgment sequences as an outcome. In this case,
theA1 that contain a value of the goalApgq “ 1 are preferred, since in this case the initiator
does not need to generate a new goal.

5.6 Conclusions

In this chapter we study decision-making for a hierarchicalteam in an uncertain environment.
We construct a model by lifting the recognition-primed decision (RPD) model from an indi-
vidual agent model to a group model. According to the RPD model, satisficing decisions are
identified by identifying a set of relevant cues and verifying whether these cues are present
or absent. The RPD model and our extension are applicable only when the agent responsible
for the decision is familiar with the problem to which the decision is related.

In our team, the agent responsible for making the group decision uses a judgment aggregation
rule to aggregate the opinions of the members without considering his own. We considered
as an illustration a case scenario collected by (Klein, 1999).

Given the hierarchical nature of the team, the ternary value-type of the aggregated judgments
and the presence of weights we propose that the rules of Chapter 3 are used for aggregation
within the scope of the recognition-primed group decision model we propose, in particular the
∆dH ,

ř

and∆dT ,
ř

. In the cases when the initiator only considers the judgments with respect to
cues, but not regarding the goal, he can use the extended premise-based rules. Due to the time
constraints posed on the initiator, the rulesΛdT ,

ř

andΛdH ,

ř

are a good choice as well, since
they allow the initiator to constrain the domain to permit only binary judgment sequences as
the result of the aggregation.
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In Section 3.6 we studied the winner determination problem for the rules∆dH ,

ř

and∆dT ,
ř

.
The winner determination problem is a decision problem, it only tells us how efficiently
can we confirm, for the worst-case scenario of a profile and weight matrix, that a particular
judgment sequence is a result of the aggregation for a particular aggregation rule. How-
ever, the important efficiency analysis in the case of resource constrained agents that use the
recognition-primed group decision model is the search version of the winner determination
problem: how efficiently can a sequence that is the result of the aggregation for a particular
rule be found? To answer this question we need to analyze the functional complexity of the
winner determination problem, particularly for the rules∆dH ,

ř

and∆dT ,
ř

.

Chapter 4 we studied the properties of the∆dH ,

ř

and∆dT ,
ř

, however we did include the
extended premise-based rules and the domain-restrictedΛd,d rules in our analysis. Which of
the social-theoretic properties defined and studied in Chapter 4 continue to apply when the
co-domain is restricted? For which co-domain restrictionsare properties restored or fail? We
encountered a counter example, the decision on goals2 in Section 5.4.2, that confirms that
although∆dT ,

ř

is majority-preserving, its counterpartΛdT ,
ř

is not.

We considered a mixed human-robot team in which there is one human, the initiator, which
has the role of a leader. The initiator is not on the ground where the problem is and coordi-
nates remotely with the ground agents,i.e., the executors. The model we developed heavily
depends on the experience and creativity of the initiator, which is why this agent is human. It
is the initiator who matches the problem with the corresponding goal and the goal with corre-
sponding cues. He elicits and aggregates the opinions, generates the plan and implements the
revision. An executor only needs to be able to form a judgmentregarding a cue when asked
for one, and evaluate whether a given action sequence is within his capacities.

How difficult would it be for a group of purely artificial agents to reason according to the
team recognition-primed decision model? We can abstract anexperience of a human initiator
to a case. A case is the product of learning. The case that the lieutenant constructs after
he considers the events of the overpass rescue example can bemodeled as on Figure 5.5.
Each case can be modeled as a quadruplecase“ xp,G,C,Ry, consisting of the encountered
problemp, the set of goalsG pursued to solve it, the set of cuesC which identified the goal(s)
as adequate and the relational structureR for the goal and cues.

A human commander gathers cases from personal experience, but also by exchanging ex-
periences with colleagues. A set of cases can be supplied to an (artificial) initiator agent.
However, the power of the human commander is in the ability torecognize cases as similar.
A successful non-human initiator must be able to do the same:perform a swift search through
the cases and identify the case most similar to the current situation. The similarities can be
found between problem characteristics, but also in cues.
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Figure 5.5: The case constructed from the overpass rescue example.



6

Group intentions are social choice
with commitment

Abstract. In this chapter we consider the problem of forming group inten-
tions as an example of a consensual group decision-making problem. An agent
intendsg if it has chosen to pursue goalg and is committed to pursuingg . How
do groups decide on a common goal? Social epistemology offers two views on
collective attitudes: according to the summative approach, a group has attitudep
if all of the group members have the attitudep; according to the non-summative
approach, for a group to have attitudep it is required that the members together
agree that they have attitudep. The summative approach is used extensively
in multi-agent systems. The main advantage of this approachis the simplicity
of determining if all group members have the same attitude. The main disad-
vantage is that it does not allow for groups that can reach agreement to act to-
gether, which is why it has been heavily criticized in the social epistemology
literature. We propose a formalization of non-summative group intentions, us-
ing judgment to determine the group goals. We use judgment aggregation as a
decision-making mechanism and a multi-modal multi-agent logic to represent
the collective attitudes, as well as the commitment and revision strategies for the
groups intentions.

6.1 Introduction

An intelligent agent interacts with its environment and other agents. This interaction includes
cooperation. In order for the agents to cooperate they need to establish what are their group
goals, and subsequently intentions. Of all the collective attitudes, the formation of group in-
tentions is possibly both most interesting and challengingsince an intention is inevitably re-
lated to other attitudes. Cohen and Levesque (1990) argue that the intention of an agent is the
goal that he chooses to pursue and is committed to pursuing, and it has been argued since that
the goals of an agent are intricately linked with the agent’sbeliefs (Castelfranchi and Paglieri,
2007; Boella et al., 2007).

How collective attitudes are formed and what is their natureis studied bysocial epistemology.
There are two predominant views, the summative and the non-summative view, regarding the
relation between the attitude of the group and the corresponding attitudes individually held
by the members. According to thesummative view, a group has attitudep if all or most of
the group members have the attitudep (Quinton, 1975; Hakli, 2006). According to thenon-
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summative viewa group has an attitudep if the memberstogether agreethat they have that
attitudep (Meijers, 2002; Gilbert, 2002, 2009).

Within the context of multi-agent systems, the concept of collective intentions is studied
and formalized in (Dunin-Keplicz and Verbrugge, 2010, Chapter 3) and also in (Singh, 1990;
Jennings, 1995; Grosz and Hunsberger, 2007). In (Dunin-Keplicz and Verbrugge, 2010, Sec-
tion 3.9), we find a detailed overview of the various formalizations of group intentions. It can
be observed that all these formalizations follow the summative view on collective intention-
ality. As observed in (Dunin-Keplicz and Verbrugge, 2010, Section 3.9), collective intentions
and collective commitments appear as central in the work of Margaret Gilbert (Gilbert, 1987,
2002, 2007, 2009), who upholds the non-summative view of intentions, but whose work is
predominately philosophical.

The advantage of the summative approach is that it is very easy to determine when a group
goal exists, particularly in hierarchical groups. In this case the agent responsible for produc-
ing the group decision only needs to confirm that no-one is of adifferent opinion. However, if
a group acts only when everyone in the group is in unanimous agreement, then the situations
in which the group can act are limited. For one, it is not likely that a very large number of
agents, or a group of heterogeneous agents, would be always in unanimous agreement. This
forces the size of feasible groups to be kept small and/or thegroup to be kept homogenous.

Under the summative approach, when the goal of the group is established there is no am-
biguity regarding what the individual goals of the agents are, implying that the agents are
perfectly cooperative regarding each goal they undertake.Not all groups are perfectly coop-
erative since often agents undertake group goals while pursuing individual goals of their own.
According to the non-summative approach, from the existence of a group goalg it cannot be
deduced what the individual goals of the agents are. This allows not only purely cooperative
groups to be modeled.

We can use the concepts devised by the work of Gilbert to formalize collective attentions in
a new way. In this chapter we formalize non-summative group intentions and joint commit-
ments.

How can a group agree on what its intentions are?

Following the paradigm of “intention is choice with commitment” we need to discover how
a group can decide which goals to pursue and also how can it commit to pursuing them?

A rational agent makes decisions based on what he believes, what he knows and what he
desires. Each group member can express whether he is for or against a candidate group
goal, but also how his opinions and knowledge support and justify his goal choice. We need
a mechanism for generating group goals that aggregates individual opinions into collective
attitudes. A group that jointly decided on a course of actionis jointly committed to uphold
that decision (Gilbert, 2007).

In practical reasoning, the roles of intentions can be summarized as: intentions drive means-
end-reasoning, intentions constrain future deliberation, intentions persist long enough, ac-
cording to a reconsideration strategy, and intentions influence beliefs upon which future
practical reasoning is based (Dunin-Keplicz and Verbrugge, 2010). A formalization of group
intentions should be completed with a formalization of group intention persistence and re-
consideration strategies. These strategies are difficult to develop when the decision to pursue
(or not) a goal is devoid from the knowledge and beliefs that rationalize and justify it. There-
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fore we need a group agreement on not only whether to pursue a goal but also why to pursue
or reject it. In consequence we need the agents to express notonly if they want the goal to
be pursued, but also the reasons, stemming from their individual beliefs and knowledge, that
justify their view on the goal.

Our research question thus breaks down into the following sub-questions:
1. How to aggregate the individual opinions into group beliefs and goals?
2. How to represent individual opinions and non-summative group attitudes?
3. How can groups persist in their intentions?
4. How can groups reconsider their attitudes?

The relation between individual goals and beliefs can be specified and analyzed in modal
agent logics likeBDILTL (Schild, 2000). The challenge is to find an adequate representation
for the individual opinions and the non-summative beliefs,goals and intentions into multi-
agent logic. We give an extension logicAGELTL that fuses existing modal logics to provide
the adequate modalities. We use this logic to represent the group intention and reconsidera-
tion strategies.

We require that the group has a set of candidate group goals, arelevance order over this set,
as well as a set of constraints, one for each candidate goal, in the form of logic formulas,
that express what is the relation between a goal and a given set of reasons. The members are
required to have the ability to form and communicate “yes” or“no” judgments regarding a
candidate goal and associated reasons.

We need a mechanism for generating group beliefs and goals that aggregates individual opin-
ions into collective attitudes. Since the agents express their opinions regarding a set of log-
ically related issues, beliefs and opinions on whether a goal is to be pursued, a judgment
aggregation rule, such as the ones we considered in Chapters2 and 3 is an adequate bases for
such a mechanism.

A non-summative goal needs the agreement of all agents to be established. Consequently,
there is no one agent that can be responsible for the group decision, and it can be consistently
assumed that the agents’ opinions are all considered as of equal weight in the aggregation.
An agreement must be responsive to the opinions of the group members and satisfy such
properties as majority-preservation and unanimity which we presented in Chapter 4.

Cohen and Levesque (1990), proclaim that intentions are choice (of a goal) with commitment.
Judgment aggregation is a social choice mechanism. Following the intuition of Cohen and
Levesque, (a non-summative) group intention is (a group goal determined by) social choice
with commitment.

