
Deep Analysis
for

an Interactive Question
Answering System

a thesis submitted to the

Free University of Bozen-Bolzano

for the degree of
European Master in Computational Logic

by

Marija Slavkovik

supervised by Dr. Raffaella Bernardi

Faculty of Computer Science,
Knowledge Representation meets Databases Research

Center

October 2007

2

Acknowledgments

This thesis was conducted at the Knowledge Representation meets Databases
Research Center and would not have existed without the helpful discussions,
insights, support and affections of all the people who work there and who I had
the pleasure to meet with on daily bases.

I would like to specially thank Dr. Rosella Gennari for her irreplaceable
insights in the area of decidable fragments of first-order logic.

I would like to express my enormous gratitude to Dr. David Toman for
his great patience in discussing with me parts of this thesis, as well for his
knowledgeable advices and proof reading in the final stages of this thesis.

This thesis would not have been completed without the great support of
my supervisor, Dr. Raffaella Bernardi, who had the patience to tolerate even
the most unmanageable and the generosity to invest many weekend hours into
the work of this thesis. Her affection and faith in my abilities gave me the
self confidence to pursue a career in research. The numerous hours spent in
discussion with her opened the world of linguistic to me, but they also enriched
me with valuable life knowledge.

1

Abstract

The improvement of current Question Answering (QA) systems relies on finding
ways to support the traditional statistic approach to QA with logic reasoning [9].
In this thesis we show one way of supporting an Interactive Question Answering
system with logic reasoning.

As a case study we make an overview of BoB, a chatter-bot which interac-
tively answers questions over the library domain [41], [40]. BoB retrieves the
most likely answer to a question by searching a tree structure of topic-arranged
question patterns and responses. The performance of BoB depends on the intel-
ligent construction of this tree. We suggest an architecture of a Logic Support
Unit (LSU) for BoB (Chapter 2). The LSU will support BoB’s work by per-
forming verification or refutation of the retrieved answers and extraction of the
specific answer(s) from the verified answers.

We focus on determining suitable semantic representations for the question
and possible answers, and develop a method to represent the task of answer
verification and specific answer extraction in line with the method presented in
[7]. For the purpose of building semantic representations for natural language,
we use boxer which builds first-order logic formulas from parsed natural lan-
guage sentences. To allow for efficient reasoning, we define natural language
fragments whose sentences have decidable first-order representations (Chapter
4). The fragments have high coverage by following simple lexicon restriction
rules (91% of both the possible answers and the questions from the analysed
corpora can be written using only the fragments).

We represent the problem of answer verification and specific answer extrac-
tion in terms of Answer Set Programming (Chapter 5). We show how to build
logic programs from the first-order representations of the questions and answers
in the decidable natural language fragments. We show how to analyze the an-
swer sets of those programs to verify or refute an answer and to extract a specific
answer.

As a general conclusion, we find that the ASP framework has many features
which can be used for the task of supporting IQA with deep analysis. The most
promising of these features we present as Future Work of this thesis (Chapter
6).

2

Contents

1 Introduction 5

2 IQA supported with Logic Reasoning 10
2.1 Framework . 11

2.1.1 BoB . 11
2.1.2 Structure of BoBs focus tree and search algorithm 11
2.1.3 Weaknesses of BoB which can be improved by a LSU . . 13

2.2 Logic Support Unit for IQA . 14
2.2.1 Desiderata for the Logic Support Unit 14
2.2.2 Proposed Architecture for the LSU 15

3 Semantic Representations of Natural Language 20
3.1 First-Order Representations of Natural Language 20
3.2 BOXER . 23
3.3 Reasoning Formalisms for IQA 30

4 Fragments of Natural Language 37
4.1 Decidable Fragments of First-Order Logic 39
4.2 Logic Operator Introducing Words 40
4.3 Lexicon Restrictions for Declarative Sentences 43

4.3.1 The EC Lexicon . 44
4.3.2 The ECD Lexicon . 46
4.3.3 The ECN Lexicon and ECNS Lexicon 47
4.3.4 The ECI Lexicon . 50
4.3.5 The ECND Lexicon and ECNSD Lexicon 53
4.3.6 Analysis of the Library FAQ Sheets 55

4.4 Lexicon Restrictions for Natural Language Questions 58
4.4.1 The QECD Lexicon . 58
4.4.2 Decidability of Entailment between questions and answers

representations . 59
4.4.3 Analysis of Questions asked by users 63

5 Reasoning for IQA using Answer Set Programming 65
5.1 Basics of Syntax and Semantics of ASP 67
5.2 Representing Questions and Answer with Disjunctive Logic Pro-

gram Rules . 69
5.3 Question Answering in Terms of Analysis of Answer Sets 71
5.4 Generating Background Knowledge 76

3

6 Conclusions and Future Work 78
6.1 Overview of Results . 78
6.2 Future Work . 79

4

Chapter 1

Introduction

The majority of all human knowledge is solely represented in natural language.
This knowledge is accessible for humans, who can understand the natural lan-
guage texts and answer questions about them, but it is not in the same measure
accessible for machines. The the fields of Knowledge Representation and Rea-
soning (KR&R) and Databases suffered vast developments over the past decade
but this did not diminish the demand for developing new and improving the old
techniques of processing knowledge resources in natural language. The task of
automated retrieval of specific information from a knowledge source in natural
language, as a response to a natural language question, is not a simple one even
for relatively small knowledge resources.

One approach toward solving this task is to cast it in KR&R terms as the task
of answering a query over a Knowledge Base (KB). To this end, the knowledge
has to be translated from natural language to a Knowledge Representation (KR)
language, such as owl1 [37] or DL-lite [20]. The question has to be represented
as a query over the corresponding KB.

The translation from a Natural Language (NL) to a KR language is made
difficult by the fact that natural language has two main computationally unde-
sirable properties. Natural language is ambiguous (one sentence can have more
then one meaning) and syntactically rich (one and the same meaning can be
conveyed by many different natural language expressions).

Even if the translation NL to KR were easy, querying large KB’s is, for
practical purposes, computationally inefficient because query answering over
KB (if they are built over an expressive KR language) is of high complexity2.

It also has to be taken into consideration that the retrieved answers from a
KB will be represented in the KR Language of the KB. The users of a question
answering system are, in general, people who are not acquainted with formal
languages so they will not be able to understand the retrieved answer. (The gap
between the non-expert user and the formal languages is an existing problem
in KR and Databases and it caused for special attention to be devoted into
creating formal languages which closely resemble natural languages3).

The task of finding an answer to a question, when both are in natural lan-
guage, is traditionally being handled by the field of Question Answering (QA).

1http://www.w3.org/TR/owl-features/
2http://www.cs.man.ac.uk/∼ezolin/dl/
3http://attempto.ifi.unizh.ch/site/description/index.html

5

Classical QA is executed by performing syntactic analysis on the question
and using Information Retrieval (IR) techniques to process the text (knowledge
source). IR systems are today able to successfully isolate the short text (snippet)
which has the highest probability to contain the required information even from
large text collections4. To do so, IR heavily relies on statistical and probabilistic
methods. The obtained result (reply) is the ”most likely” answer and the QA
System has no way of ”knowing” when the retrieved answer certainly answers
the posed question. The answer verification requires additional intelligence.

When the domain over which the questions are being answered is restricted
(in size and topic) and known to the QA system, the knowledge source can be
structured to increase the precision of the system. In this case the result will
be more precise but it will still be probabilistic. It is up to the user to read
the entire returned snippet and maybe find in it, or deduce from it, the exact
information which he/she has asked for.

An efficient QA system should verify that the retrieved text certainly answers
the posed question before presenting it to the user. In addition, it should return
only the information which was specifically asked for and not a chunk of text. In
order to be able to do all this, the QA System can not rely only on syntactical
analysis of the question. It needs to employ a semantic analysis of the question
and possible answer, and be able to perform logic reasoning over both.

The field of Natural Language Representation and the field of KR&R are
both subfields of Artificial Intelligence and in the beginning of AI the methods
and goals of both interleaved. But, as each field developed, they set different
goals and diverged from the each other—KR&R toward logic and NLP toward
linguistic sciences and statistics. As a result, today it is not simple and straight-
forward to combine the methods of QA with methods of KR. In the field of QA
there is inevitable need for these two AI disciplines to reunite. In the last years,
the QA recently became aware that the improvement of the performance of the
QA Systems depends on supporting the traditional statistic approach with logic
reasoning. Consequently, it suggested that special attention should be given to
developing such supporting means and methods [9].

Intrigued by this new emerging field of combined efforts of logic and QA,
we were motivated to devote the work of this master thesis to it and explore
one possibility for supporting the standard linguistic approaches of Question
Answering with deep analysis (semantic representations and logic reasoning).
As a case study, we considered an ongoing Question Answering research project
at the Free University of Bozen-Bolzano—the Bolzano library chatter-bot BoB
[41], [40].

BoB is aimed to answer questions over the domain of the library of the Free
University of Bozen-Bolzano in a dialog setting (interactively). The knowledge
about the library is structured in a tree whose leaves are question patterns and
answers corresponding answers. The answers in the tree are arranged according
to topics—answers on the same topic share mother nodes. BoB performs a
shallow analysis of the user utterance (regular expressions pattern matching),
attempts to determine the topic of the question, and searches the tree starting
from the identified topic. The underlying assumption is that the dialog between
the system and the user is led in a topic, and the questions that the user asks
will most likely be in the context of the topic. The position in the tree at the

4http://trec.nist.gov/

6

given moment of the on-going dialog is to be used as an indicator of the focus
of the question.

The answers which BoB returns are the most likely answers to the posed
question, and BoB has no way of ”knowing” if what it returns certainly answers
the users question.

In a dialog setting, the returned answer has to be specific to the question
asked, hence large snippets of text do not suffice. The shallow analysis of the
question is insufficient to determine which information is specifically asked for.
To retrieve a specific information BoB relies on the ”intelligent” structure of
the tree. These trees (so called focus trees) are built to offer a specific answer
by predicting the questions. The method of focus trees is efficient but the
construction of well balanced (”finely tuned”) focus trees requires a lot of time
and effort.

To provide BoB with the possibility to verify if a retrieved answer certainly
answers a question, as well as to reduce the time needed for a construction of
an efficient focus tree, we propose that BoB should be augmented with a Logic
Support Unit (LSU). The intended role of the LSU is as follows.

The answers in the focus tree can be kept in form of snippets and BoB should
retrieve not only the one most likely answer, but the first few most likely answers.
The LSU receives (from BoB) the question and the most likely answers for that
question in natural language. The LSU will parse the question and answer(s)
and construct a semantic representation for them. Then it will verify or falsify,
by means of logic reasoning, each possible answer representation for the question
representation. Once an answer is verified, the LSU will retrieve the specific
answer from its semantic representation. The LSU will translate the specific
answer(s) back to natural language and return it to BoB. The development of
the LSU incorporates two core tasks.

The first task is the automatic construction of semantic representations for
natural language. The answers which BoB retrieves are known before hand and
they can be represented using some formal language. However, these answers
are provided by library domain experts unfamiliar with formal languages or
semantic representations and even the most intuitive formal language such as
ACE [42] requires time and effort to be learned. Wanting to minimize the input
of domain expert time we choose to build semantic representations from natural
language.

