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Abstract. Voting methods are widely used in collective decision making, not
only among people but also for the purposes of artificial agents. Computing the
winners of voting for some voting methods like Borda count is computation-
ally easy, while for for others, like Kemeny and Dodgson, this is a computation-
ally hard problem. The question we explore here is can winners of Kemeny and
Dodgson elections be predicted using supervised machine learning methods? We
explore this question empirically using common machine learning methods like
XGBoost, Linear Support Vector Machines, Multilayer Perceptron and regular-
ized linear classifiers with stochastic gradient descent. We analyze elections of
20 alternatives and 25 voters and build models that predict the winners of the
Borda, Kemeny and Dodgson methods. We find that, as expected, Borda winners
are predictable with high accuracy (99%), while for Kemeny and Dodgson the
best accuracy we could obtain is 85% for Kemeny and 89% for Dodgson.
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1 Introduction

Voting theory is concerned with the design and analysis of methods that choose a winner
for elections. An election is a pair (C,V ) where C is a finite set of candidates (also
called options or alternatives) and V is a set of voters, each represented as a total, strict,
asymmetric order �i over C. As a collective decision making method, voting theory
finds its implementation not only in politics, but also in automated decision making
[22]. One of the computationally simplest methods is, for example, plurality where
the winner is the alternative top ranked by the highest number of voters. It is well
documented that with some voting methods, such as Kemeny and Dodgson computing
the winners is computationally hard, winner determination in the case of both voting
methods is Θ

p
2 [2,12,11].

Efficient computing of a representative rank of alternatives is also of interest to
recommender systems, specifically in collaborative filtering [20]. Unlike voting theory,
which has extensively studied what it means for a collective rank to be representative of
individual ranks, in collaborative filtering, the representativeness of a “collective” rank
is measured by user satisfaction, which is not always available. Social choice methods,
like the Kemeny and Dodgson methods, may have valuable properties [16]1, but it is the

1 To be fair, the value of the properties that Dodgson satisfies has been disputed [3].
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high computational complexity that deters from their use. It is therefore interesting to
explore whether some “precision” can be “traded off” for computing time. Clearly this
is not of interest where exactly the Kemeny/Dodgson winners are sought, but for situ-
ations, such as collaborative filtering, where imprecision can be afforded while gaining
“representability” of the collective rank in a classic social choice sense.

We ask whether machine learning, specifically classification with supervised learn-
ing, can be used to predict the winners of Dodgson and Kemeny elections.

Classification is the problem of assigning a label to a given data point , using a set of
labeled data points as examples, called a training set. A data point is a vector of values,
where each value is associated with a feature. Features are used to build a factorized
representation of an entity or event. A label, or class, of a data point is the feature we
are trying to predict. Training the classifier over a dataset is the process of building a
model that when presented with feature values of an unknown instance (example or
datapoint) on input, outputs a classification (or a label) for that instance.

We are motivated by the work of Devlin and O’Sullivan [7] who treat satisfiability
(SAT) of a Boolean formula2 as a classification problem. They do this by labeling ex-
amples of formulas as satisfiable or unsatisfiable (by having calculated them) and using
then these examples as a training data set to build a model that predicts the satisfiability
of a formula. They accomplish 99% accuracy for hard 3-SAT problems, and accuracy
in excess of 90% for “large industrial benchmarks”.

For a given set of candidates C and number of voters |V |, it is possible to calculate
all the profiles of voters that can occur, that is combinations (with repetition) of strict,
total, asymmetric orders over C. For a nontrivially large C and |V | this number can be
very big. Can we then, calculate the election winners for some of these profiles, use
the so calculated winners as a label for the profile, and use these labeled profiles as a
training data set to build a winner prediction model? This is the question we address
here. We use a data set of 12360 profiles for 20 candidates and 25 voters and for each
of this profiles we calculate the Borda, Kemeny and Dodgson winners.

We hypothesize that the Borda winners can be predicted with high accuracy and use
Borda as a kind of “benchmark”. We test the predictability of Kemeny and Dodgson
winners, as these are computationally hard to calculate. We would like to point out that,
it was shown in [18] that the class of scoring rules, of which the Borda method is a
member, is efficiently probably approximately correct (PAC) learnable.

The first problem of feeding profiles as training examples to a machine learning
algorithm is to represent the voting profiles as data points, i.e., use factorized repre-
sentation of collections of preference orders. There are different ways in which the
factorization of profiles can be accomplished and the way a profile is factorized can
affect the classifier performance. We consider three different factorizations and analyze
their fitness for Borda, Kemeny and Dodgson respectively.

Voting rules often are irresolute, namely, for some elections they identify more than
one winner in a tie. We intend to use the winner as a label that needs to be predicted,
however to do this we need to address the problem of ties. We break ties using a lexico-
graphic tie-breaking, which is common in the voting literature, to choose a label for an

2 The satisfiability problem SAT is the problem of deciding whether a given a Boolean formula
is admits a truth assignment to each of its variables such that the formula evaluates true.
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irresolute profile. However we find out that ties do matter in the accuracy of predicting
winners.

To find the right methods for classification, we explored the large pool of all avail-
able machine learning classification methods in the scikit-learn library3 through a pro-
cess of trial and error. We lastly settled using on ten different classifiers and compared
their performance.