The layout of the chapter is as follows. In Section 2 we discuss how to choose group goals.
We first summarize the non-summative view on collective attitudes. We then extendBDILTL

with the necessary modalities for representing these groupattitudes and the concepts from
judgment aggregation. We introduce a judgment aggregationframework using this logic
extension and, in Section 6.3, show how it can be used. Sections 6.4 and 6.5 respectively
study the commitment and reconsideration strategies. Related work, conclusions and outlines
for future work are in Section 6.6.
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6.2 Non-summative group attitudes formalized

First we discuss how non-summative goals and beliefs are determined and then introduce the
logic AGELTL which is used for representing these attitudes. The formal model of judgment
aggregation, using this logic, is given in Section 6.2.3.

6.2.1 From individual opinions to group attitudes

The intention of the group is formalized using the summativeapproach, according to exist-
ing theories such as (Levesque et al., 1990; Jennings, 1995;Dunin-Keplicz and Verbrugge,
2010), following (Bratman, 1993) and (Rao et al., 1992): “g is the intention of the group”
is equivalent to “g is the individual intention of all the group members”. Unlike the joint
intention of, for example (Dunin-Keplicz and Verbrugge, 2010), our group intention is not
necessarily decomposable into individual intentions: “anadequate account of shared inten-
tion is such that it is not necessarily the case that for everyshared intention, on that account,
there be correlative personal intentions of the individualparties” (Gilbert, 2009, pg.172).

Example 6.2.1. Let C“ tw1,w2,w3u be a crew of cleaning robots. We denote the group
goal to clean the meeting room with g1, and the reasons to adopt this goal with: there are no
people in the room (p1), the room is dirty (p2), the garbage bin in it is full (p3).
The individual beliefs of the robots on whether g1 should be the group goal are justified by
individual beliefs on p1, p2, p3 using the constraintpp1 ^ pp2 _ p3qq Ø g1.

The group goalGg1 is not necessarily decomposable into individual goalsg1 upheld indi-
vidually by the agents. Assume that robotw1 in Example 6.2.1 is a mopper, the robotw2 is
a garbage collector and the robotw3 sprays adequate cleaning chemicals. It can be that the
individual goals ofw1 andw2 are to clean the room. The goal ofw3 may be others, but the
group agreed to pursueg1 and it, being committed tog1 as part of the group, will spray the
cleaner as an act towards accomplishingg1.

We formalize only goals that can be achieved by the group as a whole. Whether these goals
can be achieved by joint actions or by a combination of individual actions is out of the scope.
We define group intention to be the goal, which the members agreed on, and by that, are
committed to pursuing.

The robots in Example 6.2.1 can disagree on various issues when reaching a decision for a
group goal. Assume that one robot believes the room is occupied and thus, according to it,
the group should not pursueg1. According to the other two robots, the group should pursue
g1. The second robot is of the opinion that the garbage bin is full and the floor is clean, while
the third believes that the floor is dirty. According to the non-summative view of collective
beliefs, a group believesp if the group members together agree that as a group they believe
p. The question is: how can a judgment aggregation rule be usedto aggregate the beliefs of
the robots?

To use judgment aggregation for aggregating the opinions ofthe robots, one needs to rep-
resent the individual and collective judgments as logic formulas. A logic of belief-desire-
intention, a modal logic with modal operatorsBi for belief of agenti, Di for desire andIi
for intention, is insufficient to model these doxastic attitudes. According to Gilbert, “it is
not logically sufficient for a group belief thatp either that most group members believe that
p, or that there be common knowledge within the group that mostmembers believe thatp”
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(Gilbert, 1987, pg.189). Furthermore, “it is not necessarythat any members of the group
personally believep” (Gilbert, 1987, pg.191). Aw1 robots judgment “yes” on p1 is not
implied by nor it implies that robot’s beliefBw1 p1.

Hakli (2006) summarizes the difference between beliefs andacceptances as: (1) beliefs are
involuntary and acceptances are voluntary; (2) beliefs aimat truth and acceptances depend
on goals; (3) beliefs are shaped by evidence and acceptancesneed not be; (4) beliefs are
independent of context and acceptances are context-dependent; and (5) beliefs come in de-
grees and acceptances are categorical. We find that an individual judgment is closer to an
acceptance than to a belief because like acceptances, judgments are voluntary, they depend
on goals and are context-depend. Like beliefs, judgments are also are shaped by evidence.
For these reasons we choose to represent judgments as acceptances.

There is a debate among social epistemologists on whether collective beliefs are proper be-
liefs or they are in essence acceptances (Gilbert, 2002; Meijers, 2002; Hakli, 2006). Since
we use acceptances for individual judgments, we deem most adequate to use acceptances to
represent the collective judgments as well.

The set of collective acceptances is the agreed upon group goal and group beliefs. Having
group beliefs in support of group goals is in line with (Castelfranchi and Paglieri, 2007) who
argue that the goals should be considered together with their supporting “belief structure”.
In Example 6.2.1, the constraintpp1 ^ pp2 _ p3qq Ø g1 is nothing else but the “belief
structure” for g1. We use the group beliefs to define commitment strategies in Section 6.4.

6.2.2 The logicAGELTL

The logic we introduce to represent non-summative group attitudes is a fusion of twoK-
modal logics (Chellas, 1980), the logic of acceptance (Lorini et al., 2009) and the linear tem-
poral logic (Pnueli, 1977). As such, it inherits the decidability properties of the fused logics
(Wolter, 1998). The syntax ofAGELTL is presented in Definition 82. The semantics is as that
given by (Schild, 2000) forBDICTL.

To model the considered group goals we use a singleK modal operatorG. ThusGg, whereg
is a propositional formula, is to be interpreted as “g is a group goal”. Since we are interested
in modeling the change upon new information, we also need to model these observations of
new information. To this end we add theK modal operatorE, readingEϕ as “it is observed
thatϕ”.

To model the individual and collective judgments we use the modal operator of acceptance
AS, whereS is a subset of some set of agentsN. ASϕ allows us to represent both individual
judgments,S“ tiu, for i P N and collective judgments withS“ N.

Definition 82 (Syntax). Let N be a non-empty set of agent names, with SĎ N, and LP be a
set of atomic propositions. The admissible formulae of AGELTLare formulaeψ0,ψ1 andψ2

of languagesLprop, LG andLAELTL correspondingly, given here in BNF form:
ψ0 ::“ p | pψ0^ψ0q |  ψ0

ψ1 ::“ ψ0 |Gψ0

ψ2 ::“ ψ0 | ASψ1 | Eψ2 | Xψ2 | pψ2Uψ2q

The p ranges over LP and S overPpNq. Moreover,♦ϕ ”JUϕ , lϕ ”  ♦ ϕ , andϕRϕ 1 ”
 p ϕU ϕ 1q. X, U and R are standard operators of LTL. We recall the reader of the
semantic of theX andU later on in this section when we introduce the semantics of AGELTL.
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Example 6.2.2.Consider Example 6.2.1. Gg1 represents that cleaning the room is a group
goal. ACGg1 represents that the groupC accepts cleaning the room as its group goal. Atw3ug1

represents that agent w3 is of the opinion that the group should adopt g1. E p1 represents
the observation that there are no people in the meeting room.El p1 denotes that it is
impossible to clean the meeting room.

We use the linear temporal logic to model the change of group attitudes. By usingLTL we do
not need to distinguish between path formulas and state formulas.BDILTL uses, for example
Bla to quantify over traces. We can useE for that purpose.

We define the intention of the group of agentsS to be their acceptance of a goal, whereS
ranges over 2Agt as

ISψ ”de f ASGψ .

Semantics ofAGELTL

As mentioned, the semantics ofAGELTL follows the semantics ofBDILTL presented in (Schild,
2000). A Kripke structure is defined as a tupleM “ xW,R,G,E,A,Ly. The setW is a set of
possible situations. The setR is a set of pairs identifying the temporal relation over situ-
ationsR ĎWˆW. The setG is a set of pairs identifying the goal relation over situations
G ĎWˆW. Lastly, the setE is a set of pairs identifying the observation relation over situ-
ationsE ĎWˆW. The elementA is a mapA : 2N ÞÑWˆW. The mappingA assigns to
every set of agentsSP 2N a relationAS between possible situations.L is a truth assignment
to the primitive propositions ofLP for each situationwPW, i.e.,Lpwq : Prop ÞÑ ttrue, f alseu.

Given a structureM “ xW,R,G,E,A,Ly andsPW, the truth conditions for the formulas of
AGELTL(in a situations) are:

• M,s*K;

• M,s |ù p if and only if p P Lppq;

• M,s |ù  ϕ if and only ifM,s* ϕ ;

• M,s |ù ϕ^ψ if and only ifM,s |ù ϕ andM,s |ù ψ ;

• M,s |ù ASϕ if and only ifM,s1 |ù ϕ for all ps,s1q PApSq;

• M,s |ùGϕ if and only if M,s1 |ù ϕ for all ps,s1q P G;

• M,s |ù Eϕ if and only if M,s1 |ù ϕ for all ps,s1q P E;

• M,s |ù Xϕ if and only if M,s1 |ù ϕ for thes1, ps,s1q P R

• M,s |ù ϕUψ if and only if M,s |ù ϕ ; M,si |ù ϕ for all si , i P t1,2, . . . ,ku such
that tps,s1q,ps1

,s2q, . . . psk´1
,skqu P R and for sk`1 such thatpsk

,sk`1q P R it holds
M,sk`1 * ϕ andM,sk`1 |ù ψ .

A formula ϕ is true in aAGELTLmodelM if and only if M,s |ù ϕ for every situationsPW.
The formulaϕ is valid (noted|ùAGELTL) if and only if ϕ is true in allAGELTLmodels. The
formulaϕ is AGELTL-satisfiable if and only if the formula ϕ is notAGELTLvalid.
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For the purposes of constructing the formal judgment aggregation model, we emphasize that
a set of sentencesM Ď AGELTL is called consistent ifM *K and inconsistent otherwise. The
logic AGELTL satisfies: for each pairtϕ , ϕu P AGELTL, tϕ , ϕu |ù K, andH * K.

(C1) For each setta, au P AGELTL it holdsta, au |ù K.

(C2) Given a setMĎAGELTL such thatAGELTL*K, it holds thatM1*K for everyM1 ĂM.

(C3) For the empty setH it holds thatH*K.

(C4) For each setM such thatM Ď AGELTL, there exists a supersetT P AGELTL such that
T *K and eithera P T or a P T for every pairta, au P AGELTL.

Axiomatization of AGELTL

In our logic we model only acceptances since the private mental states, such as beliefs, are
modeled by theBDILTL logic which we extend. We include the axioms and the semantics for
LTL, since we useLTL to define the commitment strategies of the agents in Section 6.4.