The field of formal semantics of natural language offers the theory (CCG
Grammar and Montague Theory) and tools (the CCG Parser and the semantic
representation tool boxer) to efficiently build wide-coverage first order logic
representations for natural language sentences and questions.

The second task incorporated in the development of the LSU is to verify a
possible answer to a question based on the first-order representation of both.

One way of formal verification of answers over semantic representations like
the ones boxer builds is presented in the work of Gabsdil and Bos [16]. In [16]
the corresponding formulas of the question and the possible answer are used to
build a list of propositions. The task of answer verification is reduced to testing
each of the propositions for satisfiability, namely an answer is defined as proper
for a question if at least one of the prepositions from the list is consistent and
at least one of them is inconsistent.

The prototype (midas) built for this system uses theorem provers (from

7

MathWeb5) for the satisfiability testings. However, satisfiability of FOL for-
mulas is undecidable and a theorem prover may not terminate with a proof.
To cope with this undesirable possibility, the theorem provers are paired with
model builders.

The QA System of [16] aims to answer questions over the domain of route
services and aims to provide the user with a description of a route on the basis of
a starting point. In this setting, the system is the one who initializes the dialog
and asks the questions while the user is the one who provides the answers.
Consequently, the only reasoning task that the system has to perform is the
answer verification.

In our setting we need to extract the specific answer from the verified answer
in addition to the answer verification. The approach of verification by testing
for satisfiability proposed in [16] does not offer us this possibility.

As the work in [16] shows, answer verification and specific answer extractions
by means of logic reasoning requires a decision procedure over first-order logic
formulas. First-order logic (FOL) is, in general, undecidable. To cope with the
undecidability of FOL, we will take advantage of the possibility to use restricted
natural language because the answers are pre-known.

By posing simple restrictions on the lexicon of the language in which the
answers are built, we can guarantee that the semantic representations obtained
for the possible answers will be decidable FOL formulas. The lexicon restrictions
are simple enough (a list of words whose usage in a sentence is restricted or
prohibited) to allow for the domain experts to be able to quickly construct the
answers without special preparation or training.

Unfortunately, restricting the language of the possible answers is not suffi-
cient and we will also pose simple lexicon restrictions for the questions. The
questions are not known before hand. Consequently, the LSU will be able to
handle most of the users questions but not all of them (without instructing the
user to obey the lexicon restrictions).

Having obtained desirable semantic representations we, developed a formal-
ism which represents both the problem of answer verification and answer ex-
traction. We translate the first-order representations of the question and one
possible answer into a list of disjunctive logic rules PA and PQ. We state the
problem of answer verification and answer extraction in terms of finding an
answer set to the program PA ∪ PQ.

A QA system which relies on Answer Set Programming for retrieval of the
specific answer is presented in [7]. It is a system which receives on input a list
of sentences, a ”story” over the travel domain, and a question (all in natural
language). The system outputs the answers for the questions asked with respect
to the story. The natural language sentences of the story are parsed with the
Link Grammar Parser. The derivation of the parser is used to build AnsProlog
[6] facts. The question is processed separately by the parser and according to
the obtained derivation an AnsProlog rule is build. The processing of the rule
is done in a much similar fashion to that in [16]—the type of the rule in [7]
corresponds to the domain of the rule in [16]. The answers generated are in the
answer sets of the program constructed from the rules of the story and the rules
of the question. Because the answers sets are nothing else but a set of facts, the
answer obtained is indeed the specific answer to the question posed and not a

5http://www.mathweb.org

8

verification of a snippet. We keep the basic idea of this approach but decide to
obtain the logic rules that represent the question and the answer by different
means.

Natural language is ambiguous and more then one parser derivation is pos-
sible for one sentence. The CCG Parser is a statistic parser which is trained
over a large corpus to resolve ambiguities by producing only the most probable
derivation. We follow this approach to parsing, as well as take advantage of the
wide-coverage feature of the semantic representation constructor boxer (which
builds the first-order representations of questions and answers based on the
derivation of the CCG Parser). For this reason, we propose a way of obtaining
the logic rules PA and PQ by directly translating the first-order representations
of the possible answer and the question.

The full development and implementation of the LSU for BoB is a large
project which out-scopes the time frame of one master thesis. In this thesis we
only focus on the tasks of determining adequate semantic representations and
reasoning (verifying an answer and extracting a specific answer). This work is
organized as follows.

In Chapter 2 we state the general framework of the IQA system we are sup-
porting with logic reasoning (the features of BoB). We state the weaknesses of
BoB which can be improved by logic reasoning and we propose the architecture
of a Logic Support Unit which can eliminate these weaknesses.

In Chapter 3 we make a brief overview of the task of building semantic repre-
sentations of natural language and we present the tools we use for constructing
the semantic representations. We present the syntactic properties of the first-
order formulas obtained by these tools and discuss the semantics of question
answering over logic representations.

The majority of the work of this thesis is concentrated in Chapter 4 where we
deal with the problem of determining adequate lexicon restrictions for natural
language answers and questions. Here we propose the Restricted Lexicons and
we show that the first-order representations of sentences and questions built
over the allowed lexicons are decidable (for satisfiability and entailment).

In Chapter 5 we first present how to translate into logic rules the first-order
representations of answers and questions built in accordance with the defined
lexicon restrictions. Then we show how to represent the problem of verifying
an answer and extracting a specific answer in terms of ASP.

Lastly, in Chapter 6 we draw our final conclusions, as well as discuss issues
that remain for future work.

9

Chapter 2

IQA supported with Logic

Reasoning

In the past years the field of Question Answering, as well as the general field of
Natural Language Processing, has extensively relied on statistics and probability
as methods for solving its tasks. This approach has one great advantage –
scalability. The processing with statistic/probabilistic based algorithms, which
rely only on shallow language understanding, allows for various, in continence
and size, natural language resources to be processed efficiently.

The disadvantage of the statistic/probabilistic approach is the lack of preci-
sion. While for many NLP problems, a ”most likely” solution is a ”good enough”
solutions, the demands of the Question Answering realm go further then what
the statistical methods can provide.

In terms of Question Answering this means that the statistically based sys-
tem will return a most likely answer. The answers retrieved are unspecific (part
of a larger text) which has a high probability of containing the information re-
quired, however with no possibility to establish the presence of this information
for certain or to return exactly the required information and not more then that.

Recent trends in the QA community [9] state that QA systems should
support the integration of deeper modes of language understanding as well as
more elaborated reasoning schemes in order to boost the performances of current
QA systems as well as the quality and the relevance of the produced answers.

Following these trends, we have made an attempt to make a modest contri-
bution by improving a statistically based QA system with a Logic Support Unit
(LSU) which aims to improve the precession of a statistically based QA system.
As a case study, we considered the chatter-bot BoB, which interactively (in a
dialog setting) answers questions over the domain of the university library of
the Free University of Bozen-Bolzano.

In this chapter we present the general framework of the Interactive QA
System we are supporting with the LSU by presenting the general characteristics
of BoB. We will then point out, given the characteristics of BoB, what are
the desiderata which are being posed on the LSU. Lastly we will propose an
architecture for a LSU for BoB.

10

2.1 Framework

BoB is a web based application which aims to answer questions over the domain
of the university library. It does so by making a shallow analysis of the user
utterance by using regular expressions pattern matching. It returns a predicted
answer which is most adequate (probable) according to the matched pattern.
The performance of the regular expression is enhanced by using an arrangement
of all the possible answers in a focus tree. A focus tree [47] is a tree construction
in which the knowledge about a domain is structured according to the topics to
which it belongs, sub-topics and so on. The question-answer pairs that can be
retrieved in the system are positioned at the leaves of the tree. The underlying
idea is the presumption that the dialog between the system and the user is led
in a topic. The questions that the user asks are presumed to be in the context of
the topic. The position in the tree at the given moment of the on-going dialog
is to be used as an indicator of the focus of the question.

Following is an overview of the characteristics of BoB.

2.1.1 BoB

1 BoB is the chatter-bot which assists users of the university library of Bolzano to
find specific answers to common questions. Classic Question Answering systems
tends to return answers in a form of snippets which contain the specific answer
to the question asked by the user. BoB returns the specific information which is
quired by the user, as well as to handle information given by the user (supports
a dialog). BoB operates in a constant stimulus-response loop that maps a user
utterance to a corresponding system response. The mapping between the user
utterances and the system response is done via the shallow form of natural
language understanding – regular expression pattern matching extended with
boolean operator combinators. In BoB the system answer and pattern pairs are
organized hierarchically as nodes in a in a focus tree. It should be noted that
at the present BoB is in the preliminary phase of development and only a part
of the focus tree in German and English is operational. Once completed, BoB
will be able to handle dialog in English, German and Italian.

We will first show a more specific description of the focus tree and the search
over it, as done by BoB . Then we will point out the weaknesses of BoB which
can be overcame by using a logic reasoning provided by a Logic Support Unit.

2.1.2 Structure of BoBs focus tree and search algorithm

The goal of a focus tree is to predict a coherent continuations of discourse. Each
node of the tree represents a possible state in the on-going dialog. The nodes
can be seen as an abstract representation i.e. elements that are currently being
focused on in the conversations. In the nodes of BoB’s tree there are two com-
ponents: information about the last user input (an abstraction representation)
and the corresponding canned-text system response. At the moment BoB does
not keep any information on the dialog history between two user utterances.

The structure of BoB’s focus tree is inherited from the Stella library in-
formation system2 that has been used for several years by the library of the

1The majority of this Section is courtesy of Manuel Kirschner, the developer of BoB
2http://www.sub.uni-hamburg.de/informationen/projekte/infoass.html

11

SPECIAL_LIBS

SERVICE_RANGE

ACQUISITION

USAGE

TOUR

CURRENT_INFO

SERVICE

who can use the library?
scanning
how old do I have to be?
I am a (...). Can I use the lib.?
which services does the lib. offer?
can children use the lib.?
how can I put a book on reserve?

ORGANIZATION ENQUIRYCOMPLEX

(ROOT)

where can I get help?
how do I use the lib.?
phone enquiry
physical access

projects
exhibitions
research projects
traineeship
job offers
news

can I borrow from special lib.?
where are the special lib.?
library system
subject experts
who is responsible for subject (...)

new acquisitions
notification when arrived
where do books come from
who chooses
propose acquisition
missing a book

where to meet for tour
booking tour online
guided tour
[CD]: where to meet?

Figure 2.1: A small fragment of the focus tree from BoB: lines of lower-case text
denote the leaf nodes that contain a pattern-response pair

University of Hamburg. In their project, a team of librarians has been checking
and fine-tuning the focus tree by looking at log files of actual dialogs with Stella
users.

The organization of the top nodes in the focus tree are topic nodes that are
used to cluster child nodes into topically related subtrees. The topic nodes do
not have a regular expression pattern or a system response directly attached to
them. All the possible answers that can be retrieved by the system are contained
in the leaves. To illustrate how the focus nodes are organized in the focus tree,
Fig. 2.1 depicts a small fragment of BoB’s focus tree. Names in upper-case
letters denote “abstract” topic nodes that are used to cluster child nodes into
topically related subtrees; they do not have a regular expression pattern or a
system response directly attached to them. It is only the leaf nodes that contain
a pattern-response pair.In the figure, every single lower-case text line (inside the
large boxes) stands for one leaf node. The names of these nodes should give
an intuition about the kinds of user questions that should be matched by the
corresponding regular expression pattern.