Code and datasets for this paper are given at https://github.com/hanolda/learning-
election-winners.

This paper is structured as follows. In Section 2 we introduce the basic concepts
and definitions from voting and machine learning. In Section 3 we give an overview
of the data sets we used in our experiments. In Section 4 we present how profiles can
be represented as data sets for supervised machine learning. In Section 5 we describe
our experiments, results and evaluation methods, while in Section 6 we discuss the
experiments’ outcomes. Related work is discussed in Section 7. Lastly, in Section 8 we
make our conclusions and outline directions for future work.

Our contribution is twofold. Our results in predicting Kemeny and Dodgson win-
ners are promising, but admittedly explorative. We have established feasibility of the
approach and are thus opening the possibility to use machine learning for predicting
winners in voting and social choice theory. Once learned, a model for a particular size
of candidate set and voter set, can be reused for any election of that “size”. Predicting
the outcomes of functions that can be computed, however computationally inefficient,
allows us to check at any point how well the predictor is performing which opens excit-
ing opportunities for predicting instead of calculating voting outcomes when precision
is not critical, for example, for the purposes of collaborative filtering, or in pre-election
estimation of election results in politics.

2 Background

We first introduce the basic definitions and concepts from voting theory and supervised
machine learning.

2.1 Voting theory

An election is a pair (C,V ) where C is a finite set of alternatives (or candidates) C =
{c1,c2, . . . ,cm} and V is a finite collection of agents or voters. Each voter i is represented
with her preference relation i.e., a strict, complete, transitive and antisymmetric order
�i over the set C of alternatives. The top-ranked candidate of � is at position 1, the
successor at position 2, while the last-ranked candidate is at position m. A collection
of preference orders V = (�1, . . . ,�n) is called a preference profile. A voter i prefers
candidate c over candidate c′ iff c�i c′. A voting rule F is a mapping from an election
E to a non-empty subset of C called winners of the election.

The Borda method, or Borda count, is a positional scoring rule. Each candidate in
C is associated with a score that is obtained by the position that candidate has in the

3 https://scikit-learn.org/stable/

https://github.com/hanolda/learning-election-winners
https://github.com/hanolda/learning-election-winners
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preference orders of the profile. A candidate c ∈ C receives m− 1 points from each
�i where it is top ranked, m− 2 points from all �i where it is second ranked, and
so on, receiving 0 points when it is the last ranked alternative. Borda winners are the
candidates that have a maximal sum of points, which is called Borda score.

The Kemeny method is a distance-based rule. For two preference orders �i and
� j we can define the swap distance, also called Kendall Tau distance, as the minimal
number of pairwise swaps required to make the two orders the same. Formally we can
define the swap distance d between two orders� and�′ over a set of candidates C with
ci,c j ∈C:

d(�,�′) = |{(ci,c j) : (ci � c j ∧ c j �′ ci)∨ (c j � ci∧ ci �′ c j)}|. (1)

The collective preference order of a profile V is the order � for which the sum of
swap distances from � to each �i∈ V is minimal. This collective preference order is
called a Kemeny ranking of election E. Kemeny winners are the top-ranked alternatives
in a Kemeny rank (there could be more than one rank “tied”). Formally we can define
the Kemeny method as follows. Let C be the set of all total, strict and antisymmetric
orders that can be constructed over a set of alternatives C.

Kemeny(V ) = argmin
�∈C

∑
�i∈V

d(�,�i) (2)

Before defining the Dodgson method, we need to introduce the concept of Con-
dorcet winner. The Condorcet winner of an election E is the candidate that defeats all
other candidates in a pair-wise comparison. Condorcet winners do not exist for every
election, but when they do exist, they are unique. Let V be the set of all profiles for |V |
agents that can be formed from C . The Dodgson winner of a profile V is either its Con-
dorcet winner when it exists, or the Condorcet winner of a profile V’ which is obtained
from V by a minimal number of adjacent swaps. Formally

Dodgson(V ) = Condorcet(argmin
V ′∈V

∑
�i∈V
�′i∈V ′

d(�i,�′i)), (3)

where V is the set of profiles that have a Condorcet winner and d is the swap distance
defined in (2).

Example 1. Let us consider an election E with four candidates C = {a;b;c;d} (|C| =
4) and |V | = 7 voters. Table 1 presents the preference profile of the V voters. Each
row represents the preference order of a subset of voters, where the first column is the
number who voted with this preference order, and the following column is the order of
the vote. For instance, 3 voters have the preference order: a� b� c� d.

The Borda winner is b, the Kemeny winner is a, and the Dodgson winner is b. This
profile does not have a Condorcet winner because a defeats b and c but not d; b defeats
only d, c defeats only d and d defeats only a, in a pairwise comparison.
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number of voters preference order
3 voters a� b� c� d
1 voter d � b� a� c
1 voter d � c� a� b
1 voter b� d � c� a
1 voter c� d � b� a

Table 1: Preference profile example.