The modal operatorASϕ we use is equivalent to the modal operatorAS:xϕ of theacceptance
logic of (Lorini et al., 2009) with one syntactic and one semantic exception. These excep-
tions do not infringe on the decidability properties of the logic, as it can be observed by the
decidability proof for acceptance logic provided in (Lorini et al., 2009).

The operatorAS:xϕ usesx ranging over a set of labels to describe the context under which the
acceptance is made. In our case the context is that of the group and since we deal with only
one group, we have no use of these labels. The context labels play no role in the semantics of
the acceptance logic formulas.

On the semantic level, the axioms forASϕ are all the axioms ofAS:xϕ except two: the axiom
inclusion (Inc.) and the axiom unanimity (Un.). Dropping (Un.) and (Inc.) does not affect
the decidability of the logic of acceptance. (Un.)1 states that ifAN:xϕ , then@i P N, Atiu:xϕ .
In our case, it is the aggregation of individual acceptancesthat determines the collective
acceptance and we do not require that the group acceptingp entails that all the members
acceptp, a property of non-summative collective belief indicated by (Gilbert, 1987). The
opposite property,i.e.,all the agents acceptingp implies that the group acceptsp, is ensured
via the judgment aggregation mechanism. (Inc.) states that if a groupC acceptsϕ , so will
any subgroupBĂC. In our case, the judgment aggregation over the input from groupB can
produce different group attitudes than the judgment aggregation over the input from a larger
groupC.

The axiomatization of theAGELTLlogic is thus:

(ProTau) All principles of propositional calculus

(LTLTau ) All axioms and derivation rules of LTL

(K-G ) Gpϕ Ñ ψq Ñ pGϕ ÑGψq

(K-E ) Epϕ Ñ ψq Ñ pEϕ Ñ Eψq
1Not to be confused with unanimity introduced in judgment aggregation in Section 6.3
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(K-A ) ASpϕ Ñ ψq Ñ pASϕ Ñ ASψq

(PAccess) ASϕ Ñ AMASϕ if M Ď S

(NAccess)  ASϕ Ñ AM ASϕ if M Ď S

(Mon)  ASKÑ AMK if M Ď S

(MP) From $ ϕ and $ pϕ Ñ ψq infer $ ψ

(Nec-A) From $ ϕ infer $ ASϕ

(Nec-G) From $ ϕ infer $Gϕ

(Nec-E) From $ ϕ infer $ Eϕ

6.2.3 Agreeing on group intentions as a judgment aggregation problem

Our judgment aggregation model inAGELTL follows the judgment aggregation (JA) model in
general logics of (Dietrich and List, 2007a) and Chapter 2.

We presume that all the goals which the group considers to adopt are given in a set of candi-
date group goalsG“ tGg| gPLpropu. The decision problem of choosing or not a given group
goal is specified by an agenda. The agendas here are pre-defined consistent sets of formulas
representing an issue on which an agent casts his judgments.An agenda istruth-functional
if it can be partitioned into premises and conclusions. In our case, the agendas consist of one
conclusion, which is the group goalg P G being considered. The relevant reasons for this
group goal are premises.

Definition 83 (Agenda). An agendaA Ď LG is a consistent set of formulas, such thatA “
A

pYA
c. The setsAp andAc are such thatApĎ Lprop, A

cĎ LG andAp X A
c “ H.

We remark that in judgment aggregation models, as the one of (Dietrich and List, 2007a), the
distinction between conclusions and premises is only indicated by the partition but not for-
malized in the language of the agenda. The reason why we need alanguage more expressive
than propositional logic to represent the agenda issues is that we want to explicitly formalize
this distinction trough the modal operatorG.

For a given agendaA, each agent in the groupN expresses his judgments by accepting (or
not) the agenda issues. We define judgments formally in Definition 84.

Definition 84 (Judgment). Given a set of agents N and an agendaA, for each issue aPA the
individual judgment of agent iP N is one element of the settAtiua,Atiu au. The collective
judgment of N is one element of the settANa,AN au.

The formulaAtiua is interpreted as agenti judgesa to be true, while the formulaAtiu a
is interpreted as agenti judgesa to be false. Since the judgments are acceptances, we can
assume that each agent is able to determine whether he accepts an issue or not. Consequently,
a judgment Atiua is taken to be the same as judgmentAtiu a, and the judgments ANa
the same as judgmentsAN a. In theory, an agent, or a group can also express the judgment
of “do not know whether to accepta” via the formula Atiua^ Atiu a, or respectively
 ANa^ AN a.
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The goal and the reasons are logically related. These relations are represented by a set of
constraints. In our model, we assume that the constraints are a set of formulasRĎ LG. For
each goalGgP G there is, provided together with the agenda, a set of constraintsRgĎR. The
setR contains all the constraints that the agent should observe when casting judgments. These
constraints contain three types of information: rules describing how the goal depends on
the reasons (justification rulesR just

g ), rules describing the constraints of the world inhabited

by the agents (domain knowledgeRDK
g ) and rules that describe howg interacts with other

candidate goals of the group (coordination rulesR
coord
g ). Hence, the constrains for a group

goalg areRg“ R just
g YRDK

g YRcoord
g .

We want the reasons for a goal to rationalize, not only the choice of a goal, but also its
rejection. Having collective justifications for rejectinga goal enables the agents to re-consider
adopting a previously rejected group goal. To this end, we require that the justification rules
have the schemaGgØ Γ, wheretGgu “ Ac

g andΓ P LProp is a formula such that all the
non-logical symbols ofΓ occur inAp

g as well.

The agents express their judgments on the agenda issues, butthey accept the constraintsin
toto2.

Example 6.2.3(Example 1 revisited). Consider the cleaning crew from Example 6.2.1.R just
g1

is pp1^pp2_ p3qq Ø Gg1 andAg1 “ tp1, p2, p3,Gg1u. Suppose that the crew has the fol-
lowing candidate group goals as well: place the furniture inits designated location (g2)
and collect recyclables from garbage bin (g3). The agendas areAg2 “ tp4, p5, p6, p7,Gg2u,

Ag3 “ tp3, p8, p9,Gg3u. The justification rules areR just
g2 ” pp4^ p5^pp6_ p7qq ØGg2 and

R
just
g3 ” pp8^ p9^ p3q ØGg3. The formulas p4´ p9 are: the furniture is out of place (p4),

the designated location for the furniture is empty (p5), the furniture has wheels (p6) , the fur-
niture has handles (p7), the agents can get revenue for recyclables (p8), there is a container
for the recyclables (p9).
An example of a domain knowledge could beRDK

g2
”  p4 Ñ  p5, since it cannot happen

that the designated location for the furniture is empty while the furniture is not out of place.
Group goal Gg3 can be pursued at the same time as Gg1, however, Gg2 can only be pursued
alone. Thus the coordination rule for all three goals is
R

coord
g1

“ R
coord
g2

“ R
coord
g3

” ppGg2^ pGg1_Gg3qq_ Gg2q.

To ensure that the judgments provided by the agents are usable for generating group goals,
we impose that each of the individual judgments sets is complete and consistent as defined in
Chapter 3.

Definition 85 (Admissible judgment set). Letϕ “ tAMa | a“ a or a“ a,a P Au be the set
of all judgments from agents MĎ N for agendaA. We define the set of accepted constraints
RM “ tAMr | r P Ru. The set of judgmentsϕ is admissible if it satisfies the following condi-
tions:

• for each aPA, either AMa P ϕ or AM a P ϕ (completeness), and

• ϕYRM *K (consistency).

A profile, as in Chapter 2, is a set of judgment sets,e.g.,

2The agents accept the constraints as they are, as a whole set.
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π “ tAtw1up1,Atw1up2,Atw1u p3,Atw1uGg1,Atw2u p1,Atw2up2,Atw2up3,Atw2uGg1,

Atw3up1,Atw3u p2,Atw3u p3,Atw3u Gg1u is a possible profile for Example 6.2.1.

We can also use the matrix notation

π “
w1

w2

w3

p1p2 p3 Gg1
$

&

%

1 1 0 1
0 1 1 1
1 0 0 0

,

.

-

.

In the judgment sets in Chapter 2, one cannot distinguish whether a judgment set belongs
to one agent or another. Using the acceptance operator to model judgments, we can make a
distinction between the individual judgments. In judgmentaggregation, the collective judg-
ment set of a group of agents is obtained by applying a judgment aggregation function to the
profile. The judgment aggregation rulesF we use here are defined as the irresolute judgment
aggregation rules in Definition 2.

LetAg be the agenda corresponding to a goalg considered by a group of agentsN and letπg

be the profile of the members judgment regardingAg. We define the group attitudes regarding
a goalg, i.e., thedecision, to be the collective judgment set of the group.

Definition 86 (Decision). Given a profileπg for a considered goal g and a judgment aggre-
gation rule F, the group N1s decision regarding g isDg “ tANa | a P f pπqu.

Proposition 6.2.4. Every group member accepts the group decision.

Proof. As a direct consequence of axiom (PAccess), when the group has intentionINg, every
agent inN accepts that this is the group’s intention, regardless of what their individually
accepted regardingGg. Also, as a consequence of axiom (NAccess), when the group rejects
a goal,AN Gg, every agenti accepts this group decision. The same holds for the group
beliefs.

6.2.4 Judgment aggregation rules for agreeing on intentions

Which of the rules we introduced in Chapters 2 and 3 are adequate for use by a group that
needs to agree on its intentions? Since the judgments in the intention agreement problem are
binary and unweighted, we can choose both from the rules of Chapter 2 and Chapter 3. To
select the particular one we need to look at the properties, defined in Chapter 4, that the rule
should satisfy.

The judgment aggregation rule we can use for obtaining groupgoals should produce decisions
that are complete and it should satisfy collective rationality. If Fpπq is not complete it is
difficult to revise the group intentions. For example, if thedecision contains only a group
goal acceptance, then we do not know why the goal was (not) adopted and consequently when
to revise it. For example, the cleaning crew decides for the goal g3 (to collect recyclables),
without having the reasons likep9 (a container where to put them). If the information about
the world is updated and p9 holds, the robots will continue to collect recyclables. If the
aggregation of an admissible profile is not consistent with the constraints, we would not be
generating reasons for the group goal. All the rules we proposed satisfy collective rationality.
The rules from Chapter 2 do not produce complete judgment sets. In this case, the judgment
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sets can be completed by adding the missing judgments in sucha way that the consistency of
the set is not perturbed. For example, consider the pre-agendaA“ tp,q, pÑ qu and assume
that the collective judgment set istp, qu. This set can be made complete by extending it
into tp, q, ppÑ qqu.

Since the judgment aggregation problem is that of producingan agreement between the
agents, the rules should be such to guarantee that the decision is responsive to the accep-
tances of the individuals. This means that the decision should be supported by the majority
whenever that is feasible. Therefore the rule applied should be majority-preserving.