To provide one example from the BoB focus tree, here are the contents of
the leaf node “how old do I have to be?” (located under “service range” in
the focus tree):

Pattern ((from (which|what) age|how old|below .* age|not yet .* old)
((can|must) I)) && (use the library |library use |get .* (library
card|account) |sign up)

Response Everybody above the age of 18 can sign up for a library account.

When the user enters a new query, BoB attempts to find a suitable node in
the focus tree in order to return the system response stored there. The search
for the adequate topic depends both on the user input and on the previously
active focus node. The search begins in the local neighborhood of the previously
active node among ”related” topics that are likely continuations in a coherent
dialog.

12

A new dialog starts with the root node as current focus node. Then all
siblings (sub-topics) of the current node are searched, followed by a search of
the descendants a selected sub-topic until a match is found. If a match is not
found the algorithm moves one node up in another sub-topic and searches the
decedents of the siblings.

2.1.3 Weaknesses of BoB which can be improved by a LSU

A system such as BoB can achieve an overall good efficiency by combining
the pattern matching with predicted-topic tree organization of the searched-for
answers domain. However, these systems also have certain weaknesses which
are inherited from the regular expressions, as well as undesirable constraints
which are introduced by the focus tree.

Regular expressions match exact patterns of symbols thus perform a syntac-
tic parsing of the input sentence. In order to correctly identify the topic of the
users question (and with that successfully locate the correct answer), it is not
sufficient to only look at the constituents of the utterance. Consider for example
the question ”How can I print the search results?” and the question ”How can
the printed material of the library be searched?”. Both of these questions can
be mapped both to the topics ”search” and ”print”. Clearly the first question
falls under the topic ”print” (the focus of the question is on printing) while the
second one falls under the topic ”search”. Without looking at the semantic roles
of the matched lemmas print and search it is not possible to correctly identify
the topic, hence parsing of the question and answers is needed.

The precision of the answer retrieval by BoB depends on the precision of
the regular expressions in the leaf nodes. In order for BoB to return a precise
answer, the question has to be specifically predicted in the leaf nodes of the
focus tree. By using general answers and robust regular expressions the system
loses the ability to retrieve the specific information quired by the user. However,
by increasing the precision of the regular expressions in the leaves, the entire
IQA System losses its robustness. It would be able to perform ideally on the
questions it expects, but it would be unable to respond to questions which are
not predicted. The case of Stella indicates that building an optimal focus tree
is a process that span through several years of work by domain experts.

A too specifically built focus tree introduces another weakness in the BoB
system. The required level of specificity varies from question to question and
it can happen that the users question is more general then the predicted one.
Consequently the full answer to the question can be spread in more then one leaf
node. If such a situation occurs the search algorithm will locate both answer
leaves but will return only one, although both are needed.

Lastly, even by using the optimal focus tree, this kind of answer retrieval
will only return what is a ”most likely” answer. For a given question from the
user there is no way to verify if what is retrieved certainly answers the question.

In order to cope with these weaknesses we propose that BoB is augmented
with a Logic Support Unit. Given a question from a user, BoB will use its search
algorithm to traverse the focus tree and retrieve not the most likely, but all the
possible answers that match the regular expression. The LSU will take as input
from BoB the users question and all the answers which BoB has retrieved. It will
build semantic representations of them. By pairing the semantic representation
of the question with the semantic representations of each of the possible answers

13

it will verify or refute one by one each of the possible answer. Once an answer
is verified the LSU will extract the specific information quired from its semantic
representation. The LSU will translate the specific information back to natural
language and return it to BoB. If more then one answer is verified, then the
specific information will be extracted from each one of them and returned to
BoB. By using the LSU for doing the specific information extraction, BoB’s
focus tree can be kept robust which will save the long time and effort needed
for its ”fine tunning”.

In the next section we will propose the architecture the LSU which has the
necessary capabilities to serve as logic support for BoB. The system can be used
as a logic support for any alike Interactive Question Answering system that is
able to narrow down the retrieved answers to a small set of most likely answers.

2.2 Logic Support Unit for IQA

In this section we will propose the architecture of a unit which has the necessary
capabilities to serve as logic support for BoB. The system is designed inspired
by BoB, but it can be used as a logic support for any alike Interactive Question
Answering system that is able to narrow down the retrieved answers to a small
set of most likely answers.

We will begin by specifying the capabilities which a Logic Support Unit
for BoB needs to possess in order to improve the weaknesses of the Interactive
Question Answering process presented in the previous section. We will then
present a proposal for an architecture of a LSU that satisfies those desiderata.

2.2.1 Desiderata for the Logic Support Unit

The role which the Logic Support Unit for an Interactive Question Answering
should play in order to provide with an adequate support for an IQA system
implies certain capabilities which the LSU should inevitably possess.

The LSU we are looking for has to have the capability to efficiently (fast and
accurate) build wide-coverage semantic representations of the question and
the answers. The reasons for these demands are the following:

The need for fast processing is directly motivated by the fact that the entire
IQA System is a web based application. The LSU, that works in parallel
with the IQA System, has to satisfy the speed efficiency demanded from
any web application.

The accuracy one of the basic features which the LSU is contributing to the
IQA system – without accurate semantic representations the reasoning
will not be reliable.

The demand for wide-coverage capabilities of the semantic representation is
dictated by the fact that the IQA System we are supporting is accepting
questions directly from users. The LSU has to be able to obtain semantic
representations from any question posed by the user. Although all the
answers that the IQA system can possibly return are known beforehand,
those answers are to be provided by domain experts unfamiliar with the
semantic representation itself. We want the answers to be created with

14

the minimum possible guidance, their creation should be simple for the
domain experts. Using wide-coverage semantic representation will enable
us to reduce the guidelines for creating answers to the minimum. The
usage of a wide-coverage semantic representation tool increases the overall
portability of the LSU system and makes it easy to be adopted for any
domain without changes of the way the semantic representations are being
built.

In addition to these demands, the representation chosen has to be such that
offers the possibility for efficient reasoning to be implementation over it.

The reasoning which the LSU incorporates has to provide a way for a
possible answer to be verified for a question given the semantic representations
of both. It should also be able to extract the specific information from a once
verified answer. Before choosing/creating a reasoning tool a logic formalism
as to be found for formally representing the problem of verifying an answer
to a question as well as the problem of extracting a specific information from
the semantic representation of the answer. Based on the formalism chosen, a
powerful and efficient automated reasoning solution should be found which will
be able to automate the defined reasoning. This solution should be such that
allows for a choice of off-the-shelf available reasoning tool.

The LSU we need has to possess a background knowledge about the
domain and the world in general represented using the same semantic represen-
tation as the question and possible answers. The goal of the LSU is to provide
intelligence in the process of retrieving an answer to a question. In order to do
so reasoning solely over the possible answers will not suffice. When we intu-
itively attempt to determine if a given text contains an answer to a question,
we need to use not only the information we understand from the text, but also
the information about the context of the text (the domain to which the text
belongs to). We also need to use general knowledge about the world. Consider
for example, the question ”Where can I return the books I borrowed?” and the
possible answer ”The borrowed material can be checked in on the machines or
left with the library staff in the library.” This last sentence answers our ques-
tion, however, no reasoner will be able to reach this verification without domain
knowledge that in the library setting books are material, and to check in or
leave material at the desk are synonyms with return.

Lastly, once the reasoner combined with the background knowledge succeeds
in verifying an answer and extracting the specific information for a question, this
specific information needs to be returned to the IQA and through it to the user.
However, this specific answer will be in the shape of semantic representation
and we need to return it to the user in natural language. In order to do so, the
LSU needs to incorporate a unit which will be able to translate the extracted
semantic representation of the requested specific information back into natural
language i.e. it needs to contain a natural language generator.

2.2.2 Proposed Architecture for the LSU

We will now propose an architecture for a system which has the described capa-
bilities to serve as a Logic Support Unit for an IQA System. The architecture
of this Logic Support Unit is shown on Figure 2.2.

15

The LSU has five components. We will shortly represent each of them before
we explain the intended functionality of the entire system.

• a subunit for building semantic representations. We chose to use first-
order logic to build the semantic representations of the natural language.
To build the first-order representations we will use an off-the-shelf tool
(boxer(combined with the CCG parser).

• a subunit for reasoning over the built semantic representation (verifying
an answer and extracting the specific answer). We have chosen to translate
the first-order representation of the question and the answer into logic
program rules and use the Answer Set Programming setting to verify that
a question is answered, as well as to extract the specific answer from A.
For the implementation of the ASP setting we have chosen the state-of-
the art ASP solver—the DLV System. The outcome of an ASP solver are
answer sets which in the Reasoning subunit will be analyzed to determine
if the answer processed has been verified and used to extract the specific
answer (if such exists).

• a natural language answer generator which transforms the extracted
specific answers semantic representation back to natural language. We
assume that this subunit accepts the output from the Reasoning subunit
which will be in form of a set of Prolog-like facts. Given these facts and the
natural language answer they originate from this unit generates a natural
language phrase or a sentence.

• a background knowledge base which is combined with the semantic
representations of the answers for improving the reasoning for verification
and written in DLV syntax.

• an answers repository which is in the form of a look-up table. Given that
all the possible answers which can be retrieved by BoB are known before
hand (they are the leaves of BoB’s focus tree) we can process them off-line.
(The black arrow in the Figure shows the flow of this process). We will
then store the built semantic representations in a table. When a possible
answer passed on to the LSU, the LSU will search the answers repository
for a matching representation. This is more efficient (faster) then building
the semantic representation over and over each time a possible answer is
retrieved.

The LSU and BoB combined are intended to function in the manner we will
next describe. When a users question is received, BoB processes the question
by using its regular expressions and the search algorithm over the focus tree
to retrieve a list of possible answers to the question. (We considered not more
then five possible answers for efficiency reasons.) The question (green block
arrow on the figure) is then translated into its first-order representation in the
Representation section of the LSU and into DLV rules in the Reasoning section.
Let us denote the result with Q. The possible answers, lets assume there are
three of them PA1 , PA2 and PA3 (pink block arrow on the figure) are sent to the
answer repository for a DLV representation match, which corresponds them, to
be retrieved. Assume the corresponding matches are A1, A2 and A3. For each
of the answers a tuple is formed together with the question and the background

16

knowledge. In the case we have three answers we will have three tuples Q ∪
A1 ∪KB, Q ∪ A2 ∪KB and Q ∪ A3 ∪KB. Each of these tuples is sent to the
DLV system and the resulting answers sets of each are analyzed for verification
and specific information extraction. The results of the analysis (which are in
the form of grounded predicate symbols (they are the same as Prolog facts),
combined with the answer in natural language to which they belong to , are
then sent to the Natural Language Answer Generator (represented with the blue
block arrow in the figure) to be translate back into natural language phrase or
sentence and returned to BoB (orange arrow on the figure). The answers which
failed the verification test will be sent to the natural language generator as a
natural language answer unpaired with additional information.