2.2 Machine learning

We now introduce the machine learning methods we use in our experiments. These are:
XGBoost, Linear Support Vector Machines (SVM), Multilayer Perceptron and regular-
ized linear classifiers with stochastic gradient descent (SGD). These approaches were
chosen through a process of trial and error that considered all available machine learn-
ing classification methods in the scikit-learn library4.

Support Vector Machines (SVM). Conceptually, a data point, for which all feature
values are real numbers, can be seen as a point in hyperspace. Binary classification
would then be the problem of finding a hyper-plane that separates the points from one
class from the points of the other class. SVM’s find this hyper-plane by considering the
two closest data points from each class. Since not all datasets can be separated with
a hyper-plane, SVM’s use kernels to transform the dataset into one that can be split
by a hyper-plane. Both linear and nonlinear kernels can be used. The efficiency of a
machine learning method can be improved by tuning the so called hyper-parameters of
an SVM classifier. The SVM we used provides one hyper-parameter to tune: cost of
miss-classification of the data on the training process.

Gradient Boosted Decision Trees (GB) are among the most powerful and widely
used models for supervised learning. Predicting a label can be done with a decision tree
built using the training data. To increase the prediction performance, GB builds an en-
semble of decision trees in a serial manner: each new tree is built to correct the mistakes
of the previous one. GB’s offers a wide range of hyper-parameters that can be tuned to
improve prediction performance, among else the number of trees (n estimators) and
learing rate, which controls the degree to which each tree is allowed to correct the
mistakes of the previous trees.

Multilayer Perceptrons (MLP) are feed-forward neural networks. MLPs are often
applied to supervised learning problems: they learn to model the correlation (or depen-
dencies) in two phases process: forward pass - the training data flow moves from the
input layer through the hidden layers to the output layer (also called the visible layer).
There, the prediction of the output layer is measured against the target labels. The er-
ror can be measured in a variety of ways, e.g. root mean squared error (RMSE). In the
backward pass, backpropagation is used to make model parameters, i.e. weigh and bias
adjustments relative to the error. That act of differentiation, based on any gradient-based
optimization algorithm, gives us a landscape of error. During the convergence state, the
parameters are adjusted along the gradient, which minimize the error of the model.

Regularized linear classifiers with stochastic gradient descent (SGD) SGD is
very efficient approach in the context of large-scale learning. For classification pur-

4 https://scikit-learn.org/stable/
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poses, regularized linear classifiers use a plain stochastic gradient descent learning rou-
tine which supports different regression loss functions, that measures the model (mis)fit
and the penalties, regularization term that penalizes model complexity. SGD is fitted
with the training samples and the target values (class labels) for the training samples
and for each observation updates the model parameters: weights and bias (also called
offset or intercept). A common choice to find the model parameters is by minimizing
the regularized training error.

3 Datasets and preprocessing

We originally intended to use datasets from the preflib.org, however we found
them unsuitable for various reasons such as there were too few candidates, or too few
profiles in the data set. We used a dataset of 361 profiles of ranked lists of music tracks
(songs) from Spotify5 as a basis to generate a high-dimensional dataset of 12360 pro-
files. The such obtained datasets consist of profiles for |C|= 20 candidates with |V |= 25
voters per profile.

The Spotify dataset consists of daily top-200 music rankings for 63 countries in
2017. Ranked are 20 music tracks (songs) described by position, track name, artist,
streams and URL. A single voter’s preference order represents one ranking for one day
in one country. We considered 25 countries on 361 days, as some days had to be re-
moved due to preference order incompleteness. We also only considered profiles that
have a unique winner under the three voting methods we studied, as is was our intention
to not consider ties.

Analyzing the Spotify dataset, however, we observed that the profiles’ labels are
not uniformly distributed, namely not all candidates are winners of an approximately
equal number of the profiles in the dataset. Specifically, the Spotify dataset contains
many profiles where the winner is candidate number 16 or candidate 18. We handled
this issue by generating a synthetic dataset with the same number of candidates |C|
and voters |V | as in Spotify. In the newly built dataset, we kept only those profiles
that ensured class-balanced output, i.e., the same number of profiles for each possible
winner. The synthetic dataset extends the Spotify dataset into a total of 12360 profiles,
which were generated by creating permutations of |C| = 20 alternatives and joining
them into |V |= 25 combinations with repetitions.

For the synthetic dataset we further created three datasets: separately for Borda,
Kemeny and Dodgson winners. Each dataset consists of preference ranks (the same
for all voting methods) along with labels denoting the winner, as per voting method.
For Borda we used all of the 12360 labeled profiles, synthetic and from Spotify. To
label the profiles with Kemeny and Dodgson winners, we calculated the winners using
DEMOCRATIX6[5]. DEMOCRATIX was not able to process all of our 12360 profiles. For
Kemeny we were able to label 10653 profiles, and for Dodgson we had 11754 labeled
profiles.

We split the dataset into a training, validation and testing sets (70/15/15[%]), using
the Stratified ShuffleSplit cross-validator from the Model Selection module of scikit-

5 https://spotifycharts.com/regional
6 http://democratix.dbai.tuwien.ac.at/index.php

preflib.org
http://democratix.dbai.tuwien.ac.at/index.php
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learn library7, which creates a single training/testing set having equally balanced (strat-
ified) classes. Table 2 presents the train, validation and test split of profiles in the gener-
ated dataset. The detailed final distribution of total and training samples per candidate
is presented in Table 3.