There are cases, when the profile is not majority consistent,when the rule leads the group
to adopting a goal that neither of the agents endorses individually. To avoid this, we need
to aggregate using a rule that satisfies the unanimity principle, if only the weak form of the
property, particularly on issueGg. As we can observe in Table 4.14, the rules that satisfy
weak unanimity areRY, RMSA, RRA andRRY.

Another desirable property for consensual group’s decision-making contexts is resoluteness.
Since all judgment aggregation rule are by construction irresolute, one can prefer the rules
that produce less judgment set. It can happen thatRMSA generates more judgment sets than
RRA for the same profile. As it can be observed in Table 8.1.2, if a collective judgment is in all
the judgment sets obtained byRRA, then it will be in all the judgment sets obtained byRMSA,
for the same profile, but the reverse does not hold. This meansthat, for the same profile, there
are judgment sets generated byRMSA but not byRRA. applied to a profile produces strictly
more judgment sets thenRY applied to the same profile. Therefore we excludeRMSA from the
set of choices.

The ruleRRA can be seen as better thenRY and RRY since it satisfies one more property,
the strict insensitivity to reinforcement of collective judgments. In addition, one can easily
construct a linear time algorithm, with respect to the size of the profile, for calculatingRRA,
while RY andRRY can be expected to be computationally more complex.

The irresoluteness of the rulesRY, RRA andRRY must be resolved. In Chapter 5 the group
was hierarchical so the agent responsible for the decision,the initiator, chose between two
possible judgment set. In this context, a tie-breaking mechanism needs to be specified. Ties
can be broken by randomly selecting one of the collective judgment sets, or by selecting the
judgment set that contains a judgment on a particularly important issue, such as the goal,
supported by the majority. In the case of the ruleRRA this last approach is not applicable,
since the collective judgments are selected in order of strength of the majority that supports
them.

6.3 The generation of multiple group goals

The mental state of the group is determined by the mental states of the members and the
choice of judgment aggregation function. We represent the mental state of the group by a set
ϒ of AGELTL formulas. The setϒ contains the set of all candidate goalsG Ď LG{Lprop for
the group and, for eachGgP G, the corresponding constraintsRg, as well as the individual
and collective acceptances made in the group regarding agendaAg. The setϒ is common
knowledge for the group members. An agent usesϒ when it acts as a group member and its
own beliefs and goals when it acts as an individual.

To deal with multiple, possibly mutually inconsistent goals, the group has a priority order



170 Chapter 6 Group intentions are social choice with commitment

Áx over the group goalsG Ă ϒ. To avoid overburdening the language with aÁx operator,
we incorporate the priority order within the constraintsR just

gi
” Γi ØGgi . We want the con-

straints to capture that ifGgi is not consistent (according to the coordination rules) with some
higher priority goalsGg1, . . . ,Ggm, then the group can acceptGgi if and only if none of
Gg1, . . . ,Ggm is accepted. Hence, we replace the justification ruleR just

gi
P ϒ with Rp just

gi
”

pΓi^
Źm

j pAN Ggjqq ØGgi, whereGgj P G, Ggj Áx Ggi andGgi^Ggj^Rcoord
gi

|ù K.

Example 6.3.1. Consider the goals and rules of the robot crew C from Example 6.2.3. As-
sume the crew has been given the priority order Gg1 ąϒ Gg2 ąϒ Gg3. ϒ contains: G “
tGg1,Gg2,Gg3u, one background knowledge rule, one coordination rule, three justification
rules, out of which two are new priority modified rules:
tG, p4Ñ p5,pGg2^ pGg1_Gg3qq_ Gg2, Gg1Ø pp1^pp2_ p3qq,
Gg2Ø pp4^ p5^pp6_ p7q^AC Gg1q,Gg3Ø pp8^ p9^ p3^pAC Gg2qu.

The agents give their judgments on one agenda after another starting with the agenda for
the highest priority candidate goal. Once the profileπ and the decisionDg for a goalg are
obtained, they are added toϒ. To avoid the situation in which the group casts judgments on
an issue that has already been decided, we need to remove decided issues fromAg before
eliciting the profile for this agenda.

The group goals are generated by executingGenerateGoals(ϒ, N).

function GenerateGoals(ϒ, S):
for each Ggi P G s.t. [@Ggj P G: (Ggj Á Ggi)ñ (ANGgj P ϒ or AN Ggj P ϒ)]

{ B :“ pta | ANa P ϒuYt a | AN a P ϒuqXAgi ;
A
˚
gi

:“Agi {B;
πgi :“ elicitpS,A˚gi

,ϒq;
ϒ :“ ϒYπgi Y f apπgi q; }

return ϒ.

GenerateGoalsdoes not violate the candidate goal preference order and it terminates ifelicit
terminates.elicit requests the agents to submit complete judgment sets forπgi Ă ϒ. We
require thatelicit is such that for all returnedπ it holds: ϒY f pπqq * K andϒYπ⊲i * K
for every i P N. When a higher priority goalGgi is accepted by the group, a lower priority
incompatible goalGgj cannot be adopted regardless of the judgments on the issues in Ag j .
Nevertheless,elicit will provide individual judgments for the agendaAg j . If the acceptance
of Ggi is reconsidered, we can obtain a new decision onGgj because the profile forGgj is
available.

Example 6.3.2.Consider theϒ sets for the robots given in Example 6.3.1. The following calls
to elicit are made in the given order. First,πg1“ elicitpN,A

˚
g1
,ϒqwith the GenerateGoalspϒq“

ϒ1 “ ϒY πg1Y f apπg1q. Second,πg2 “ elicitpN,A˚g2
,ϒ1q, with GenerateGoalspϒ1q “ ϒ2 “

ϒ1Yπg2Y f apπpg2qq. Last,πg3 “ elicitpN,A
˚
g3
,ϒ2q, with GenerateGoalspϒ2q “ ϒ3 “ ϒ2Y

πg3Y f apπg3q. Since there is no overlapping between agendasAg2 andAg1, A˚g1
” Ag1 and

A˚g2
”Ag2. However, sinceAg2XAg3 “ p3, thenA˚g3

“ tp8, p9,Gg3u.

6.4 Commitment strategies

The group can choose to reconsider the group goal in presenceof new information – “a
joint commitment must beterminatedjointly” (Gilbert, 2007, pg. 143). Whether the group
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chooses to reconsider depends on how committed it is to the group intention corresponding
to that goal. We defined the group intention to beINg” ANGg, i.e. the decision to acceptg
as the group goal. The level of persistence of a group in theircollective decision depends on
the choice of commitment strategy.

These are the three main commitment strategies (introducedby (Rao and Georgeff, 1993)):
Blind commitment: IigÑ pIigUBigq
Single-minded commitment: IigÑ pIigUpBig_Bil gqq
Open-minded commitment: IigÑ pIigUpBig_ Gigqq

These commitment strategies only consider the relation between the intention and the beliefs
regardingg andGg. In our model of group intentions, a commitment is to a goal acceptance.
This enables intention reconsideration upon new information on either one of the agenda
issues inAg, as well as on a higher priority goal.

The strength of our framework is exhibited in its ability to describe the groups’ commitment
not only to its decision to adopt a goal, but also to its decision to reject a goal. Namely,
if the agents decidedINgi andAN Ggj , they are committed to bothINgi andAN Ggj .
Commitment to rejectg allows forg to be reconsidered and eventually adopted if the state of
the world changes.

Let N be a set of agents with a set of candidate goalsG. Let Ggi ,Ggj P G have agendasAgi ,
Ag j . We usep P A

p
gi

andqi P A
c
gi

, q j P A
c
g j

. The profiles and decisions areπgi and f pπgi q;
Ggj ąGgi , andGgj cannot be pursued at the same time asGgi .

We use the formulaspα1q´ pα5q to refine the blind, single-minded and open-minded com-
mitment. Instead of theuntil, we use the temporal operatorrelease: ψRϕ ”  p ψ U  ϕq,
meaning thatϕ has to be true until and including the point whereψ first becomes true; ifψ
never becomes true,ϕ must remain true forever. Unlike theuntil operator, thereleaseoper-
ator does not guarantee that the right hand-side formula will ever become true, which in our
case translates to the fact that an agent could be forever committed to a goal.

(α1) EgiRINgi

(α2) KRAN Ggi

(α3) pEl gi_EgiqRANqi

(α4) AN q jRANqi

(α5) ANpÑ pE pRANqiq

Blind commitment: α1^α2.
Only the observation that the goal is achieved (Egi) can release the intention to achieve the
goal INgi . If the goal is never achieved, the group is always committedto it. If a goal is not
accepted, then the agents do not reconsider accepting it.

Single-minded commitment: α3.
Only new information on the goal (either that the goal is achieved or had become impossible)
can release the decision of the group to adopt /reject the goal. Hence, new information is only
regarded if it concerns the conclusion, while information on the remaining agenda items is
ignored.

Extended single-minded commitment: α3^α4.
Not only new information onGgi, but also the collective acceptance to adopt a more impor-
tant incompatible goalGgj can release the intention of the group to achieveGgi . Similarly, if
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Ggi is not accepted, the non-acceptance can be revised, not onlyif Ggj is observed to be im-
possible or achieved, but also when the commitment to pursueGgj is dropped (for whatever
reason).

Open-minded commitment: α3^α5.
A group maintains its collective acceptances to adopt or reject a goal as long as the new
information regarding all collectively accepted agenda items is consistent withf pπgi q.

Extended open-minded commitment: α3^α4^α5.
Extending on the single-minded commitment, a change in intention to pursue a higher priority
goalGgj can also release the acceptance of the group onGgi .

Once an intention is dropped, a group may need to reconsider its collective acceptances.
This may cause for the dropped goal to be re-affirmed, but a reconsideration process will be
invoked nevertheless.

6.5 Reconsideration of group attitudes

In Section 6.3 we defined the mental state of the groupϒ. We can now define what it means
for a group to becoherent.

Definition 87 (Group coherence). Given a Kripke structureM and situations sPW, a group
of N agents is coherent if the following conditions are met:
(ρ1): M |ù  pASa^AS aq for any SĎ N and any aPAg.
(ρ2): If M,s |ù ϒ thenϒ*K.
(ρ3): M,s |ù

Ź

GÑ l g for all GgP G.
(ρ4): Let GgP G andG1 “ G{tGgu, thenM |ù p

Ź

G^El gqÑ Xp Ggq.
(ρ5): Let pPAp

g and qP tGg, Ggu. E p^pE pRANqq Ñ XANp

The first condition ensures that no contradictory judgmentsare given. The second condition
ensures that the mental state of the group is logically consistent in all situations. The third
and fourth conditions ensure that impossible goals cannot be part of the set of candidate goals
and ifg is observed to be impossible in situations, then it will be removed fromG in the next
situation. ρ5 enforces the acceptance of the new information on the group level, when the
commitment strategy so allows – aftera is observed and that led the group to de-commit
from g, the group necessarily acceptsa.