In case none of the possible answers was verified for an answer a final attempt
for verification will be made, by sending the set Q∪A1∪A2∪A3∪KB to the DLV
system. This is done to cover the possibility that the answer to the question is
spread into more then one possible answers. This tuple is treated like another
regular possible answer, namely the reasoning over it and the analysis of its
answer sets is done exactly the same as for the other possible answers.

The development of the LSU we here propose contains the four difficult
problems of Natural Language Processing: semantic representation, reasoning,
generating background knowledge to support the reasoning and natural language
generation. The question and answers have to be semantically represented. A
reasoning formalism and implementation has to be determined which will meet
the demands we pose on the LSU. The reasoning can not be completed without
a knowledge base containing the background knowledge of the university library
domain. Once an answer is verified and extracted it will be in the form of a
semantic representation and before it can be returned to BoB (i.e. the user)
the LSU has to translate the (semantically represented) specific answer back to
natural language.

The time frame of one master thesis allows us to tackle only one of these
four problems. Nevertheless, we have chosen to work on both representation
and reasoning because these two problems are co-dependent and for practical
purposes one can not be considered without the other. In order to be able to
devote our attention to both we have decided to find the most basic solutions
for the representations in order to be able to set up the reasoning framework as
well. We have also decided (given that this is an application oriented research)
to employ as many as possible state-of-the-art available tools. To this end,
we use the boxer of C&C Tools to build semantic representations of natural
language (English) and the DLV system to implement the reasoning framework
we will propose to be used.

As we mentioned, we chose to use the first-order semantic representation.
On the one hand first-order logic is insufficient to cover all the linguistic phe-
nomena of natural language, but on the other it is too expressive for efficient
reasoning to be performed over it. In order to cope with the undecidability of
the representations we have devoted considerable amount of our attention in
this thesis to define Lexicon Restrictions on the natural language used. The
LSU will function over restricted natural language. These restrictions and the
representations which they yield, as well as the achieved results by using the
restrictions proposed, will be thoroughly described in Chapter 4.

The remaining of the thesis is concerned with developing the Reasoning

17

Figure 2.2: The proposed architecture of the Logic Support Unit

18

Module of the LSU. The work done on this sub-unite is presented in Chapter 5.
We assume the existence of a Knowledge Base (KB) written in DLV rule syntax,
however the development of such a KB out-ranges the scope of this thesis. We
will only briefly consider the properties of the needed Background Knowledge
for this LSU in the Section 5.4 of Chapter 5.

The specifics of the Natural Language Generator are outside of the the scope
of this thesis.

In the next Chapter (Chapter 3) we present how the first-order represen-
tation are constructed, the tool we use for this purpose, as well as the logic
formalism for verifying a possible answer (logical entailment) and extracting
specific information from a verified answer.

19

Chapter 3

Semantic Representations

of Natural Language

For the LSU to perform efficiently, in particular to offer efficient reasoning,
we need to ensure the decidability of the first-order representation for natural
language. To do this we determine Lexicon Restrictions for the language used in
the sentences of the possible answer and the question over which the reasoning
is performed. These Lexicon Restrictions have to be simple to use and with
wide coverage to represent most of the natural language the LSU works with.

To discover these Lexicons we studied the mechanism of building the first-
order formulas from natural language. In this chapter we present how our
first-order representations are built. The goal of this chapter is to serve as a
preliminary study for the problems treated in this thesis.

We begin by presenting the underlying theory of formal semantics in natural
language, followed by a description of the tool we will use to build the first-
order representations. We will also present the syntactic properties of these
representations.

The outlined semantic properties of the representations were used as a guide
in constructing the Lexicon Restrictions and as a base for developing of the
most adequate reasoning formalism for verifying an answer and extracting the
specific information from a verified answer.

In the last section (Section 3.3) we present question answering formalisms
from related work in QA which can be applied in the case of first-order logic
representations. We discuss why these formalisms do not fit our purposes and
make an analysis on the semantic properties of the first-order formulas which
represent the possible answers. We used the analysis presented in this section
as a further guide toward finding an adequate logic reasoning formalism.

3.1 First-Order Representations of Natural Lan-

guage

First-order logic is well established in Natural Language Processing as the lan-
guage of choice for performing efficient semantic analysis for many state-of-art
systems ([15], [29]). The choice of first-order logics is motivated by its impres-

20

sive theoretical coverage of linguistic phenomena [39], [26], [15]. The current
state of automated deduction offers a range of highly sophisticated inference
tools for first-order logic. For any other language with more expressive power
(such as second-order or higher-order logic) there simply are no efficient tools
available to be used at present.

Our choice is vastly supported by the availability of an off-the-shelf tool
which is powerful enough to efficiently build wide-coverage first-order represen-
tations for natural language sentences – boxer combined with the CCG Parser
both provided by C&C Tools1.

In section 3.2 we will in more detail present the tool (boxer) which we
will use, as well as the properties of the first-order representations which are
produced by boxer , but first we will briefly look into the problematic of de-
riving semantic representations for natural language, focusing more on deriving
semantic representations by using Combinatory Categorial Grammar (CCG).

Theory of Formal Semantics

Formal Semantic of natural language was pioneered in the 1960s and early 1970s
by Richard Montague, an American mathematician and philosopher who was
a student of Alfred Tarski. He stated that there is no essential difference be-
tween the semantics of natural languages (as fore example English) and formal
languages (as for example predicate logic). In this spirit Montague founded the
theory, which after his death was known as Montague Grammar. The Montague
grammar is based on formal logic, especially lambda calculus and set theory.
Montague Grammar presents the basics of many contemporary formal semantics
theories. 2The central idea of the Montague Theory is that a formal grammar
for natural language should be able to be cast in the following form: the syntax
is an algebra, the semantics is an algebra, and there is a homomorphism map-
ping elements of the syntactic algebra onto elements of the semantic algebra.
This very general definition leaves a great deal of freedom as to nature of these
algebras. The homomorphism requirement formalizes one of the most constant
features of this theory, over time – the Principle of Compositionality:

”The meaning of a whole is a function of the meanings of its parts
and their mode of syntactic combination.”

Relying on the central idea of the Montague Theory, and based on work by
Ajdukiewicz, Bar-Hillel proposed a grammar formalism in which every syntactic
derivation corresponds to a semantic interpretation. This formalism, Categorial
Grammar, has been developed further in many ways. One of its extensions is
Combinatory Categorial Grammar (CCG) [50].

CCG is a grammatical theory which provides a completely transparent inter-
face between surface syntax and underlying semantics [33]. Each (complete or
partial) syntactic derivation corresponds directly to an interpretable structure.
This allows CCG to provide an account for the incremental nature of human
language processing. The syntactic rules of CCG are based on the categorial

1http://svn.ask.it.usyd.edu.au/trac/candc
2The brief outline of the origins of Montague grammar, as well as summariza-

tion of the basic principles of the classical form of the theory can be found on
http://people.umass.edu/partee/docs/MontagueGrammarElsevier.PDF

21

calculus of Ajdukiewicz [1] and Bar-Hillel [5] as well as on the combinatory
logic of Curry and Feys [25].

In CCG, same as in any categorial grammar, words are associated with very
specific categories which define their syntactic behaviour. The set of syntac-
tic categories is defined recursively building over atomic categories (such as S
(sentence), NP(noun phrase), N(noun), PP(Propositional Phrase) etc.). A set
of universal rules defines how words and other constituents can be combined
according to their categories. In addition to the rules of combinatorial gram-
mar (backward and forward application), CCG also allows for the following
rules: Forward and Backward composition, Forward and Backward cross com-
position, Generalized Forward and Backward composition, Generalized Forward
and Backward cross composition, Forward and Backward Type-raising, Forward
and Backward Substitution and Forward and Backward Crossing Substitution.
For a detailed introduction and elaboration on the rules we direct the reader to
[50] or [33].

Combinatory Categorial Grammar (CCG) provides a particularly simple
and semantically transparent treatment of extraction (long distance depen-
dency) and coordination. The immediate availability of interpretable predicate-
argument structure (or logical forms) even for those constructions is what makes
CCG particularly attractive for any application which requires semantic inter-
pretation [33].

One of the main reasons for the natural language to be intuitively regarded
as very different from formal languages (such as first-order logic) is its ambiguity.
Ambiguity arises in natural language analysis when more than one interpreta-
tion is possible for a given sentence. The ambiguity may be lexical, structural
or semantic. Lexical ambiguity occurs when a lexical entry allows a word more
than one possible meaning. Syntactic ambiguity occurs when there are differ-
ent possible syntactic parsers for a grammatical sentence. Semantic ambiguity
refers to the broad category of ambiguity which arises when the meaning of
the sentence must be determined with the help of greater knowledge resources.
For example, the problem of resolving simple pronominal reference falls under
semantic ambiguity [4]. Because of the ambiguity of natural language, it is not
sufficient (and often impossible) to return all analysis that a grammar provides
for a sentence. Syntactic analysis, or parsing, forms an integral part of any
system which required natural language understanding, since it is a prerequisite
for semantic interpretation.

To make parsing an efficiently computer processable task, the linguistic com-
munity turned toward deriving the most likely analysis instead of all the analysis
that a grammar provides for a sentence. In recent years, programs that use sta-
tistical models to analyze a wide range of natural language sentences with high
accuracy have been created (e.g. [23] and [21]).

Today the state-of-the-art statistical parser (CCG Parser) developed for
CCG, which offers efficient and robust parsing of real text3, is available as an
off-the-shelf tool trough C& C Tools. The parser uses a grammar derived from
CCGBank ([34], [33]) and produces only one analysis which is (the most likely
interpretation) for the sentence it parses. The parser is highly efficient and it
can parse up to 35 newspaper sentences per second. The details on the CCG
Parser can be found in [22].

3http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Parser

22

boxer takes as an input the derivation produced from the CCG Parser
and builds first-order representations. We will next present in more detail the
process of producing first-order representations by boxer as well as the proper-
ties of the first-order representations obtained. The full information on boxer

(description, usage, availability, examples and demo) can be found on the web
page of C&C Tools.

3.2 BOXER

boxer is a component of C&C Tools developed by Johan Bos. It takes as an
input CCG derivations outputted by the C&C tool the C&C parser and uses
them to generate semantic representations. boxer implements a first-order
fragment of Discourse Representation Theory, DRT [39] and generates the box-
like structures of DRT known as Discourse Representation Structures (DRSs).
DRT is a formal semantic theory backed up with a model theory, and it provides
large coverage of linguistic phenomena [24]. boxer implements a first-order
fragment of DRT 4. The DRS’s of this DRT are translated to obtain first order
logic representations. Before looking at the first-order representations created
by boxer we will first briefly describe these DRS’s.

The Underlying Discourse Representation Structures

DRSs are recursive data structures which are defined over a set of first-order
variables and a vocabulary which describes predicate symbols and their respec-
tive arities. A DRS is comprised of a domain (a set of variables which in the
DRT are called discourse referents) and a set of conditions. Formally:

If {x1, . . . , xn} is a finite set of variables and {γ1, . . . , γ1} a finite set of DRS
conditions, then the ordered pair 〈{x1, . . . , xn}, {γ1, . . . , γm}〉 is a DRS.

The DRS conditions are defined by simultaneous recursion using the follow-
ing clauses:

1. If R is a relation symbol for an n-place predicate and x1, . . . , xn are vari-
ables then R(x1, . . . , xn) is a (simple) DRS-condition.