Dataset Training set Validation set Test set
Borda 6666 1429 1429

Kemeny 6921 1484 1483
Dodgson 7362 1578 1578
Table 2: No. profiles for training, vali-
dation and test.

Candidate as Borda winner in training as Kemeny winner in training as Dodgson winner in training
1 483 338 597 418 483 338
10 358 250 299 209 551 386
11 481 337 419 293 511 358
12 307 215 322 225 460 322
13 491 344 397 278 542 379
14 544 381 401 281 519 363
15 522 365 387 271 499 349
16 404 283 381 267 1156 809
17 387 271 360 252 206 144
18 479 335 496 347 513 359
19 513 359 585 409 522 365
2 497 348 613 429 515 361
20 553 387 598 419 500 350
3 494 346 563 394 502 352
4 550 385 612 428 489 342
5 453 317 565 396 501 351
6 475 332 522 365 535 375
7 508 355 633 443 512 358
8 484 339 590 413 513 359
9 541 379 548 384 489 342

Table 3: Borda, Kemeny and Dodgson
winner distribution.

4 Factorization of profiles

A profile of votes is a list of total orders, typically encoded as a nested list of ordered
lists representing the voters. To be able to use profiles as training data in ML algorithms,
we need to find a way to model the profiles using factorized representation. There are
several ways in which this can be done and the choice of representation can have a
substantial impact on the winner prediction. We explored three different approaches.
The approaches differ in what is considered a feature of a voting profile.

4.1 Labeling profiles

Each of the voting methods we consider, Borda, Kemeny and Dodgson, admit non-
unique election winners. Namely, more than one candidate can appear in a tie as a
winner. We use supervised learning with the profile of votes as a data point and the
winner for a given election as the class or label for that profile.

Typically, voting methods are accompanied by tie-breaking mechanisms. There are
numerous approaches to tie-breaking including randomly choosing one among the win-
ners or pre-fixing an order over C that will be used for breaking ties. The tie-breaking
mechanism does have an impact on the election outcome and the properties of the
method [1,15]. We here applied a lexicographic tie-breaking and used this winner to
label the profiles in the training set.

Other possible approaches we could take, which we leave for future work, is to use
the whole set of winners as a label. In this case the set of possible labels for a profile
would be the power set of C rather than C as is the case now. Allowing a datapoint
to be labeled as a member of more than one class is a subject of study of multi-label
classification methods [21]. Both of these approaches pose considerable challenges.

7 The seed for the random number generator during the split is equal to 42.
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Using subsets of C as labels makes the feature engineering and data pre-processing task
more elaborate, while multi-class classification methods are not as off-the-shelf wide
spread as classification methods.

Observe that the Borda winners can be exactly computed from all three representa-
tions, the Kemeny winners from Representation 3, while the Dodgson winners cannot
be exactly computed from any of the three.

4.2 Representation 1

In this representation the set of features is the set of candidates C and the value for each
feature is the Borda score of the feature. The profile from Example 1 is given in Table 4.

f-a f-b f-c f-d label
11 12 9 10 b

Table 4: The profile from Example 1 in Representation 1.

The shape of the new representation is:

(#pro f iles,#candidates).

Here, the shape of the Spotify model is (361,20) and of our generated model is (12360,20).
The main drawback of this factorization is that it forces anonymity on the profile.

Namely the factorized representation loses the information about who voted for whom.
The main advantage is that the original profiles don’t have to be the same size (number
of voters) to transform the dataset to this feature representation. That means that once
learned, the prediction model can be used for winner prediction of any new election.

4.3 Representation 2

In this representation there is one feature for each candidate-possible rank pair. The
value of the feature is the number of voters ranking the candidate at the featured po-
sition. In other words, we count the number of times each of the candidates is ranked
at each position. This is the so called positional information of a profile. For example,
if the set of candidates has four candidates, we obtain 16 features. The profile from
Example 1 is given in Table 5.

f-a1 f-a2 f-a3 f-a4 f-b1 f-b2 f-b3 f-b4 f-c1 f-c2 f-c3 f-c4 f-d1 f-d2 f-d3 f-d4 label
3 0 2 2 1 4 1 1 1 1 4 1 2 2 0 3 b

Table 5: The profile from Example 1 in Representation 2.

The shape of the new representation is:

(#pro f iles, |C| · |C|).

Thus, for given N = 20 candidates and length of each vote (ranking) equal to 20 posi-
tions, we obtain 400 features. Here, the shape of the Spotify model is (361,400) and of
the generated model: (12360,400).
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The main drawback of this transformation is that we lose the information about
the sequence of individual preferences. Although time efficiency was not something
we directly were interested in increasing, this representation was observed to lead to a
significant reduction in model training time, in particular in when predicting Kemeny
winners.

4.4 Representation 3

As a third way to factorize profiles we consider the set of features to be the set of unique
pairs of candidates. The value of the feature then is the number of voters that prefer the
first candidate to the second in the pair. This is the so called pairwise majority matrix.
The profile from Example 1 is given in Table 6.

ab ac ad ba bc bd ca cb cd da db dc label
4 4 3 3 5 4 3 2 5 4 2 3 b

Table 6: The profile from Example 1 in Representation 3.