A coherent group accepts the observed new information on a premise. This may cause the
collective acceptances to be inconsistent with the justification rules. Consequently, the deci-
sions and/or the profiles inϒ need to be changed in order to ensure thatρ1 andρ2 are satisfied.
If, howeverl g or g is observed, the group reconsidersϒ by removingGg from G. In this
case, the decisions and profiles are not changed.

For simplicity, at present we work with a world in which the agents’ knowledge can only
increase, namely the observed information is not a fluent. A few more conditions need to
be added to the definition of group coherence for our model to be able to be applicable to
fluents. For example, we need to define which observation is accepted when two subsequent
contradictory observations happen.
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6.5.1 Reconsideration strategies

For the group to be coherent in all situations, the acceptances regarding the group goals need
to be reconsidered after de-commitment. LetDg Ă ϒ contain the group acceptances for a
goalg, while πgĂ ϒ contain the profile forg. There are two basic ways in which a collective
judgment set can be reconsidered. The first way is to elicit a new profile forg and apply
judgment aggregation to it to obtain the reconsideredD˚g . The second is to reconsider only
Dg without re-eliciting individual judgments. The first approach requires communication
among agents. The second approach can be done by each agent reconsideringϒ by herself.
We identify three reconsideration strategies available tothe agents. The strategies are ordered
from the least to the most demanding in terms of agent communication.

Decision reconsideration (D-r).

Assume thatEa, a P A
p
g, q P tGg, Ggu and the group de-committed fromANq. The re-

considered decisionD˚g is such thata is accepted, i.e.,ANa P D˚g , and the entire decision

is consistent with the justification rules, namelyRup just
g YD˚g * K. If the D-r specifies a

uniqueD˚g , for any observed information and anyDg, thenϒ can be reconsidered without
any communication among the agents. Given the form ofRp just

g (see Section 6.3), this will
always be the case.

HoweverD-r is not always an option when the de-commitment occurred due to a change in
collective acceptance of a higher priority goalg1. Let q1 P tGg1, Gg1u. Let the new accep-
tance beAN q1. D-r is possible if and only ifD˚g “ Dg andRp just

g YDgYtAN q1u * K.
Recall thatANq1 was not inAg and as such the acceptance ofq1 or q1 is never in the decision
for πg.

Partial reconsideration of the profile (Partial π-r).

Assume thatEa, a P Ag, GgP G. Not only the group, but also the individual agents need to
accepta. ThePartial π-r asks for new individual judgments to be elicited. This is done to
ensure the logical consistency of the individual judgment sets with the observations. New
judgments are only elicited from the agentsi whichAtiu a.

Let W Ď N be the subset of agentsi s.t. Atiu a P ϒ. Agentsi are s.t. Atiua P ϒ when the
observation isE a. Let πW

g Ď πg be the set of all acceptances made by the agents inW. We
constructϒ1 “ϒ{πW

g . The new profile and decision are obtained by executingGenerateGoals
(ϒ1, W).

Example 6.5.1.Consider Example 6.2.3. Assume thatDg1 “ tACp1,AC p2,ACp3,ACGg1u,
Dg2 “ tACp4,ACp5,ACp6,ACp7,AC Gg2u andDg3 “ tACp8,ACp9,ACGg3u are the group’s
decisions. Assume the group de-commits on Gg1because of E p2. If the group is committed
to Gg3, the commitment on Gg3 will not allow for ANp3 to be modified when reconsidering
Gg1. Since ANp3 exists inϒ1, p3 will be excluded from the (new) agenda for g1, although
it was originally in it. elicit calls only on the agents in W tocompleteπg1 P ϒ1 with their
judgment sets.
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Full profile reconsideration (Full π-r).

The full profile reconsideration is the same as the partial reconsiderations except nowW“N.
Namely, within the full profile revision strategy, each agent is asked to revise his judgment
set by accepting the new information, regardless of whetherhe had already accepted it.

6.5.2 Combining revision and commitment strategies

Unlike the commitment strategies of (Rao and Georgeff, 1993), in our framework the com-
mitment strategies are not axioms of the logic. We require that the commitment strategy is
valid in all the models of the group and not in all the models ofAGELTL. This allows the
group to define different commitment strategies and different revision strategies for different
goals. It might even choose to revise differently dependingon which information triggered
the revision. Choosing different revision strategies for each goal, or each type of new in-
formation, should not undermine the coherence of the mentalstate of the group, the setϒ.
The conditions of group coherence of the group ensures that,after every reconsideration,ϒ
must remain consistent. However, some combinations of commitment strategies can lead to
incoherence ofϒ.

Example 6.5.2. Consider the decisions in Example 6.5.1 . Assume that initially the group
is such that it follows the open-minded commitment for ICg1 and blind commitment for ICg3,
with goal open-minded commitment for AC Gg2. If Eg1 and thus ICg1 is dropped, then the
extended open-minded commitment would allow AC Gg2 to be reconsidered and eventually
ICg2 established. However, since the group is blindly committedto ICg3, this change will
not cause reconsideration and as a result both ICg2 and ICg3 will be in ϒ, thus makingϒ
incoherent.

Problems arise whensubpRp just
gi

qX subpRp just
g j

q ‰ H, wheresubpRp just
g q denotes the set of

atomic sub-formulas of some goalg andGgi ,Ggj P G. Proposition 6.5.3 summarizes under
which conditions these problems are avoided.

Proposition 6.5.3. Let α 1 andα2 be the commitment strategies selected for gi and gj corre-
spondingly.ϒYα 1Yα2 *K (in all situations):
a) if ϕ P subpRp just

gi
qXsubpRp just

g j
q and pPAgi XAg j , thenα5 is either in bothα 1 andα2 or

in none;
b) if Ggi is more important than Ggj while Ggj and Ggi cannot be accepted at the same time,
thenα4 P α2.

Proof. The proof is straightforward. If the change in the group (non)acceptance ofGgi causes
the ANGgj to induce group incoherence, then we are able to de-commit from ANGgj . If
we would not able to de-comit fromANGgj then group coherence would be blocked. If
the change in the group (non)acceptance ofGgi is caused by an observation on a premise
pPAgi XAg j then condition a) ensures that the commitment toANGgj does not block group
coherence. If the change onANGgj is caused by a change in commitment to a higher priority
goal, the condition b) ensures that a commitment regardingGgj does not block group coher-
ence. Condition b) allows only “goal sensitive” commitments to be selected for lower level
goals.



6.6 Conclusions 175

Commitment
to

Release on Change How

ANp qGg l g g Ggj Ap
g ϒ fDg fπg JA

Blind X

Single-minded X X D-r X

Extended X X X Partialπ-r X X

Open-minded X X X Full π-r X X

Extended X X X X

Table 6.1:Ggj ąGgand cannot be pursued at the same time withGg. fDg denotes collective
attitudes forg are reconsidered.f πg denotes the profile (all or some parts of it) is re-elicited.

6.6 Conclusions

We present a formalization of non-summative beliefs, goalsand intentions inAGELTL and
show how they can be generated using judgment aggregation. Our multi-agentAGELTL logic
extendsBDILTL. In accordance with the non-summative view, having a group intentionINg
in our framework does not implyItiug for each the memberi. We extended the commitment
strategies of (Rao and Georgeff, 1993) to increase the reactivity of the group to new informa-
tion. Now the commitment strategies are not axioms of the representation logic; instead they
are a property of a group. Groups can have different levels ofcommitment to different goals.
We showed how the group can combine different commitments todifferent goals.

An advantage of our framework is its ability to allow groups to commit to a decision to reject
a goal, thus having the option to reconsider rejected goals.Furthermore, we do not only show
when to reconsider, but also how, by defining reconsideration strategies. Table 1 summarizes
our commitment and reconsideration strategies.

In our framework, the entire group observes the new information. One can also explore
the case when only some members of the group observe the new information. The only
assumptions we make regarding the connectivity of the members is that they are able to
communicate their acceptances and receive the aggregationresult. The problem of elicitation
and communication complexity in voting is a nontrivial one (Conitzer and Sandholm, 2002b,
2005) and in the future we intend to study these properties ofour framework.

In our framework, the group has an intentiong if it has agreed to pursueg as a group goal.
The agents agree on which goal to pursue by stating their acceptances of a proposed group
goal, and related beliefs that support or justify that goal,and applying a judgment aggregation
rule on these acceptances. Since the judgment aggregation rule serves as an agreement reach-
ing mechanism, it needs to satisfy the properties of majority-preservation and the unanimity
principle. Based on these properties we propose that the rulesRRA, RY andRRY, developed in
Chapter 2 are used.

The rules from Chapter 2 are defined for judgment aggregationproblems that are specified
by an agenda and a set of agent names. A set of constraints is not part of the problem spec-
ification. We use the set of constraints here to describe the added knowledge that the group
needs to take into consideration when choosing its goals. Weare able to use the rules from
Chapter 2 anyway since we defined an admissibility criterionfor the individual judgment
sets.
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Although we studied the complexity of winner determinationfor the rules of Chapter 3 we
did not make the same analysis for the rules of Chapter 2. To choose further betweenRRA,
RY andRRY we need to know their complexity-theoretic properties as well.

In this context of agreeing on group goals we imposed the requirement that the agents are
always able to declare whether they accept a belief or a groupgoal or not. This requirement
was feasible because the agent’s judgments are expressionsof acceptance, not an estimate of
the state of the world as in Chapter 5. Nevertheless, it mightbe desirable to give the option
to an agent, or a group, to also express express “do not know whether to accepta” via the
formula Atiua^ Atiu a, or respectively ANa^ AN a. This option implies a change
in the input value-type of the judgment aggregation problemfrom binary to ternary. To be
able to allow for this option we need to consider the extension of the rules of Chapter 2 to
ternary judgments.

In the work we presented, we do not consider how an individualconstructs his judgments.
We can take thatBi ϕ Ñ Atiuϕ , but this is not a requirement for all agents. We would
expect “honest” agents to follow this rule, but we can also define dishonest agents for which
Biϕ Ñ Atiuϕ does not hold. In the latter case, the agent might declareAtiuϕ while it does not
believeϕ . Given that the group attitudes are established by an aggregation rule that can be
expected to be, as almost all but the most trivial social choice rules, manipulable, the question
is whether there are scenarios in which an agent can have the incentive to behave strategically
in rendering judgments. Furthermore, given that some of thereconsideration strategies call
for re-elicitation of judgments, can an agent have the incentive to behave strategically in
rendering judgments that would lead to sooner re-elicitation? To answer these questions we
need to study the manipulability properties of our rules.
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Related work

The problem of aggregating profiles of yes/no decisions overa set of logically related issues
is, with minor variations, studied under different names: judgment aggregation, majority-
voting under interconnected decisions, abstract binary aggregation, aggregation of binary
evaluations. Some comparisons of the differences between the frameworks denoted with
the different terms can be found in (List and Polak, 2010; Grandi and Endriss, 2010). We
uniformly use the term judgment aggregation, although strictly speaking, our rules based on
minimization are judgment aggregation rules and our distance-based rules are both judgment
aggregation and ternary-evaluation aggregation rules.