2. If x1 and x2 are variables, then x1 = x2 and x1 6= x2 is a (simple) DRS-
condition.

3. If B is a DRS then ¬B is a (complex) DRS-condition.

4. If B is a DRS and x is a variable then x : B is a (complex) DRS-condition.
x : B means that the discourse referent x is related to the DRS B.

5. If B1 and B2 are DRSs, then B1 ∨ B2 and B1 ⇒ B2 are (complex)DRS-
conditions.

4boxer implements the (standard) DRT theory as presented in [39] with two exceptions
– the Van der Sandt’s ”presupposition as anaphora” theory and the neo-Davidsonian analysis
for events and roles.

23

The relation symbols are derived from the words in the parsed sentence.
Nouns, verbs, adjectives and adverbs introduce one-place relations. Named enti-
ties are also represented as one-place relations, for example Rome is represented
by rome(x).

Verbs are treated as events to which the semantic roles agent, patient and
theme are associated. boxer always represents the verbs both with the unary
relation event and the unary verb relation over the same variable (for example
y). In addition it creates the associated roles as binary relations by making their
first argument the variable y shared between the verb and the event relation 5.
For example, the verb and associated roles, (as well as the noun and pronoun) for
the sentence ”You may use the service” will be represented by the predicates
accordingly: person(x), service(y), use(z), event(z), agent(z,x), patient(z,y).
This approach to treating verbs as events is known as the neo-Davidsonian
analysis of events and roles.

Verb-roles and prepositions introduce two-place relations. Apart from the
unary and binary predicates introduced directly by the words of the language,
and the reserved predicates event, agent, patient and theme, the full list of other
special predicates that appear in the DRSs built by boxer can be found on the
web pages of the C& C Tools. All the predicates symbols which appear in the
DRSs built by boxer are either unary or binary.

Besides the core DRS language, described above, there are two operators.
The first operator is unary (it takes a DRS as an argument) and its purpose is
to indicate presupposed and anaphoric information withing a DRS. The second
operator is binary (it takes two DRS as arguments) and it is used to indicate a
merge between two DRSs. The result of both of these operators is a DRS built
over the core DRS language.

Presupposition triggers are the following words: determiners (such as the,
both, another, all, . . .), possessives (such as my, mine, hers, . . .), pronouns (such
as I, he, it, . . .), presuppositional adjectives (such as other, previous, new, . . .)
and proper names. Presupposition triggers are being treated by boxer in two
ways.

One of the ways of treating presupposition triggers is by accommodating
them on an accessible level of DRS. For example, other country is represented
as a DRS with discourse referents {x, y} and DRS conditions {country(x),
country(y), x 6= y}. The second way is by resolving presuppositions by binding
them to a suitable antecedent. This way possessives and pronouns are repre-
sented using one of the following reserved predicates: person (for example for I,
yours), neutrum (for example for it), female (for example for she, hers), male
(for example for him, he).

boxer performs the presupposition and anaphoric resolution on the level of
a sentence or across sentences (depending on user selection) over the built DRSs
before performing the translation to first-order logic. The precise algorithm for
implementation of presupposition resolution can be found in [14]. This approach
to handling presuppositions is known as the Van der Sandt’s ”presupposition
as anaphora” theory. The details of this theory are presented in [26]. boxer

builds one DRS for one CCG derivation (one derivation corresponds to one
grammatical sentence).

5Unlike the (standard) DRT in [39] according to which represents verbs as unary, binary
or ternary relations with the semantic roles which are associated with them as arguments of
the verb relation

24

The way boxer builds the DRS is compositionally by employing the lambda-
calculus. boxer creates first-order representations by translating the DRS’s.
We show the essentials of the compositional semantic representation mecha-
nisms through the viewpoint of the first-order representations because that is
the semantic representation that we will work with, as well as for simplicity rea-
sons. The construction mechanism we presented after presenting the translation
from a DRS to a first-order logic formulas and the properties of the obtained
formulas

From Discourse Representation Structures to first-order formulas

We will present here the translation function f◦ for a DRT and a DRT-conditions
as given in [11]. boxer recursively, bottom-up, implements the translation rules
of f◦ over a DRS and builds one closed first-order logic formula for each DRS.

The definition of the translation function f◦ follows.

Assume that D is a DRS with a universe x1, . . . , xn and a set
of conditions γ1, . . . , γm. γi can be either a simple or a complex
DRS-condition. The translation of D to first-order logic is defined
as:

1. f◦(D) = ∃x1 · · · ∃xn(f
◦(γ1) ∧ · · · ∧ f◦(γm))

2. If γi is a simple DRS-condition then:
f◦(γi) = f◦(P (x1, . . . , xn)) = P (x1, . . . , xn)

3. If γi is a complex DRS-condition and D1 and D2 are DRSs
then:

(a) f◦(¬D1) = ¬(f◦(D1))

(b) f◦(D1 = D2) = (f◦(D1) = f◦(D2)

(c) f◦(D1 ∨D2) = (f◦(D1) ∨ f
◦(D2)

(d) IfD1 has the universe y1, . . . , yk and the conditions γ′1, . . . , γ
′

l ,
and if D2 has the universe z1, . . . , zp and the conditions
γ′′1 , . . . , γ

′′

q then:
f◦(D1 ⇒ D2) = ∀y1, . . . ,∀yk(f

◦(γ′1) ∧ · · · ∧ f◦(γ′l)) ⇒
∃z1 · · · ∃zp(f

◦(γ′′1) ∧ · · · ∧ f◦(C ′′

q))

(e) If x is a discourse referent, then:
f◦(x : D1) = f◦(D′) , whereD′ is a DRS obtained from the
DRS D when x is added to the universe of D and event(x)
or proposition(x) (depending on whether the DRS D was
representing an event or a proposition) is added to the
conditions of D.

�

Properties of the first-order formulas

Here we will outline the properties of the first-order representations which are
obtained from boxer.

We denote with ψ the first-order formulas which are produced by boxer.
According to this translation (step (b)), equality will appear in ψ if and only if
there exists the equality complex DRS-condition in the translated DRS. Because

25

the properties of the formulas with equality differ from those of the formulas
without equality, certain notions should be given regarding to the presence and
properties of the equality relation conditions in the DRS’s.

The equality conditions in a DRS built by boxer can be deriving from only
two sources.

In boxer the equality relation is used to denote the verb is when it stands
as an indicator that one item (object, property or event) is the same as another.
For example, in the sentence ”The books are the material we used.”, the equality
DRS-conditions used will be x = y (where book(x) and old(y)). (Note that when
is is used to assign a property to a noun, as in for example The sky is blue.,
there will be no equality in the semantic representation.) The verb ”is” that is
represented with the equality DRS-condition in fact (speaking in the language
of databases) is the one which conveys the meaning of an ”isa” relation between
concepts.

The second source is the underlying DRT. In DRT the equality, as a rela-
tion between variables, exists to indicate anaphoric and presupposed informa-
tion, same as in the previously presented example of the representation of other
country.

However, we will only translate DRS’s in which the presupposition and
anaphoric information has already been resolved. Consequently, all the equality
in ψ will be derived from the representation of the verb is.

Based on this, once the presupposition and anaphoric resolution is performed
the resulting DRS’s will only contain equality relations which correspond to the
meaning of the verb is. boxer represents equality with the binary predicate
eq due to the Prolog syntax for DRS it employs and we will treat this pred-
icate symbol eq as a special representation which indicates the ”isa” relation.
(It would be fairly simple, although not really necessary, to replace all the eq

predicates with isa predicates.) By preserving the specific semantics of the isa
predicates by adding additional rules in the knowledge base of the Logic Sup-
port Unit (see Section 5.4), we can consider that the DRS’s fed for translation
to first-order formulas does not contain equality DRS-conditions.

We can now state the following properties of ψ.

• Based on step (1) of the translation function f◦ we can conclude that the
ψ will be an existentially closed conjunctions of sub-formulas, namely they
will be of shape:

ψ = ∃x(ϕ1(x) ∧ · · · ∧ ϕn(x))

• Because all the simple conditions of the translated DRS are unary and
binary and f◦ does not alter them in any way including their arity, all the
predicate symbols in ψ will be with a bound arity: either unary or binary.

• Because we treat all equality DRS-conditions after resolution was per-
formed as special predicates, the signature of ψ will not contain equality.

• Because the language of the translated DRS contains no function symbols
and constant symbols and f◦ does not introduce function symbols and
constant symbols the signature of ψ will not contain function symbols and
it will not contain constant symbols.

In the next section we will show, using the first-order language, how the
semantic representations are compositionally constructed.

26

Building the Semantic Representations

boxer uses λ-calculus to compositionally construct the semantic representa-
tions. As mentioned, it does so over the DRS language, however, for our pur-
poses, we will present this same mechanism using the language of first-order
logic (as given in [34]). The actual λ-DRS approach used by boxer can be
found in [15]. We assume that the reader is familiar with the terminology and
the basics of λ-calculus. The unfamiliar user can consult for example [8].

Consider an example lexical entries (categories)(in angle brackets we indicate
the syntactic categories):

a 〈NP/N〉 librarian 〈N〉 : λp.∃x(librarian(x) ∧ p@x)

works 〈S\NP 〉 : λy.∃e(work(e) ∧ agent(e, y))

where the @ denotes functional application, the variable p marks the missing
information provided by the verb phrase, while the variable y marks the missing
information provided by the noun phrase.

Combinatory rules project lexical categories such as a, librarian and works
onto derived categories such as a librarian. In the above example, using (back-
ward) functional application, the two categories yield the following expression:

λp.∃x(librarian(x) ∧ p@x)@λy.∃e(work(e) ∧ agent(e, y))

β-conversion is the process of eliminating all occurrences of functional ap-
plication by substituting the argument for the λ-bound variables in the functor.
β-conversion turns the previous expression into a first-order translation for A
librarian works.:

∃x(librarian(x) ∧ ∃e(works(e) ∧ agent(e, x))).

The output of the CCG parser is a tree representing a CCG derivation,
where the leaves are lexical items and the nodes correspond to one of the CCG
rules. Mapping the CCG derivation into a semantic representation consists of
the following tasks:

1. assigning semantic representations to the lexical items;

2. reformulating the combinatory rules in terms of functional application;

3. dealing with type-raising and type changing rules;

4. applying β-conversion to the resulting tree structure.

We will shortly explain how these tasks are handled.
Lexical items are ordered pairs consisting of the CCG category and a lem-

matied wordform. This information is used to assign a λ-expression to the leaf
nodes in the tree. For most open-class lexical items boxer uses the lemma
to instantiate the lexical semantics. This is illustrated by the following two
examples (intransitive verbs and adjectives):

〈S\NP, walk〉 = λqλu.q@λx.∃e(walk(e) ∧ agent(e, x) ∧ u@e)

〈N/N, big〉 = λpλx.(big(x) ∧ p@x)

27

For closed-class lexical items the lexical semantics is spelled out for each
lemma individually, as in the following two examples:

〈(S\NP)\(S\NP), not〉 = λvλqλf.¬((v@q)@f)

〈NP/N, all〉 = λpλq.∀x(p@x→ q@x)

The second task deals with the combinatory rules. The CCG formalism that
boxer uses, employs the following rules: forward and backward functional ap-
plication (FAPP, BAPP), generalized forward composition (FCOMP), backward
composition (BCOMP), generalized backward-crossed composition (BCROSS),
type-raising (TYPERAISE) and type-changing (TYPECHANGE). (There is
also a coordination rule conjoining categories of the same type.)