For given N = 20 candidates we have 380 possible combinations (without repetition,
order matters). The shape of the representation is:

(#pro f iles,
(
|C|
2

)
).

The shape of the Spotify model is: (361,380) and the generated model: (12360,380).

5 Experiments and testing

The three different profile representations yielded nine dataset, three for each voting
methods. We considered ten different classifiers. We tested the performance of the clas-
sifiers on each representation using cross-validation testing. As evaluation metrics to
assess the performance of the ten classifiers we used accuracy and F1-score. Accuracy
is the proportion of correctly classified instances from the total number of instances. The
F1-score is calculated for each class (category) separately and the average is taken as the
final F1-score. For each class the F1-Score is 2∗ precision·recall

precision+recall , where precision =
tp

tp+ fp
,

recall= tp
tp+ fn

, tp is the number of true positive, namely the number of samples correctly
predicted as positive and fp is the number of false positive, namely number of samples
wrongly predicted as positive.

5.1 Borda results

Table 7 summaries the performance of the classifiers using Representation 1. We obtain
the best accuracy by using the Gaussian Naive Bayes classifier (100%) and XGBclas-
sifier (99,5%). We noticed that the top-performing classification models are those gen-
erated by the group of algorithms capable of generating probability predictions. These
also had the highest F1-scores. The 100% accuracy of the Naive Bayes classifier could
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be the result of overfitting, however we did not succeed in underfitting without reducing
the size of the training dataset.

To understand better the “behavior” of the models we also considered wether the
miss-predictions are actually other winners that were in a tie which were not used for la-
beling due to the lexicographic tie-breaking we used. If the predicted winner was a true
winner in a tie we counted that datapoint as true positive. That improved the accuracy
results by 0-6%. It is interesting to mention that we noticed that GaussianNaiveBayes
tended to push probabilities of the likelihood of a candidate being a winner to 0 or 1.
The reason for it is because it assumes that features are conditionally independent given
the class, which is the case in this dataset in Representation 1 containing not redundant
features.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GaussianNB 100 100 100 100 0 0 100
XGBClassifier 99.5 66.56 66.37 66.47 4 0.22 99.79
RandomForestClassifier 90.29 33.34 31.88 32.52 2 0.11 90.4
SGDClassifier 85.6 49.58 46.82 47.92 26 1.4 87
SVC(kernel=’linear’) 76.86 27 23.05 24.79 20 1.08 77.94
RidgeClassifier 70.01 26.25 21.1 21.95 5 0.27 70.28
DecisionTreeClassifier 66.07 49.94 57.14 52.33 0 0 66.07
RandomForestClassifier 4.91 25.04 17.54 19.37 44 2.37 57.28
LinearSVC(C=1.0) 52.32 25.82 16.05 16.64 38 2.05 54.37
AdaBoostClassifier 48.33 33.21 42.86 35.58 0 0 48.33
MLPClassifier 43.37 19.18 13 15.16 111 5.99 49.36
SVC(C=1, kernel=’rbf’) 22.55 86.3 22.49 15.87 0 0 22.55

Table 7: Representation 1: Borda predic-
tions after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier 100 100 100 100 0 0 100
GaussianNB 100 100 100 100 0 0 100
DecisionTreeClassifier 66.07 49.94 57.14 52.33 0 0 66.07
SVC(kernel =′ linear′) 64.72 33.04 29.97 30.75 0 0 64.72
AdaBoostClassifier 48.33 33.21 42.86 35.58 0 0 48.33
LinearSVC 41.96 19.57 13.33 15.58 2 0.11 42.07
SGDClassifier 40.45 20.3 14.38 16.18 0 0 40.45
RidgeClassifier 30.04 17.12 9.09 11.45 52 2.8 32.84
MLPClassifier 29.29 11.43 9.74 9.87 1 0.05 29.34
SVC(kernel =′ rb f ′) 22.55 86.3 22.49 15.87 0 0 22.55
RandomForestClassifier 17.31 9.4 5.2 6.4 151 8.14 25.45

Table 8: Representation 2: Borda predic-
tions after hyper-parameter tuning.

Table 8 and Table 6 respectively summarize the ML performance under Represen-
tations 2 and 3. We also observed best performance for the ML methods that performed
well with Representation 1.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier 100 100 100 100 0 0 100
GaussianNB 100 100 100 100 0 0 100
SVC(kernel=’linear’) 81.55 26.87 24.49 25.57 2 0.11 81.66
LinearSVC 70.12 26.04 21.07 23.2 9 0.49 70.61
DecisionTreeClassifier 66.07 49.94 57.14 52.33 0 0 66.07
SGDClassifier 60.46 29.33 19.66 19.67 20 1.08 61.54
AdaBoostClassifier 48.33 33.21 42.86 35.58 0 0 48.33
MLPClassifier 46.44 18.87 13.92 15.74 72 3.88 50.32
RandomForest(depth = 5) 45.47 19.74 13.66 15.47 76 4.1 49.57
RidgeClassifier 38.78 20.57 11.65 14.16 36 1.94 40.72
RandomForestClassifier 31.45 17.29 9.4 11.17 76 4.1 35.55
SVC(kernel=’rbf’) 22.55 86.3 22.49 15.87 0 0 22.55