To the best of our knowledge there is no work that is related tothe thesis as a whole. There-
fore we give the related work with respect to our judgment aggregation rules, properties and
models of collective reasoning.

7.1 Part I- designing rules

The study of judgment aggregation rulesper seis a rarity in judgment aggregation. The only
exception in this sense is probably the work of (Miller and Osherson, 2009). Some judgment
aggregation rules do appear in the context of other works.

7.1.1 Rules based on minimization

The premise-based procedure has been introduced in (Kornhauser and Sager, 1993) under
the name “issue-by-issue voting” and studied extensively in (Dietrich and Mongin, 2010).
The conclusion-based procedure has been studied in (Pigozzi et al., 2009). These were the
first rules considered in the literature. The sequential procedures have been introduced in
(List, 2004a) studied also in (Dietrich and List, 2007b; Li,2010), followed by quota-based
rules (Dietrich and List, 2007b; Dietrich, 2010). The quota-based rules are a class of rules
where each proposition of the agenda is associated with a quota, and the proposition is ac-
cepted only if the proportion of individuals accepting it isabove the quota. The majority
rule is a special case of quota-based rules. Lastly, the distance-based rules are studied in
(Miller and Osherson, 2009) and in (Pigozzi, 2006). We explain the principles of these rules
in Chapter 2, therefore here we just enlist the relations between these rules and the rules we
propose.

The rulesRMSA, RMWA andRMNAC are special cases of three of the four distance-based rules
introduced in (Miller and Osherson, 2009). More precisely,for d being the Hamming dis-
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tance,RMSA is theory equivalent withEndpointd; RMWA and RMNAC are equivalent with
Prototyped andFulld correspondingly.

Nehring et al. (2011) and (Nehring and Pivato, 2011) define the Condorcet admissible setto
be any maximally consistent sub-set of the majoritarian set. Recall that the majoritarian set
for a profile is the set of all judgments supported by a majority of agents according to the
profile. The Condorcet admissible sets for any profile are equivalent to the set of judgment
sets that can be produced by applyingRMSA to that profile. Rather then considering a rule that
derives the Condorcet admissible sets, they consider it a space of judgment sets and study
under which conditions this space collapses to a singleton for a profile. They callCondorcet
determinatewhat we define as majority-consistent profile.

Nehring et al. (2011) introduce two new judgment aggregation rules: theSlater ruleand the
Median rule. The Slater rule is equivalent to ourRMCSA and the Median rule to ourRMWA.
Nehring and Pivato (2011) in addition introduce theLexiMin rule which we defined asRRA.
The difference betweenRRA andRMWA on one side and the LexiMin and Median rule on
the other, is that the LexiMin and Median rules are defined foragent-weighted judgments.
Nehring et al. (2011) and also (Nehring and Pivato, 2011) consider agent weights, normalized
overr0,1s so that the sum of the weights of all agents on an issue is always 1. The focus of
(Nehring et al., 2011) is to characterize the conditions, and identify the likelihood, under
which TRMSApPq contains a complete judgment set, some particular element of the agenda or
the full set of consistent and complete judgment sets.

7.1.2 Distance-based non-binary rules

Distance-based rules for aggregating judgments have been inspired by themodel baseddistance-
based belief merging rules (Konieczny et al., 2004). The first distance-based rules for ag-
gregating judgments have been introduced by (Pigozzi, 2006) who observed that there are
considerable similarities between the belief merging and the judgment aggregation problems.

Belief merging theory studies the problem of merging beliefbases. Given a set of belief bases
and a set of constraintsIC, the problem of merging the belief bases is to generate a belief base
which satisfies all of theIC constraints and incorporates a maximal amount of beliefs from
the bases that are merged. In judgment aggregation the individual judgment sets are cast on
agenda issues. In belief merging no agenda is defined.

In belief merging, the primary concern of the merging process is to maximize the infor-
mation content from the merged belief bases. Rules for merging beliefs are constructed
so that they satisfy a set of postulates that are inspired from the belief revision postulates
(Alchourrón et al., 1985). Judgment aggregation rules areconstructed so that they satisfy a set
of properties that are inspired from voting theory and preference aggregation (List and Polak,
2010). The aggregation properties are not concerned with maximizing the information con-
tent from the individual judgment sets.

Pigozzi (2006) applies the model based operator of (Konieczny et al., 2004), defined for a
Hamming distance and

ř

, directly by treating the judgment setsÂi as belief, or knowledge
bases. The agenda is defined as a set of propositional logicatoms. A judgment set is a
consistent set of atomic and non-atomic formulas, completefor the agendaA. The set of
constraintsIC corresponds to the set of rulesR. Each judgment set is consistent with respect
to R. The set of all models forR is the co-domain of the aggregation rule. Endriss et al.
(2010b) also define their procedure in terms of the Hamming distance and

ř

, but contrary to
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(Pigozzi, 2006), they define the agenda in such a way that it can contain non-atomic formulas.
However they do not consider additional rules and in their frameworkR“H. Consequently,
the distance-based rule for the Hamming distance and the

ř

as an aggregation operator are
not equivalent. The distance-based rules we propose allow for both non-atomic formulas in
the agenda and additional rules to be externally specified.

The use of agent weights in distance-based belief merging contexts has been previously be
considered in (Revesz, 1995). Weights in the context of judgment aggregation have not been
considered. The weights assigned to issues, or to (agent,issue) pairs, have not been considered
in belief merging or in judgment aggregation context. Distances between sequences that
contain more values than binary have been considered in the literature (Condotta et al., 2008;
Coste-Marquis et al., 2007).

There are many reasons for which one would like to relax the requirement of complete-
ness for judgment sets and allow the agents to abstain on someissues. That the require-
ment of completeness for judgment sets is too strict, has been discusses by (Gärdenfors,
2006). Dokow and Holzman (2010b) construct a framework for binary aggregation in which
abstentions are allowed. The value assigned to the abstention is descriptive, namely a spe-
cial symbol “̊ ”, while 0 and 1 are used for the “no” and “yes” judgments correspondingly.
Pauly and van Hees (2006) construct a framework for multivalued logics in which the judg-
ment sets with abstentions may be seen as a special case. Dietrich (2007) constructs a general
logic framework in which some ternary logics are a special case. These authors focus on
proving impossibility results for their respective frameworks and offer no particular rules for
aggregating judgment sequences with abstentions.

One might argue that the aggregation of judgments with abstentions poses no particular chal-
lenge; namely, if an agent abstains then his input can be ignored, as if a judgment was not
elicited from that agent. This perceived simplicity disappears once one is reminded that the
agenda issues are logically related and the judgments assigned to them are logically related.
Abstaining on one-issue influences the judgments that can beassigned to the rest of the issues,
by the same agent and on the generation of collective judgments for all issues. The challenge
in developing judgment aggregation rules that handle abstentions is not in the representation
of the abstentions but in the interpretation of the abstentions. When distance-based rules are
used, the interpretation assigned to abstentions hinges upon the setA and the chosen distance
metric. The setA depends on the particular ternary logic used for representing the judgments.

The distance-based rules we introduced can be applied in theframework of (Pauly and van Hees,
2006) whenA is constructed using the logic of (Post, 1921). The rules canbe applied in the
framework of (Dokow and Holzman, 2010b), when˚ is treated as12 and either the logic of
(Łukasiewicz, 1920) or the logic of (Kleene, 1938) is used. The impossibility results proved
by (Dietrich, 2007) hold for judgment aggregation problemsrepresented by the Łukasiewicz
logic since this logic is a special case of the general logic introduced by (Dietrich, 2007). We
show that this holds.

Dietrich (2007) defines the propertiesL1 ´ L3 for (L, |ù) and proves his impossibility of
aggregation results for general logics that satisfyL1´L3 (Dietrich, 2007, pg. 554).

L1 For anyp P L it holds thatp |ù p (self-entailment).

L2 For anyp P L andS1Ď S2Ď L, if S1 |ù p thenS2 |ù p (monotonicity).

L3 The empty setH is consistent, and each consistent setS1ĎL has a consistent super-set
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S2Ď L containing a member of each pairp, pP L (completability).

Proposition 7.1.1. The pairpLL, |ù3q, whereLL is the logic of Łukasiewicz, satisfies self-
entailmentL1, monotonicityL2, and completabilityL2.

Proof. Self-entailment follows directly from the definition of theoperator|ù3. NamelyΓ |ù3

ψ if and only if
Ź

ΓÑ ψ .
WhenS1 |ù3 ϕ then for all valuationv, if vp

Ź

S1q “ 1 thenvpϕq “ 1 and ifvp
Ź

S1q “
1
2 then

vpϕq P t1, 1
2u. We prove monotonicity by distinguishing among cases:

vp
Ź

S1q “ 1 vpϕq “ 1 vp
Ź

S1{S2q “ 1 vpS2q “ henceS2 |ù3 ϕ
vp

Ź

S1q “ 1 vpϕq “ 1 vp
Ź

S1{S2q “
1
2 vpS2q “

1
2 henceS2 |ù3 ϕ

vp
Ź

S1q “ 1 vpϕq P 1 vp
Ź

S1{S2q “ 0 vpS2q “ 0 henceS2 |ù3 ϕ
vp

Ź

S1q “
1
2 vpϕq P t1, 1

2u vp
Ź

S1{S2q “ 1 vpS2q “
1
2 henceS2 |ù3 ϕ

vp
Ź

S1q “
1
2 vpϕq P t1, 1

2u vp
Ź

S1{S2q “
1
2 vpS2q “

1
2 henceS2 |ù3 ϕ

vp
Ź

S1q “
1
2 vpϕq P t1, 1

2u vp
Ź

S1{S2q “ 0 vpS2q “ 0 henceS2 |ù3 ϕ

The pairpLl
, |ù3q satisfies completability. The empty set is consistent sincevpHq “de f 1.

Whenvpϕq “ 1 or vpϕq “ 0, eitherϕ or  ϕ can be added toS, but not both. WhenS is
valued to 1

2, if vpϕq “ 1 thenS |ù ϕ , but it is not true thatS |ù  ϕ , sincevpSq ‰ 0. For
vpϕq “ 0 thenS|ù3 ϕ , and it is not true thatS|ù3 ϕ .

Apart from the basic ternary logics and the classical entailment operator, one can consider
ternary paraconsistent logics, such as the ones studied in (Konieczny and Marquis, 2002), for
representing judgments. The distance-based operators canbe applied regardless of the logic,
as long as the setA can be specified.

In addition to the completeness requirement, the judgment aggregation theory also stipulates
that the judgment sets are consistent, with respect to the rulesR when such rules are given.
Miller (2008) considers the case when the constraints are subjective, namely each agent’s
judgment setÂ is consistent in terms of that agent’s constraintRi , Âi YRi * K. Miller
(2008) generalizes judgment aggregation to subjective decision situations, implying that the
impossibility results studied in (Dietrich, 2007) persistwithout individual agreement on the
set of constraints.