FAPP(x,y) = (x@y)

BAPP(x,y) = (y@x)

FCOMP(x,y) = λπ.(x@(π@y))

BCOMP(x,y) = λu.(y@(u@x))

BCROSS(x,y) = λπ.(y@(x@π))

The type-raising and type-changing rules are dealt with by looking up the
specific rule and replacing it with the resulting semantics. For example, the rule
that raises the category NP to S/(S\NP) converts the semantics as follows:

TY PERAISE(NP,S/(S\NP), x) = λvλe((v@x)@e)

The following type-changing rule applies to the lexical semantics of categories
of type N and converts them to NP:

TY PECHANGE(N,NP, y) = λp.∃x(y@x ∧ p@x))

Tasks 1-3 are implemented using a recursive algorithm that traverses the
derivation and returns a λ-expression. Task 4 reduces the λ-expression to the
target representation by applying β-conversion. In order to maintain correct-
ness of this operation, the functor undergoes α-conversion(renaming all bound
variables for new occurrences) before substitution takes place. β-conversion is
implemented as presented in [11].

Semantic Representations of Questions

The semantic of questions is different then the semantics of ”declarative” sen-
tences, hence a bit more attention should be given to the representations of
questions we will build using boxer .

A question is a linguistic expression used to make a request for information.
We will distinguish between two types of questions:

1. WH Questions. These are questions which are formed out of the following
WH-phrases (question words): who, which, what, where, why, when and
how in the role of a question word.

28

2. Boolean Questions. These are questions that do not contain a question
word and whose answer is either yes or no.

In this thesis we will not consider questions which have more then one WH-
phrase as a question word. For example, questions like ”Where and how can I
print my search results?” need to be separated in two questions before being
processed. Questions that have one WH-phrase as a question word and a relative
pronoun as it is the case in ”Where is the book which I ordered?” will be handled
by our system.

The CCG parser (paired with Boxer) outputs questions as queries of the
form6:

{x | ∃y(ϕ(y) ∧D(x) ∧ ∃z(ψ(x,y, z)))
︸ ︷︷ ︸

α

} (3.1)

where x represents the answer to the question, D is the domain of the question,
ψ represents the body of the question, and ϕ represents the knowledge that is
presupposed by the user posing the question. As mentioned, we will consider
wh-questions and boolean questions. In the first case, if the wh-phrase is where,
who/whom, how, when, what, or why, then D refers to location, person, manner,
unit of time, thing and reason, respectively. If the wh-phrase is which, then
the domain is the head noun of the noun phrase. For example, in the question
“Which services are offered by the library?” the domain is services. If the
question is a Boolean Question, then the domain of the question is empty. In
both cases the body of the question contains a conjunction of conditions.

Apart from the building of the domain predicate, the representation of the
question (the formula α) is built exactly as in the case of the ”declarative”
sentences.

For instance, the question “Who may use the Interlibrary Loan service?” is
represented as follows:

{x | ∃y1∃y2(loan(y1) ∧ interlibrary(y2) ∧ service(y2) ∧ nn(y1, y2)

∧person(x) ∧ ∃z(use(z) ∧ event(z) ∧ agent(z, x) ∧ patient(z, y2)))}

(The special predicate nn(y1, y2)) is assigned to bind two nouns which par-
ticipate in the same noun phrase.)

Linguistic phenomena not covered by BOXER semantic representa-
tions

We found that boxer is a very powerful and efficient semantic representation
tool, but there are certain semantic phenomena which it does not covers.

boxer currently does not deal with the resolution of pronouns. Consider
for example the first-order representation of the sentence I took my book.:

∃x1∃x2∃x3∃x4(person(x1) ∧ event(x2) ∧ take(x2) ∧ agent(x2, x1)

∧book(x3) ∧ person(x4) ∧ of(x3, x4) ∧ patient(x2, x3)))

6Boxer actually outputs such open FOL formulas as closed formulas in which the free
variable is universally quantified and the second conjunction is represented by an implication.

29

To resolve the pronouns in this sentence is to indicate that person(x1) and
person(x4) are the same person, i.e. all x4 should be replaced by x1.

Ellipsis(the row of three full stops (... or . . .) or asterisks (***) which
indicates an intentional omission)is also not being handled by boxer . A proper
analysis of tense and aspect is not given and also there is no distinguishing
between distributive and collective readings of plural noun phrases7.

The statistical parser we used for CCG and hence boxer does not handle
scope ambiguities. A scope ambiguity is a type of semantic ambiguity which
occurs when two quantifiers or similar expressions (as for example a negation and
a disjunction) can take scope over each other in different ways in the meaning
of a sentence8. Consider for example the sentence ”Every user borrows a book.”.
The more prominent meaning of this sentence is that for every user, there is a
book, and it’s possible that each user borrows a different book. But the sentence
also has a second possible meaning, which says that there is one particular book
which is borrowed by every user. There are two representations in first-order
logic corresponding to each meaning:

∀x(user(x) → ∃y∃z(book(y)∧borrow(z)∧event(z)∧agent(z, x)∧patient(z, y))

∃y(book(y)∧∀x(user(x) → ∃z(borrow(z)∧event(z)∧agent(z, x)∧patient(z, y))))

boxer always assigns the first interpretation in these cases.
Modal verbs, such as ”may”, ”should”, ”could” etc., are not represented by

boxer . Their presence in the sentence (and question) is ignored. The semantic
representation built for the sentence ”I should borrow a book.” is exactly the
same as the semantic representation built for the sentence ”I must borrow a
book.”:

∃x0∃x1∃x2(person(x0) ∧ book(x1) ∧ borrow(x2) ∧ event(x2)

∧agent(x2, x0) ∧ patient(x2, x1))

As mentioned before, lexical semantics for closed-class lexical items is spelled
out for each lemma individually. The closed-class does not contain the lemma
”without” and its proper semantic representation. The lemma without should
have a negation in its semantic representation.

We also find that there should be a ”spelled out” semantic representation
for the lemma exception. At present it is being treated the same as any noun
phrase, however for the purposes of reasoning it is important that there is a
semantic representation of this lemma.

Lastly it should be made clear that boxer only builds semantic representa-
tions over English.

3.3 Reasoning Formalisms for IQA

We have shown how semantic representations can be built using boxer , as well
as the (syntactic) properties of the first-order formulas obtained.

7http://www.isi.edu/∽hobbs/metsyn/node9.html
8http://www.coli.uni-saarland.de/projects/milca/courses/comsem/xhtml/SEC CLLS-

SCOPE-INTRO.xhtml

30

The primary goal of the Logic Support Unit is to verify (by means of logic)
if a question (represented with the first-order formula Q) is certainly answered
by a possible answer (represented with the first-order formula A). To this end,
a logical formalism is needed to represent the relation which holds between a
question and a text (possible answer) which answers it.

In Chapter 1 we mentioned one formalism which is fitting to the first-order
representations for the possible answer and question we obtain from boxer. We
state this formalism as it is presented in [16].

Definition 3.3.1. Let A be a first-order representation of an answer. Let D(x)
be the domain of the question, as in the representation 3.1 and B(x) be the
body of the question. B(x)=ϕ(y) ∧ ψ(x,y, z), ϕ and ψ are the body and the
context of the question from representation 3.1. The following propositions are
stated:

1. ∀x[D(x) ⇒ B(x)] ∧A

2. ∃x[D(x) ∧B(x)] ∧A

3. ∃x[D(x) ∧ ¬B(x)] ∧A

4. ¬∃x[D(x) ∧B(x)] ∧A

This answer verification formalism (given in Definition 3.3.1) requires for
satisfiability testing of the above formulas. The satisfiability testing can be
implemented with a theorem prover paired with a model builder. Each of the
propositions is sent to the theorem prover which attempts to find a proof of
inconsistency, and a model builder which attempts to build a model for the
proposition.

This formalizing approach offers many choices for implementation (the field
of first-order theorem proving offers many efficient tools), however it only for-
malizes the verification of the answer and not the extraction of the specific
answer. To find a way to formalize both we considered some work in semantics
of questions.

Work on the semantics of questions ([32], [45]) has argued that the formal
logic relation between a question representation Q and a text that answers it
A (referred to as licensing by [32] and aboutness by [45]) is the relation of
logical entailment. Using this notion, we state a formalism which can offer both
for the possibility to verify an answer and to extract a specific answer for the
verified answer.

Definition 3.3.2. Given a first-order representation A of a natural language
text TNL and a first-order representation Q of a natural language question
QNL we will say that the text TNL answers the question QNL if and only if the
entailment A |= Q holds. We will call this entailment relation which connects
the question with its answer the question answering entailment. For Q being a
question represented with:

Q = ∃y(ϕ(y) ∧D(x) ∧ ∃z(ψ(x,y, z))) (3.2)

the variable assignment for x which satisfies Q is a specific answer to Q.

31

The entailment relation states that all the models of the answer must sat-
isfy the question as well. These models of the question will each contain one
assignment for the specific answer x. All the x which are specific answers to a
question are the union of the assignments for x in the models for A.

In Chapter 4 we propose restrictions for natural language which guarantee
that the entailment between the first-order representations of the possible an-
swer and question from this language, A |= Q, is decidable. However, deciding
the entailment is not enough and we need to build all the models of A to use the
formalism for retrieving specific answer. Currently, to the best of our knowl-
edge, there is no tool which we can use to build all these models. To circumvent
this lack of adequate tools, in Chapter 5 we re-formalize the problem of verifying
an answer and extracting a specific answer in terms of Answer Set Program-
ming (ASP). In the remaining of this chapter we show our observations on the
semantic of the first-order formulas which represent the possible answer. We
used these observations as a guide in developing the ASP formalisms for answer
verification and specific answer extraction.

In the remaining of this section we discuss the model semantic properties
of the first-order formulas A which are built as representations to the natural
language possible answer.

Models of the representation A

We have observed that to determine if the question answering entailment holds,
it is not necessary to consider all the models of A. Instead of for A, it is sufficient
to check if the question answering entailment holds for a formula AS which is
equi-satisfiable to A and is obtained from A by Skolemzation. The reason for
this is that the first-order representations admit models which are redundant
to be considered from a natural language point of you. We will show why we
consider AS to be better a better choice for representing the possible answer by
looking into the properties of the models of A.

Let ϕ be a first-order representation of natural language text. A model for a
ϕ would be a structure which consists of a finite set of individuals (the domain
of the model) and an assignment function I which maps each variable from the
representation to an individual of the domain.

In formal semantics of natural language one place predicates (also referred
to as properties) are seen as sets of individuals represented trough constant
symbols. The interpretation for a unary predicate symbol P will be the set of
individuals that have the property P .

The interpretation of binary predicate symbols is seen as sets of ordered
pairs of individuals (relations). For a binary symbol Q the interpretations are
all the ordered pairs of individuals which stand in a relation Q.