Table 9: Representation 3:Borda predic-
tions after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier 51.81 38.96 37.51 37.4 101 6.32 58.13
GaussianNB 44.43 35.39 36.51 34.88 95 5.94 50.37
RandomForestClassifier 42.55 34.31 35.42 33.47 138 8.64 51.19
SVC(kernel=’linear’) 40.43 32.57 31.91 31.08 136 8.51 48.94
RidgeClassifier 35.48 36.86 33.36 28.43 205 12.83 48.31
LinearSVC 35.23 40.81 27.36 24.62 97 6.07 41.3
RandomForest(depth = 5) 34.61 31.47 27.64 26.26 130 8.14 42.75
SGDClassifier 25.34 30.36 23.42 20.94 93 5.82 31.16
AdaBoostClassifier 24.97 21.46 18.59 17.7 472 29.54 54.51
MLPClassifier 18.46 19.86 19 15.02 253 15.83 34.29
SVC(kernel=’rbf’) 8.64 90.14 10.46 10.42 151 9.45 18.09
DecisionTreeClassifier 5.94 16.57 12.84 6.88 109 6.82 12.76

Table 10: Representation 1: Kemeny pre-
dictions.

5.2 Kemeny results

Tables 10, 11 and 12 respectively, summarize the performance of the classifiers on
predicting Kemeny winners. All the measures are calculated after hyper-parameter tun-
ing. Here the results are discouraging compared with the Borda winner predictions. We
obtained the best results for SVC(kernel=‘rbf’) and the RandomForestClassifier when
using Representation 3. However, after analyzing the miss-predictions and comparing
them with the tied winners, we observed that the SGDClassifier actually has an accu-
racy of 85%, which is still low, but a considerable improvement. The percentage of the
correctly predicted winner involved in the ties varied considerably across classifiers.
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Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier 21.53 24.42 21.8 18.02 188 11.76 33.29
LinearSVC 19.27 19.89 19.28 16.71 149 9.32 28.59
SVC(kernel=’linear’) 19.21 21.67 19.19 16.49 201 12.58 31.79
SGDClassifier 17.83 24.42 18.43 16.14 91 5.69 23.52
RidgeClassifier 17.65 19.46 17.6 15.23 151 9.45 27.1
GaussianNB 16.21 22.71 18.24 14.7 189 11.83 28.04
RandomForestClassifier 9.64 15.38 10.75 9.09 278 17.4 27.04
SVC(kernel=’rbf’) 8.64 90.14 10.46 10.42 151 9.45 18.09
MLPClassifier 7.32 11.25 8.93 6.38 241 15.08 22.4
AdaBoostClassifier 6.7 15.65 7.98 5.46 402 25.16 31.86
RandomForest(depth = 5) 5.51 9.43 8.14 5.15 272 17.02 22.53
DecisionTreeClassifier 3.5 7.04 5.41 2.88 189 11.83 15.33

Table 11: Representation 2: Kemeny pre-
dictions.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

SGDClassifier 2.44 0.12 5.0 0.24 1771 83.11 85.55
RandomForestClassifier 60.86 57.18 61.32 55.78 128 6.01 66.87
SVC(kernel=’rbf’) 60.58 95.26 61.82 71.49 82 3.85 64.43
GradientBoostingClassifier 59.5 55.43 58.66 54.09 79 3.71 63.21
XGBClassifier 26.94 38.13 28.27 25.07 175 8.21 35.15
RandomForest(depth = 5) 7.74 37.15 14.93 8.26 348 16.33 24.07
AdaBoostClassifier 6.29 7.04 7.32 5.04 232 10.89 17.18
DecisionTreeClassifier 5.02 10.71 6.6 3.65 252 11.83 16.85
GaussianNB() 6.34 8.28 7.72 5.37 219 10.28 16.62
RidgeClassifier 4.27 8.11 6.99 3.09 245 11.5 15.77
MLPClassifier 4.41 2.54 4.71 1.7 115 5.4 9.81
LinearSVC 6.62 0.33 5.0 0.62 15 0.7 7.32

Table 12: Representation 3: Kemeny pre-
dictions.

5.3 Dodgson results

Surprisingly, we obtained better results predicting Dodgson winners than Kemeny win-
ners, but still with a relatively lower accuracy than Borda winners: 87% with the Gradi-
entBoostingClassifier under Representations 1 and 3. Tables 13, 14 and 15 respectively
summarize our results. Again, all the measures are calculated after hyper-parameter
tuning. Here again, after analyzing the miss-predictions, we observe that the Gradient-
BoostingClassifier actually correctly predicts winners that are among ties.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GradientBoostingClassifier 87.2 81.37 75.34 77.95 51 2.17 89.37
RandomForestClassifier 84.22 75.05 73.68 73.87 54 2.3 86.52
XGBClassifier 77.63 65.96 48.98 53.13 90 3.83 81.46
GaussianNB 66.31 42.34 41.84 41.63 120 5.1 71.41
RandomForest(depth = 5) 66.57 55.43 36.24 39.26 88 3.74 70.31
SVC(kernel=’rbf’) 68.06 97.07 61.14 73.34 10 0.43 68.49
RidgeClassifier 63.16 40.37 38.84 38.73 114 4.85 68.01
MLPClassifier 57.64 43.33 44.4 38.79 113 4.81 62.45
AdaBoostClassifier 55.98 35.27 36.61 35.32 117 4.98 60.96
SGDClassifier 50.91 27.14 30.64 23.01 129 5.49 56.4
LinearSVC 34.11 34.02 25.55 19.77 116 4.93 39.04
DecisionTreeClassifier 23.52 17.17 12.22 8.5 25 1.06 24.58