In addition to different constraints, one may consider different entailment operators|ùi for
each agent, thus havinĝAi YRi *i K as the required consistency property for the individual
judgment sets. As long as theR and|ù3 are determined for the collective judgment sets, the
A set can be constructed and our distance-based merging rulescan be specified.

Benamara et al. (2010) consider the problem of aggregating judgment sets in which not only
abstentions, but alsoneutral judgmentsare allowed. They define an agenda as a set of atoms
corresponding toAp and a singleton set of an atomd, called adecision, corresponding to
A

c. What we call an abstention here, is called a neutral judgment in (Benamara et al., 2010),
denoted by “?” and representing the case in which an agent is undecided on an issue. The
abstentions in (Benamara et al., 2010) are denoted by “X” andrepresent the case in which an
agent deems the agenda issue “irrelevant” for the decision.Thus judgments are assignments
A ÞÑ t0,1,?,Xu. A decision rule is a formulaΓpApq Ø d, whereΓpApq is a propositional
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logic formula built on literalsA
p

andd P td, du. The agents can accept, reject or be neutral
regarding the rule,i.e., , assign it a “value” fromt0,1,?u. Benamara et al. (2010) give a
judgment aggregation procedure for this framework, according to which the “judgment” on
the rule is determined according to a majority rule, the collective judgments on the premises
are determined by ignoring the abstentions and applying a rule, which we defined as majority
m, to the rest. The collective judgment on the decision is reached as in the premise-based
procedure if the majority accepts the rule and by applying the majority rule over the individual
judgments ford.

We can represent the framework of (Benamara et al., 2010) into our framework in the follow-
ing way. Let us denote the decision ruleΓpApq Ø d by α. The agendaA is constructed as
A “ A

pYA
cYtαu. We replace each judgment judgment ? with1

2. We construct a weight
matrix using weightswi, j “ 0 when an agenti assignsX to issuea j andwi, j “ 1 in every other
case. The judgmentsX can be replaced with either one oft0, 1

2,1u, since they are assigned
a weight 0. Then the premise-based procedure can be defined, consideringα as one of the
premises.

Li (2010) considers the sequential aggregation rules and allows for continued-valued judg-
ments on ther0,1s interval. An agent expresses the strength of his acceptanceor rejection
of an issue through the continuous judgments. The judgmentvp ϕq of a negated issueϕ
assigned a judgmentvp ϕq “ 1´vpϕq. The aim of Li’s work is to determine decision paths
that maximize the strength of each judgment.

7.2 Part II - properties of rules

Properties for judgment aggregation rules have been studied with the objective of determin-
ing which set of properties admits a judgment aggregation function or rule. Apart from the
universal domain, anonymity and independence properties,monotonicity and unanimity were
introduced. Grandi and Endriss (2010, 2011) instead study the connection between the prop-
erties of aggregation rules and the language in which the sets of constraintsR are expressed.

The unanimity principle for aggregation functions was introduced in (Dietrich and List, 2008b).
Nehring et al. (2011) define and study, what we define as, the strong unanimity principle.
They observed that this principle is violated by the Condorcet admissible sets for most agen-
das, which is consistent with our observation thatRMSA does not satisfy this property.

Monotonicity as a property imposed on a subset of the agenda (to address manipulability
issues) was introduced in (Dietrich and List, 2005), and monotonicity on a judgment set in
(Dietrich and List, 2008a). Monotonicity as a property of judgment aggregation functions
was defined in (List and Puppe, 2009).

Nehring and Pivato (2011) study two properties that are verysimilar with our Separability I
and Separability II. They define separability as we define Separability II. Our Separability I
corresponds to the reinforcement of (Nehring and Pivato, 2011), but it is a stronger property.
The reinforcement property of (Nehring and Pivato, 2011) applies to entire judgment sets,
whereas Separability I is applied to propositions. Therefore we obtain thatRMWA violates
Separability, while the Median rule of (Nehring and Pivato,2011) satisfies this reinforcement
property.

What we define as independence of cloned agenda issues, has already been introduced in
(Dietrich, 2006b) as the sensitivity tological agenda manipulation. Dietrich (2006b) stud-
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ies this property as a justification for imposing the independence of irrelevant information
condition on judgment aggregation rules and functions.

7.3 Part III - applying rules

To the best of our knowledge this thesis is the first investigation in applying judgment ag-
gregation for reaching group decisions in multiagent systems. We considered two types of
groups, hierarchical and consensual, that give rise to two different aggregation contexts.

In the example of hierarchical group, one agent needs to aggregate the opinions of the other
agents to reach a decision. The procedure we proposed for group decision-making is one that
produces satisficing decisions. Satisficing is explored as asingle agent approach to decision-
making, but not for groups.

In the example of consensual group, we model non-summative group intentions, and propose
a method for their generation, commitment strategies and revision strategies. Group inten-
tions, how they are modeled, generated and revised is a question that has been considered
since the advent of multi-agent systems.

7.3.1 Satisficing

As (Zilberstein, 1998) observes, there has been a search foruseful techniques from deci-
sion making, since it is widely accepted that optimal decision-making is too computationally
complex. The concept of satisficing (Simon, 1955) offers an alternative to the search for an
optimal decision, however Simon does not instruct on how to construct satisficing algorithms
or systems. Zilberstein (1998) argues that optimizing is analternative to satisficing.

Satisficing is little used as an approach to group decision-making. However, it is in the
case of group decision-making that the complexity of makingan optimal decision becomes
high. An exception is the work of (Stirling and Goodrich, 1999; Stirling and Nokleby, 2009)
who develop satisficing games by constructing conditional utilities. Their utilities “take into
account the interests of others as well as the self, represent an alternative to the categorical
utilities of classical decision theory.”(Stirling and Nokleby, 2009, pg.53).

The recognition-primed group decision-making model we construct is a model that allows
for a team of agents to reach decisions that are satisfy a set of interrelated sufficient cues.
This model is applicable when at least one agent in the team isfamiliar with the decision
context since cues are determined from his experience. We expect that, how optimal is a
group decision reached this way depends on the team’s ability to learn from its mistakes.

7.3.2 Group intentions

Collective intentions are studied and formalized in (Dunin-Keplicz and Verbrugge, 2010,
Chapter 3) and also, among others, in (Grosz and Hunsberger,2007; Jennings, 1995; Singh,
1990). The dynamics of intentions have been considered in (van der Hoek et al.,
2007; Grosz and Hunsberger, 2007).

In (Dunin-Keplicz and Verbrugge, 2010, Section 3.9) we find adetailed overview of the var-
ious formalizations of group intentions. Most of this work does not consider the dynamics
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of group intentions. An exception is (Grosz and Hunsberger,2007). In (van der Hoek et al.,
2007) the reconsideration of individual intentions and associated plans is considered.

Grosz and Hunsberger (2007) recognize that groups need to make group decisions with re-
spect to many intention related issues such as how to change their intentions. In (Hunsberger,
2002) they conclude that a specification of group decision-making mechanism must include:
(1) the possible inputs an agent can make into the mechanism;(2) the conditions under which
agents may make those inputs; (3) rules for determining which combinations of agent inputs
establish group decisions; and (4) a method for making the new decision known to all the
members of the group. Although they consider examples of mechanisms such as unanimous
approval, they make no connection with social choice theory.

We assume that the group has an order of importance for its candidate goals. Alternatively, the
group can also agree on this order by expressing individual preferences. Uckelman and Endriss
(2010) show how individual (cardinal) preferences over goals can be aggregated. Intentions
and their role in deliberation for individual agents have been studied in a game theoretic
framework by (Roy, 2009a,b). Icard et al. (2010) consider the joint revision of individual
attitudes, with the revision of beliefs triggering intention revision. We allow for both the
changes in epistemic and in motivational attitudes to be thecause for reconsideration.
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Summary

People agree on things all the time. They discuss about the issues at hand and make col-
lectively binding decisions. Some of these decisions alterhuman history, others alter dinner
plans. Regardless of the context of the agreement, social choice rules have been developed to
serve humanity when it needs to reach consents.

Since its inception, computing continues to grow more and more powerful, but at the same
time more and more distributed. As a consequence, computers, processors and users, more
precisely artificial agents acting on their behalf, need to reach collectively binding decisions.
In this thesis we show that this problem of reaching collectively binding decisions can be
solved by “computationalizing” social choice, in particular the social choice discipline of
judgment aggregation.

We consider two types of groups: consensual and hierarchic.In the first, the agents reach a
decision collectively, while in the second there is one agent that makes a decision by consid-
ering the input from others. A consensual group is a representation of a distributed system
of agents that need to behave as a whole and make decisions that govern their actions and
behavior. A hierarchical group is a representation of an agent decision-maker that needs to
use, not only his own, but the knowledge, opinions and expertise of many other, possibly
distributed agents. These decisions can be used by the agenthimself, by the agents who con-
tribute information or by a wider set of agents within the scope of one institution. For each
of these two types of groups we give an example of a group decision-reaching problem and
show how it can be solved using judgment aggregation. In bothof the examples judgment
aggregation is a consent reaching method, applicable even when it cannot be assumed that
the agents persuade each other on a single position.

8.1 Results

8.1.1 Designing judgment aggregation rules

Judgment aggregation theory is a new discipline of social choice in the scope of which not
enough effort has been devoted to constructing and analyzing specific aggregation rules.
Therefore, before developing examples of how to use judgment aggregation in multiagent
systems, we needed to develop judgment aggregation rules and a method for distinguishing
among them. The results of this thesis are therefore not onlyin the filed of multiagent sys-
tems but also in the field of judgment aggregation theory. Thetwo different types of groups
we consider pose two different requirements for aggregation rules. Consensual groups need
rules that produce decisions, which minimize the discrepancy with each individual opinion.

185
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Hierarchical groups need rules that produce decisions thatcapitalize on the expertise of the
group members. We therefore constructed two classes of rules: rules based on minimization
and weighted distance-based rules.

In the first class of rules we constructed ten rules that generate decisions adherent to the
majority: RMSA, RMCSA, RMWA, RRA, RY, RIY , RRY, RMR, RMCR andRMNAC. We compare
the decisions produced by one rule with the decisions produced by another, but in the same
manner we compare our rules and existing rules in judgment aggregation. A summary of this
analysis is given in Table 2.4.

In the second class of rules we start from the distance-basedrules presented by (Pigozzi,
2006) and generalize them to rules that handle a richer structure of judgments, in particular
various types of weights associated with the judgments. Apart from the sequential aggrega-
tion considered in (Li, 2010), no judgment aggregation rules have been proposed for aggre-
gating ternary (or multi-valued) judgments. In (Dokow and Holzman, 2010b; Dietrich, 2007;
Pauly and van Hees, 2006; Gärdenfors, 2006) frameworks formulti-valued judgment aggre-
gation are considered, but no rules are proposed. Aggregation of weighted judgments has not
been considered in the literature.