The model can be represented as a set of grounded properties and relations,
for example 〈P (a), P (b), . . . , Q(a, b), Q(c, d), . . .〉.

The assignment function I in the case of ϕ must be injective because the
formulas outputted by boxer are resolved for presupposition and anaphora.
Consequently, each variable denotes a unique individual and two variables can
not be assigned the same individual from the domain. Consider the Example
3.3.1 and its corresponding first-order representation ϕ.

32

Example 3.3.1. ”The person runs.”

ϕ = ∃x∃y (person(x)∧run(y)∧event(y)∧agent(y,x)).

In the case when I is not injective, the formula ϕ can admit a model in
which the variable x is assigned to a and also the variable y is assigned to a.
In this model, such an assignment would indicate that a is a person, but also
that a is the event run. However, this does not make sense and it can not be
the intended intuitive meaning of the sentence ”The person runs.”

To express that ϕ should only be satisfied if and only if I is injective, the
formula ∀x∀y x 6= y should be conjuncted to ϕ, however boxer does not do this
and hence ϕ will admit models in which the assignment function I is not injec-
tive. We do not want to take into consideration these models for the question
answering entailment.

The domain of a model for ϕ consists of a nonempty set of constant symbols
(denoting the individuals). These constant symbols will not be rigid designa-
tors. This conclusion derives from the following properties of the boxer derived
formulas.

Recall that the formulas produced by boxer do not have constant symbols
in their signature. All the verbs, nouns, adjectives and adverbs are represented
with unary predicate symbols and all the variables must appear bound by at
least one of these unary predicates. In these representations personal nouns are
”lifted” to unary predicate symbols as well and they are not represented with
constant symbols. Consider the Example 3.3.2 and its corresponding first-order
representation.

Example 3.3.2. ”The person Marija runs.”

∃x∃y (person(x)∧marija(x)∧run(y)∧event(y)∧agent(y,x)).

The personal name Marija does not get represented with a constant, but with
a predicate symbol which shares a variable with the noun it belongs to(person).
Consequently, the individual represented with the variable x will be, inter-
preted with a symbolic name constant and x will not be the person marija,
but an individual with the property person and the property marija. The set
{〈marija(a), person(a), run(b), event(b), agent(b, a))〉} and
{〈marija(c), person(c), run(d), event(d), agent(d, c))〉} will in fact be equiva-
lent.

The constant symbols in the domain are symbolic names for the individuals
which have the properties represented with the unary predicates. The individual
is identified by the unary predicates it belongs to (it grounds) and not by the
symbolic name it has been assigned in the model.

Recall that ϕ is an existentially closed formula. In first-order logic semantics,
for a formula ∃xP (x) to have a model (be satisfied), there has to be at least
one (but possibly more then one) interpretation for x for which P (x) evaluates
to true. This interpretation of the existential quantifier is too general for the
intended semantics of natural language (representations).

In boxer representations the existential quantifiers are introduced trough
the verbs and their associated semantic roles, as well as trough the determiners
of the noun phrase. The representation of a sentence will always be existentially
closed because there is always a verb in the sentence. However, the meaning of

33

these existential quantifiers is to indicate the presence of exactly one individual
x. Consider the Example 3.3.3and its corresponding first-order representation.

Example 3.3.3. ”I borrowed the books.”

∃x∃y∃z (person(x)∧book(z)∧borrow(y)∧event(y)∧agent(y,x)∧patient(y,z))).

The intended meaning of the sentence ”I borrowed the books.” is that there
is one event borrow which is executed by exactly one person (indicated by ”I”
) over exactly one object ”the book”. Which exactly are these individuals,
we do not know. For this the representation of this sentence to be true in
a model9 the should be one interpretation for each variable bound by these
existential quantifiers. More then one interpretations are superfluous and not
in accordance of the intended semantic of natural language10.

Obtaining AS

To determine if the question answering entailment holds between Q and A, we
do not want to take into consideration the models allowed for the representation
A which do not make sense as an intended meaning for the natural language
which A represents. For this reason, instead of for the models of A we want to
look for specific answers in the Herbrand models of the equi-satisfiable formula
AS , obtained by Skolemizing A. The Herbrand models of AS will be a subset of
the models of A and will only allow models which make sense to be considered
as intended semantics of the natural language which is represented with A. (For
the unfamiliar reader, the basic definitions of Herbrand Interpretations we give
at the end of this section)

The Skolemization procedure we will use is the following [43]:

1. Replace in A all sub-formulas of form ∃xψ(x) and which are not in the
scope of any universal quantifier with the sub-formula ψ(c). The constants
c (also referred to as Skolem constants) must not appear in the signature
of A. Let us name the resulting formula Ae−.

2. If ∃yφ(y) is a sub-formula in Ae− which is under the scope of the quantifier
expression ∀ z1 · · · ∀ zn, replace it with the sub-formula φ(f(z1, . . . , zn)).
Replace all such sub-formulas in Ae−. All the function symbols f (also
referred to as Skolem functions) used in the replacements must not appear
in the signature of Ae−.

The result of this procedure is AS . AS is equi-satisfiable to A. For proof
see for example [43]. It is evident that all the Herbrand Models of AS will be
a subset of the models of A—each Herbrand Model of AS can be transformed
into a model of A by assigning to the variables in A the corresponding Skolem
constants or Skolem terms which replaced them during Skolemization.

In the first step of the Skolemization we replace some existentially quanti-
fied variables with Skolem constants. By doing this we are choosing one possible

9the truth conditions are in accordance to those proposed by Tarski. For more details on
truth conditions in natural language semantics we refer the reader to [39].

10Because boxer does not represent plurals, the sentence ”The students borrow books” will
also have the same representation as in Example 3.3.3. In this case the intended semantics
of the sentence is that there is one group of students which performs the one event of borrow

over the group of books. However, this information will be lost.

34

variable assignment out of many possible variable assignments. However, one
variable assignment that satisfies the formula is sufficient to be considered. Re-
call that which constant symbol represents the individual from the domain is
not important because there were no prior constant symbols in the formula and
the constant symbols are not rigid designators. By ”naming” the individuals
with the Skolem constants we do not reduce the number of possible models
”meaningful” models for AS and hence for A (because AS is a subset of A).

The first step of the Skolemization also ensures that the existentially quan-
tified variables are only interpreted with one individual, by assigning the sym-
bolic name to the individual. An interpretation in which a is assigned to y in
∃y run(y) and also to x in ∃x person(x) (from Example 3.3.1) will never be a
Herbrand Model for AS .

In the case of the second step of the Skolemization, the remaining exis-
tentially quantified variables are replaced with Skolme function symbols. The
latter are introduced to preserve the connection between the universal and exis-
tential quantifier. We will give the intuition behind this introduction of function
symbols as well as the properties of the Skolem functions in natural language
representations trough an example.

Example 3.3.4. Every student borrows a book.

∀x→ ∃y∃z(student(x) ∧ book(z) ∧ borrow(y) ∧ event(y) ∧ agent(y, x)

∧patient(y, z)).

∀x→ (student(x)∧book(f1(x))∧borrow(f2(x))∧event(f2(x))∧agent(f2(x), x)

∧patient(f2(x), f1(x))).

In this example, the intuitive meaning of book(z) is the book which is being
borrowed particularly by person(x). f1 can intuitively be interpreted as ”which
belongs to”, because the conveyed meaning of the term book(f1(x)) is ”book
which belongs to the individual x”.

In this case (when the existential quantifier is under the scope of the universal
quantifier) we can not simply assign a symbolic name to z because the existence
of an assignment for the variable z in a model depends on the existence of
an assignment for the universally quantified variable x. We do not know if
there is an individual with the property book in the domain of the model. An
interpretation for the Skolemized formula 3.3.4 will exist even if there are no
individuals with the property person in the domain – if there is no person there
need not be a book. By replacing the existentially quantified variable x with
a constant symbol instead of with a function, we would force the presence of
an individual with the property book in the domain even when there are no
individuals with the property person in it.

In first-order logic semantics, the Skolem functions can have arbitrary inter-
pretations. This means that we can chose to evaluate f1 (from Example 3.3.4)
by f1(x) = 3. However, the Skolem functions f1(x) has to be evaluated to an
individual which has the property book. Any other evaluation will not satisfy
the formula. This means that the domain of the Skolem functions is bound to
the domain of the predicate symbol under which it appears – the domain of f1

can only be a subset of the set {z | book(z) =true}.

35

A first-order formula A (without equality) has a model if and only if it has
a Herbrand Model (the Herbrand Theorem). We find The Herbrand Interpre-
tations of AS are closest to the interpretations of predicates symbols in formal
semantics ; one Herbrand Model differs from another Herbrand model (of the
same formula) if it has a different set of grounded predicate symbols. In Her-
brand interpretations, the constant symbols and the function symbols are not
interpreted. This is convenient when finding models for natural language rep-
resentations because, all the function terms in AS are grounded Skolem terms
and those are nothing else but yet another symbolic name for the individuals of
the domain. We do not need to interpret the function symbols. For example, in
book(f1(a)), the term f1(d) is an evaluation for x , namely a symbolic name
for the individual to which x is evaluated to.

For the unfamiliar reader we present here the definitions of Herbrand Inter-
pretation.

Definition 3.3.3. A Herbrand Universe for a given formula ϕ is the set
of all constant symbols {c1, c2 . . .} which appear in ϕ and the set of all terms
which can be built from these constant symbols using all the function symbols
{f1, f2 . . .} from ϕ. If the formula contains no constant symbols one constant
symbol is added to the universe. The Herbrand Base is finite if the signature of
ϕ does not contain function symbols.

Corollary 3.3.1. The Herbrand Universe of ϕ is finite if the signature of ϕ
does not contain function symbols.

Definition 3.3.4. A Herbrand Base for a given formula ϕ is the set of all
possible grounding of the predicates symbols of ϕ using the constants from the
Herbrand Universe.

Corollary 3.3.2. The Herbrand Base of ϕ is finite if the Herbrand Universe
of ϕ is finite.

Definition 3.3.5. A Herbrand Interpretation for a given formula ϕ is the
subset from the Herbrand Base. A Herbrand Model for ϕ is the Herbrand
Interpretation for which the formula ϕ is satisfied.

36

Chapter 4

Fragments of Natural

Language

Although first-order logic is not expressive enough, from a natural language
processing perspective, to cover all the linguistic phenomena (like for example,
tense representation, distributive and plurals), from the computational perspec-
tive it is ”too expressive”. The high expressiveness of first-oder logic implies
undecidability of reasoning over it. More precisely, deciding satisfiability and
entailment, which we will use as a formalism to model our reasoning task (verify
a possible answer for a question), are undecidable.

When dealing with the task of providing logic support for an interactive
question answering system it is of essence that the supporting system is able to
efficiently decide if the answer recovered by statistical means certainly answers
the question posed by the user. If the logic support unit is unable to guarantee
decidability over this certainty, then the whole logic support unit loses its pur-
pose because the most probable answer is already being retrieved by statistical
means. Consequently, it is essential that we ensure termination (decidability) in
any implementation of a first-order reasoning (inference) system i.e. find a way
to work only with decidable semantic representations. Because the semantic
representation depends on the syntax of the sentence, to ensure decidability of
the first-order formulas, we have decided to pose restrictions over the natural
language used to build the answers and restrictions over the natural language
allowed for posing a question. These restrictions will reduce of the coverage
boundaries of the Logic Support Unit.