Table 13: Representation 1: Dodgson pre-
diction.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GradientBoostingClassifier 80.77 68.75 73.07 70.46 59 2.51 83.28
MLPClassifier 77.16 63.44 71.98 66.57 68 2.89 80.05
XGBClassifier 69.72 53.67 57.13 54.12 97 4.13 73.85
SVC(kernel=’rbf’) 68.06 97.07 61.14 73.34 10 0.43 68.49
LinearSVC 62.91 51.52 55.26 50.62 125 5.32 68.23
RandomForestClassifier 61.93 52.59 62.03 52.66 141 6.0 67.93
RidgeClassifier 63.16 46.38 51.67 47.73 102 4.34 67.5
GaussianNB 57.59 42.61 51.65 44.99 120 5.1 62.69
SGDClassifier 53.21 48.54 40.55 37.82 93 3.96 57.17
AdaBoostClassifier 25.1 19.39 22.26 18.23 195 8.29 33.39
DecisionTreeClassifier 21.23 9.1 9.0 5.52 66 2.81 24.04
RandomForest(depth=5) 22.59 1.13 5.0 1.84 19 0.81 23.4

Table 14: Representation 2: Dodgson pre-
dictions.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GradientBoostingClassifier 87.28 80.85 77.62 78.91 50 2.13 89.41
XGBClassifier 85.92 77.83 78.41 77.9 66 2.81 88.73
RandomForestClassifier 71.08 59.15 69.32 60.71 105 4.47 75.55
GaussianNB 65.76 50.52 45.52 45.62 115 4.89 70.65
SVC(kernel=’rbf’) 68.06 97.07 61.14 73.34 10 0.43 68.491
RidgeClassifier 62.14 42.01 43.51 41.85 113 4.81 66.95
MLPClassifier 54.4 39.04 42.54 38.8 110 4.68 59.08
SGDClassifier 50.87 36.31 29.72 22.74 128 5.44 56.31
LinearSVC 41.56 46.0 19.17 20.69 51 2.17 43.73
RandomForest(depth = 5) 26.8 62.52 10.2 10.87 23 0.98 27.78
DecisionTreeClassifier 17.31 10.01 18.27 9.93 192 8.17 25.48
AdaBoostClassifier 15.06 11.9 14.83 9.21 172 7.32 22.38

Table 15: Representation 3: Dodgson pre-
dictions.

6 Discussion

A learning curve is a graphical representation of model’s learning performance8 over
’experience’ or time. We used learning curves here as an ML diagnostic tool for the
behavior (underfitting, overfitting or good fit) of ML models and as a diagnosis tool
to evaluate if the datasets (training and validation) are representative of the problem

8 algorithms that learn from a training dataset incrementally
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domain. We omit including all the learning curve graphs due to space restrictions and
only highlight the most interesting observations.

Borda model behavior. We identified underfitting in the following models: SVM
with RBF kernel and Random Forest, where the training loss remains flat regardless
of experience. We identify under-fitted models by analyzing the learning curve of the
training loss. A learning curve shows under-fitting if : (i) the training loss continues to
increase until the end of the training, i.e. premature halt occurs or (ii) the training loss
remains flat regardless of training. Some of the ML methods showed over-fitting in their
learning curves. A learning curve shows over-fitting if: (i) the training loss continues to
increase until the end of training, i.e. premature halt occurs, which we observed with the
MLP and SGD classifiers; or (ii) validation loss increases in order to decrease again,
which we observed with the Random Forest classifier at its late state. The learning
curves’ plot showed a good fit for XGBoost, linear SVM and the AdaBoost classifiers,
where we observed (i) the training loss decreases to the point of stability and (ii) the
validation loss increases to a stability point but there remained a small gap with the
training loss. Here, the suitable model fit was presented by the XGBoost, Linear SVM
with SGD classifiers. The Representation 2 training set was easier to learn compared to
Representation 1, namely more algorithms achieved 100% accuracy for the training set
while at the same time increasing accuracy for the test set. Figure 1 presents an example
of the train and validation learning curves for models learned in Representation 2.