In belief merging weights associated with agents have already been considered in (Revesz,
1995) and merging multi-valued propositions has been considered in (Konieczny and Marquis,
2002; Condotta et al., 2008; Coste-Marquis et al., 2007). The novelty of our rules from the
viewpoint of belief merging is in added possibility to assign weights to beliefs. Namely, the
weight of a belief depends not only on the agent that holds thebelief but also on which belief
it is.

We analyze the complexity-theoretic properties of the weighted-distance based rules we pro-
pose. Much attention has been devoted to various complexity-theoretic aspects of voting
rules, in particular to the problem of winner determination. The winner determination prob-
lem is the problem of determining if a given candidate is a winner for a given profile of votes
when voting ruleF is applied. In judgment aggregation the “winner” determination prob-
lem, i.e., given a judgment and a profile of judgments determine if this judgment is among
the selected collective judgments by judgment aggregationrule F , has only been consider in
(Endriss et al., 2010b) for two judgment aggregation rules.The complexity-theoretic analysis
of the winner determination problem is used as an indicator of the computational efficiency of
a particular rule or aggregation operator. Certain complexity-theoretic aspects, corresponding
to the winner determination problem as defined in (Endriss etal., 2010b), of belief merging
operators have been considered in (Konieczny et al., 2004).Our complexity results are usable
in a belief merging context as well.

8.1.2 Selecting judgment aggregation rules

To be able to distinguish among judgment aggregation rules within the same class, we need
to consider which structural and relational properties aresatisfied by these rules. Each au-
thor, or group of authors, that works in judgment aggregation theory has proposed their own
framework for judgment aggregation, defining properties ofjudgment aggregation rules in
it. As a consequence, we first needed to construct a general enough judgment aggregation
framework common for both classes of rules and then construct the corresponding definitions
of judgment aggregation rules within this framework. Only then were we able to analyze our
rules with respect to the common rule properties consideredin judgment aggregation theory.
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Tables 4.14 and 4.15 summarize which of our rules satisfy which property. We repeat these
tables here.

Majority
Preservation

Weak
Unanimity

Strong
Unanimity

IR-s S-i

RY X X X no no
RMSA X X no X no
RMCSA X no no X no
RMWA X no no X no
RRA X X X X no

RdH ,max no no no no no
RRY X X X no no

RMNAC X no no no no

Property Satisfied Not satisfied
Unanimity pd,Σq

pd,maxq
pd,Gmaxq
pd,Π˚q

Weak unanimity principlepdD,dq pdi ,Σq
pdi ,maxq
pdi ,Gmaxq
pdi ,Π˚q
di P tdH ,dTu

Strong unanimity principlepdD,dq
Majoritarian pd,Σq

pd,Π˚q
pd,maxq
pd,Gmaxq

Majority-preserving pdH ,Σq
pdT ,Σq

pdD,Σq
pd,maxq
pd,Gmaxq
pd,Π˚q

IR pd,dq
S-s pd,Σq

pd,maxq
pd,Gmaxq
pd,Π˚q

We analyzed our rules mainly for the judgment aggregation properties that already exist in
the literature. These rules have been designed while searching for a minimal set of desirable
properties that characterize a judgment aggregation rule,and consequently it is unsurpris-
ing that these are properties that are desirable in most contexts. We need the properties to
distinguish among rules and to this end we need to develop andstudy more rule aggregator
properties. We commence this line of research in judgment aggregation theory by defining
five new desirable properties for rule aggregators, Section4.10.
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8.1.3 Applying judgment aggregation rules

As an example of hierarchical groups we consider a team of agents that solves problems in
a changing environment. We use judgment aggregation to extend a model for reaching satis-
ficing decisions developed in experimental psychology. Theagent decision-maker considers
one option at the time, choosing an option if it satisfies a combination of sufficiently relevant
criteria, or cues as they are called in experimental psychology. The decision-maker aggre-
gates the opinions of other agents to determine if these relevant criteria are satisfied, but also
if the choosing of a particular option is supported. We propose our decision-making solution
for incident management teams, however the same approach can be applied in various other
contexts. One example is a recommendation system that uses the content of multiple web
pages and other sources to recommend a product or a service tocustomers. Based on the
criteria set by the customer, the system considers the sources that give information on the
criteria, the reputation of the source and whether the source endorses the product/service in
question.

As an example of consensual groups we consider a group of agents that needs to agree on
what its intentions are. We propose a judgment aggregation based method for agreeing on
which group goals to pursue. Our method is intended for groups that engage in joint activity
when it is necessary that the group to present itself as a single whole from the point of view
of beliefs and goals. The requirement that the group presents itself as a rational entity that
has goals justified by the beliefs it holds, and is able to revise these goals under the light of
new information, was held by (Tuomela and Miller, 1992) and adopted in agent theory by
(Boella and van der Torre, 2007) and (Lorini and Longin, 2008). Our proposal to formalize
group intentions as the goals on which the group agrees to pursue and is jointly committed to
pursuing, can be applied, for example, in an open-source project, where several people have
to discuss online to agree on which is their position on issues and which is their goal.

8.2 Other examples of using judgment aggregation

The thesis of (Ganesan, 2011) tests the use of judgment aggregation for the cooperative an-
choring problem (LeBlanc and Saffiotti, 2008; Coradeschi and Loutfi, 2008) on NAO robots
controlled by agents written in the GOAL programing language (Hindriks, 2010).

The anchoring, or symbol grounding, problem (Harnad, 1990)is the problem of assigning
meaning to abstract symbols. This problem is considered as solved, namely that “we now
understand enough to create systems in which groups of agents self-organizes a symbolic
communication system that is grounded in their interactions with the world, and these systems
may act as models to understand how humans manage to self-organize their communication
systems.” (Steels, 2008). Combining perceptual information may be used to ground a symbol.
E.g., the symbolp denoting “there is a chair in the room”, can be grounded to true or false
by considering vision, pattern recognition and sonar readings. Let as call symbols such asp,
which can be grounded by using only percepts, a level- 0 symbol. A robot would also need to
ground more complex symbols, such asq denoting “Room E112 is a meeting room”, which
would require fusing not only percepts but also level- 0 symbols.

Collective robotics is a field of research that is concerned with the development and use of
robotic teams for performing various tasks. A team of robotsneeds to collectively ground and
share symbols. There are two basic uses for social symbol grounding: the first is to establish
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grounding that will be used by the team when performing theirtasks; the second to be used
by a robot that grounds a symbol for individual use by considering the groundings made by
several other robots.

The grounding of symbols higher than what we call here level-0 is the problem of assigning
values to a set of logically related issues. The social grounding of such symbols is the problem
of aggregating the values assigned to the issues by different robots. This is a problem that can
be modeled in judgment aggregation. Ganesan (2011) uses an example of a level- 0 symbol
that needs to be socially grounded based on a set of percepts.She implements the premise-
based and the conclusion-based procedure as described in (Kornhauser and Sager, 1993) and
identifies the premise-based procedure as better at truth tracking. She also considers the
distance-based procedure, as described in (Endriss et al.,2010b), for the obtained profiles.
The premise-based procedure outperforms the distance-based procedure one in the case of
level-0 symbols.

8.3 Future work

In computational contexts, as well in (human) society, there are many problems that require
collectively binding decisions to be generated. Due to the variety of contexts in which these
problems occur in society, social choice theory has been an active and not yet exhausted,
research area for the last three centuries. An essential step towards advancing the use of
judgment aggregation in multiagent systems is to look for properties that more finely distin-
guish among aggregation rules than the properties that are currently considered as desirable
in judgment aggregation theory. Furthermore we need to search for, and characterize, collec-
tive decision problems in multiagent systems and study how their characteristics reflect into
(un)desirable judgment aggregation properties.

In all the similarities between society and computational contexts, the requirements and con-
straints of the collective decision-making in these two contexts are different. How social
choice rules are used in society and multiagent systems is different: while people need to rely
on them sporadically and only when consensus fails to emerge, artificial agents need to use
them for every single group decisions they need to make.

It is often insufficient to analyze the computational properties of existing social choice rules,
but one needs to design more. This is the first thing we observed when starting to explore
the possible use of judgment aggregation in multiagent systems. For instance, the premise-
based and conclusion-based rules are enough of rule optionsin collegiate courts. However,
a recommendation service needs to consider a richer structure of judgments and agendas
cannot necessarily be partitioned into premises and conclusions. The collection of judgment
aggregation rules that we proposed in this thesis is not exhaustive.

The differences between social and computational contextsalso apply a different approach
to a complexity-theoretic analysis of the aggregation rules. The problem of confirming that a
judgment or a judgment set is selected collective, by a givenrule for a given profile, is relevant
in a human society. Namely, after a consensus starts to emerge, a group casts judgments and
only needs to verify that this consensus is the group decision, with respect to the individual
judgments and the rule used. Artificial agents do not start a group decision-reaching process
by an informal chat,i.e., either argumentation is not combined with voting as its often the
case in naturalistic settings. In multiagent systems contexts it is more relevant to consider the
complexity of finding a collective judgment set rather then confirming that a given judgment
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set is the collective one.

The rules designed and represented here are irresolute by construction. Designing rules in
this manner is necessary if one wishes to avoid impossibility and not impose domain restric-
tions. However, a group usually needs only one decision,i.e., judgment set. Creating resolute
judgment aggregation procedures can be done by implementation rather than by construc-
tion. How a social choice rule is implemented is an importantquestion in formal voting
contexts (Dasgupta et al., 1979; Repullo, 1985; Maskin, 1999; Palfrey, 2002; Serrano, 2004).
Implementation of judgment aggregation rules is an important issue in multiagent systems
contexts. The choice of implementation unveils the amount and nature of resources needed
for judgment aggregation, but also allows for certain behavior of the agents to be enforced or
discouraged. Answering the question of implementation will also shed light on the relations
between game theory and judgment aggregation, which are unexplored but bound to exist. As
mentioned, committees in society usually discuss before voting. For multiagent systems this
discussion segment could be modeled as an argumentation based dialog game and combined
with the aggregation rules proposed in this thesis.

We considered hierarchical groups verses consensual groups. A natural option is embodied
agents verses software agents. The thesis of (Ganesan, 2011) tests judgment aggregation on a
social symbol grounding problem of a level- 0 symbol for the premise-based and conclusion-
based procedure, but the same experiment can be ran on the remainder of the aggregation
rules. To obtain meaningful results one needs to consider a larger number of robots and a
bigger agenda. The technical challenges made it difficult toextend the experiment into so-
cial symbol grounding for symbols above level- 0. These challenges were introduced by the
robot-agent and robot-robot communication that needed to be technically solved. Since these
issues are resolved, a natural continuation of this projectis to design examples and test the
performance of judgment aggregation for symbols above level- 0. In general, social robotics
is an emerging area of research in which one can expect many group decision-reaching prob-
lems to emerge.
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