Kemeny and Dodgson miss-predictions.
We observed that in the case of predicting Kemeny winners, a model using Repre-

sentation 3 was very well learnable by the SGD classifier. Here, however, the accuracy
of the original dataset was very low ca. 2% and the number of miss-prediction was
very high – ca. 83 % were wrongly classified (false positive). After checking the miss-
classified profiles, we found that 83% of the original miss-predictions were found in
ties, meaning a true winner was predicted, but not the winner that was selected by the
lexicographic tie-breaking. That analysis revealed that the model accuracy is actually
ca. 85%. Figures 2 and 3 (in the Appendix) present an example of the train and vali-
dation learning curves for models learned in Representation 3. For predicting Dodgson
winners, we obtained the best accuracy with the Gradient Boost classifier learned using
Representations 1 and 3. Curiously, here although some winners were correctly classi-
fied, but not used as labels due to the tie-breaking rule, their numbers did not make for
such a drastic difference as with Kemeny winner predictions. Figures 4, 5 and 6 presents
an example of the train and validation learning curves for models using Representations
1, 2 and 3 respectively.

7 Related work

Machine learning, in the context of social choice, has been used to predict the missing
components of preference orders (ballots) in [8]. Machine learning has also been used to
do political sentiment analysis, namely predict winners of elections given Twitter data
(not preference rankings) in [19]. Data science techniques for handling large elections
have been used in [6].
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Most similar to our work is perhaps Neural networks are used in [4] where the au-
thors train the network to classify profiles with their unanimity winner, their Condorcet
winners and unique Borda winner (only profiles that have such a respective winner are
used). Burka et al use, what we call representation 3 and profiles in which the number
of voters equals 7, 9 or 11, while the number of alternatives equals 3, 4 or 5. Their best
Borda accuracy is 92.60%, while their best Condorcet winner accuracy is 98.42%.

Procaccia et al [18] consider the problem of PAC-learnability of scoring methods.
We present methods in which the winners of a scoring method, Borda, can be predicted.

Apart from the work we already discussed [7], machine learning, specifically neural
networks, have been applied to solve NP-complete problems, specifically the traveling
salesman problem [17]. Prates et. al accomplish 80% accuracy with their approach.

8 Conclusions

We asked if winners of computationally hard to compute voting methods can be pre-
dicted using machine learning classification. We considered two voting methods for
which it can be hard to compute the winners: Kemeny and Dodgson and also one
method, Borda, for which winners can be efficiently computed. We considered ten dif-
ferent machine learning classifiers. We constructed considered elections with 20 alter-
natives for 25 voters. For training machine learning classifiers, we constructed 12360
profiles which we factorized three different ways and for which we computed the Borda,
Kemeny and Dodgson winners. Predicting election winners is a robust approach. Once
a model is created for an election of a particular size, it can be reused for any election
of that size regardless of what the options or who the voters are.

Our answers are, as expected, Borda winners can be predicted with high accuracy.
Kemeny and Dodgson winners can be predicted with relative accuracy of 85%-89%.
It is important to emphasize that the 12360 profiles we used in training comprise less
than 0.01% of all possible profiles for 20 alternatives and 25 agents. The total number
of all possible profiles for |C| alternatives and |V | voters is: (|V |+|C|!−1)!

|C|!(|V |−1)! . Better accura-
cies can be obtained with a higher percentage of labeled profiles for training. Further
experiments are needed, with different sets of candidates and voters (sets of different
sizes that is) to explore the impact of the data set dimensions on the performance of
classifiers.

Surprisingly, the Kemeny winners, which in the worst case are computationally
easier to compute that the Dodgson winners, are predictable with a lower accuracy than
the Dodgson winners. Also surprisingly, our models were able to predict the correct
winners for elections when the winners were in a tie (and not used to label a profile
because the lexicographic tie-breaking mechanism did not select them).

It would be interesting to see where the miss-predictions occur in the aggregated
preference order of Kemeny and Dodgson, are they from among the top ranked or low
ranked alternatives or whether there is no correlation between the prediction and a spe-
cific position in the Kemeny/Dodgson rank. DEMOCRATIX calculates just the winner(s)
not a full preference order, so we were not able to do this analysis at present. In the fu-
ture we will consider building prediction models for smaller profiles for which the full
Kemeny and Dodgson ranks can be computed for analysis.
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An interesting avenue to explore is the learnability of collective judgment sets in
judgment aggregation. Judgment aggregation studies how the opinions of different in-
dividuals on the truth value of a issues can be aggregated into a collective judgment
set when the issues that need to be decided upon are possibly logically interconnected
[14,9]. Judgment aggregation is known to generalize voting, namely the problem of
finding winners for an election can be represented as the problem of finding collec-
tive judgment sets [14,9]. Furthermore, Borda, Kemeny and Dodgson are generalizable
to judgment aggregation methods [13,10]. The complexity of finding collective judge-
ments using these generalized “voting” methods is typically higher than that of calcu-
lating election winners. Furthermore, while the models that predict election winners
can be reused for elections of same size of candidate and voter sets, the logic rela-
tions between the issues on which opinions are given, would prevent this re-usability in
judgment aggregation.
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Appendix -Figures

Fig. 1: Train and validation learning curves for Borda models learned in Repres. 2.

Fig. 2: Train and validation learning curves for Kemeny using Repres. 3., SDG classifier.
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Fig. 3: Train and validation learning curves for Kemeny using Repres. 3., SDG classifier
top, 2Random Forest classifier bottom.

Fig. 4: Learning curve for Dodgson using Representation 1
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Fig. 5: Learning curve for Dodgson using Representation 2

Fig. 6: Learning curve for Dodgson using Repres. 3
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