We know before hand all the possible answers which can be retrieved by the
IQA System and we can write them in a restricted language. However, we want
to allow for easy and natural creation of the possible answers by the domain
experts and for this purpose the posed restrictions should be as loose as possible,
as well as easy understandable. In the case of the language of the questions,
we want to allow the users of the IQA system to pose their questions without
difficulty, and possibly without complicated (if any) instructions. Hence, it is
essential to also keep the restriction rules minimal and simple.

Decidable fragments of natural language (fragments which yield decidable
first-order logic formulas) have been presented in the work of Ian Pratt and
Alan Third [49].

37

Pratt and Third build their semantic representations according to Montague
theory using a context-free grammar which they define. They ensure that their
fragments yield decidable semantic representations by defining lexicons which
contain only certain kinds of verbs (transitive and ditransitive) and controlling
the presence of pronouns (relative and reflexive). With these restrictions they
control the number of variables in the obtained semantic representations.

The approach of Pratt and Third is interesting because the restricted natural
language which they define is still wide enough to potentially satisfy our needs.

Our (boxer derived) semantic representations and Pratt and Third’s se-
mantic representation share the underlying theory (Montague Theory), but
boxer represents verbs as events without making a difference between in-
transitive, transitive and ditransitive verbs. With the boxer approach (the
neo-Davidsonian analysis of events) of representing verbs, the type of verb is
represented by the number (and type) of associated semantic roles. The intro-
duction of semantic roles introduces the need for more variables in the semantic
representation than in the semantic representations of the same verbs in [49],
hence the complexity results of Pratt and Third do not hold for boxer semantic
representations over their natural language restrictions.

The circumvention of boxer altogether and the usage of the Pratt and
Third approach to derive semantic representations is unjustified. Pratt and
Third do not possess an implementation for a parser that would build semantic
representations according to the grammar they use. Their results are primarily
theoretical.

To obtain semantic representations which are decidable, we will try to con-
trol, not the number of variables in the first-order formulas, but the presence
and number of the universal quantifier and the negation in the formulas. This
approach derives from observations made about the semantic representations as
well as from the principles according to which the representations are composi-
tionally constructed.

We have observed that the semantic representations for natural language
which we derive (using boxer) are not general first-order logic formulas, but
rather belong to a fragment of first-order logic. We have also observed that this
fragment closely resembles certain decidable fragments of first order logic, but
it is undecidable itself. By taking advantage of the compositional mechanism in
which boxer builds the semantic representations we have found a way to reduce
the semantic representations of the natural language to decidable fragments of
first-order logic by imposing as minimal as possible restrictions to the lexicon of
the natural language. We constrict the presence and/or the number of certain
words in a sentence. The rules which define our restrictions are minimal and
simple enough to allow for building answers and posing questions in a natural
way.

The goal of this chapter is to present the restrictions of natural language
we impose. The structure of this chapter is as follows. First we will present
the decidable fragments of fist-order logic to which we want to restrict our
semantic representations. Then we will define and single out the words whose
usage we intend to restrict. These are the words which introduce the logic
operators implication, disjunction and negation in the semantic representations.
In the remaining of the chapter we will define the lexicons allowed to be used
in a natural language sentence (the constituents of the answers retrieved by
the statistic answer retrieval system) and a lexicon lexicon of allowed natural

38

language questions.
For each of the ”answers” lexicons we are going to describe the first-order

logic formulas (as obtained by boxer) for a sentence built according to their
rules. We will show that these formulas are decidable for satisfiability. By using
an analysis of the FAQ sheet of our library domain we will show the percentage
of coverage of the described lexicons.

For the ”questions” lexicon we will also describe the first-order logic formulas
(as obtained by boxer) for questions built according to its rules. We will
show that the entailment relation between answers and questions of the defined
lexicons is decidable. We are going to use an analysis of question corporas
(presented in [10]) to show the coverage capabilities of our lexicon.

4.1 Decidable Fragments of First-Order Logic

By observing the mechanism and the results of the process of building semantic
representations by boxer, we have established that the first-order formulas
obtained resemble two well known fragments of first-order logic. We are going
to restrict the natural language in such a way for the semantic representations
to belong to one of these decidable fragments.

Before proceeding with the motivations for the natural restrictions and the
definitions of the restrictions we will briefly introduce these decidable fragments
of first-order logic. We will define both of the fragments and then state those
properties (of the formulas which belong to them) which we will use later.

The Bernays-Schönfinkel-Ramsey (BSR) class

The Bernays-Schönfinkel-Ramsey class of decidable formulas of first-order logic
is one of the first discovered decidable fragments(1929). It was named after the
logicians Paul Bernays and Moses Schönfinkel. In some of the literature (as in
for example [13]) the name of the logician Frank Plumpton Ramsey is added
to the name of the class, because he proved that this class of formulas has the
finite model property if every satisfiable formula in the class has a finite model
(Ramsey theorem). For a detailed analysis of this decidable class we refer the
reader to [13].

Definition 4.1.1. The Bernays-Schönfinkel-Ramsey (BSR) class of formulas is
the class of first-order logic formulas which do not contain function symbols in
their signature and that, when written in prenex normal form, have an ∃∗∀∗

quantifier prefix.

The formulas of the Bernays-Schönfinkel-Ramsey class are decidable for sat-
isfiability in

∑p
2 time. The proof for the complexity of satisfiability for this can

be found in various literature. See for example page 293 of [13].

The Guarded Fragment (GF)and the Loosely Guarded Fragment (LGF)

The guarded fragments (without equality) were introduced by Andréka, Németi
and van Benthem [2] in 1998. The complexity results for satisfiability of the
Guarded and the Loosely Guarded Fragment (with equality) were given by Erich
Grädel [31]. The proof that the Loosely Guarded fragment has the finite model

39

property is presented in [36]. We state here the definitions of the Guarded
Fragment and the Loosely Guarded Fragment as they are given in [31].

Definition 4.1.2. The Guarded Fragment GF of first-order logic without func-
tions symbols is defined by induction as follows:

1. Every atomic formula belongs to the GF.

2. GF is closed under the propositional connectives ¬, ∧, ∨, ⇒ and ⇔.

3. If x,y are tuples of variables, α(x,y) is atomic and ψ(x,y) is a formula in
GF such that free(ψ) ⊆ free(α), then the formulas

∃y(α(x,y)) ∧ (ψ(x,y))

∀y(α(x,y)) ⇒ (ψ(x,y))

belong to the GF.

Here, free(ψ) means the set of free variables of ψ.

Definition 4.1.3. The Loosely Guarded Fragment (LGF) is defined similarly
to GF in 4.1.2, but the quantifier-rule is relaxed as follows:

1. Every atomic formula belongs to the LGF.

2. LGF is closed under propositional connectives ¬, ∧, ∨, ⇒ and ⇔.

3. If ψ(x,y) is in LGF, and α(x,y) = α1∧· · ·∧αm is a conjunction of atoms,
then

∃y(α1 ∧ · · · ∧ αm) ∧ (ψ(x,y))

∀y(α1 ∧ · · · ∧ αm) ⇒ (ψ(x,y))

belong to LGF, provided that free(ψ) ⊆ free(α) = {x,y} and for every
quantified variable yi and every other variable z ∈ {x,y} there is at least
one atom αj that contains both yi and z.

We are going to use the results on the complexity for satisfiability of the GF
and the LGF, when the formulas have a bound on the arity of the predicate
symbols. The formulas of the Guarded and the Loosely Guarded Fragment are
decidable for satisfiability in exp time if their predicate symbols have a bound
arity. The proof for the complexity of satisfiability for the GF and the LGF is
presented in [31].

4.2 Logic Operator Introducing Words

boxer builds the semantic representations compositionally starting from the
leaves of the CCG derivation tree. The leaves of the tree contain lexical items
(ordered pairs consisting of the CCG category and a lemmatised wordform).
Each of these lexical items is assigned a λ-expression. The semantic represen-
tation for the sentence is obtained by applying the combinatory rules of CCG
(reformulated in terms of functional application) over each of these λ-expression
and applying β-conversion to the result. The function application rules and the

40

β-conversion rule can not introduce logic operators (∃,∀,¬,∧,∨,→). Conse-
quently all the logic operators in the final first-order representation will be
propagated from the λ-expressions of the lexical items.

We have already noted that in the implementation of boxer semantic rep-
resentation representation for the closed-class lexical items is spelled out for
each item individually (note that in boxer an item can also be a phrase as for
example ”instead of ” and not only a lemma). By studying the implementa-
tion of boxer we have observed that all the lexical items which introduce the
logic symbols ∀,¬,∨ and → are members of the closed-class of lexical items.
Consequently, the logic symbols ∀,¬,∨ and → will be present in the semantic
representation (the first-order formula) of a sentence if and only there is a lex-
ical item present in the CCG derivation of the sentence (a word or a phrase in
the NL sentence) which is a member of the closed-class lexical items who has
(one or more of) these logic symbols in its assigned λ-expression. In addition
we have observed that the logic operator (quantifier) ∀ only appears together
with the logic operator →.

We will exploit these observations to determine natural language restrictions
which will ensure that the semantic representations over such restricted natural
language sentences belong, or can be reduced, to one of the decidable fragments
of first-order logic we already defined.

In order to define the natural language restrictions we intend to pose, we will
first present the closed-class lexical items which introduce the logic operators
¬,∨ and →. These are the words and phrases whose presence and frequency in
a sentence we will restrict.

Negation and Implication Introduces

The words which introduce the logic operators negation and implication are
considered together because it can happen that both logic operators are being
introduced by one lexical item. There are a few groups (according to their
assigned λ-expressions) of words which introduce negation and/or implication:

1. Simple Negation Introducer

Simple negation introducer is one of the lexical items: another, instead of,
neither, nobody, none, noone, no-one, not, nothing, other, previous.

One of the simple negation introducer words introduces exactly one nega-
tion in the semantic representation of the sentence in which it appears.
The reason for this is that the λ-expression assigned to each of the simple
negation introducer is:

λV λQλF.¬((V@Q)@F) (4.1)

The expression (V@Q)@F is said to be in the scope of the negation. The
scope of the negation indicates which expressions will be negated. In
natural language, when the scope of negation intersects with he scope of
another logical operator, there can be more then one semantic represen-
tation which applies. This is a case of scope semantic ambiguities which
we mentioned earlier. boxer does not handle scope ambiguities and it
produces only one semantic representation.

41

For example, in the sentence Mary did not see or meet the student the
scope of the negation intersects with the scope of the disjunction. There
are two possible interpretations for this sentence. According to the first,
the phrase ”see or meet” is in the scope of the negation. According to
the second, only the verb ”see” is negated. boxer will build the second
interpretation.

In the remaining of this chapter, to denote the presence of one Simple
Negation Introducer per sentence, we will add the letter N to the name of
the lexicon which allows simple negation introducing words.

2. Implication Introducer

Implication introducer is one of the lexical items: all, any, anybody, any-
one, anything, anywhere, each, either, every, everybody, everyone, every-
thing, everywhere, few, if. Implication introducer are also those lexical
items (noun s) which have been assigned the category (NP\NP)/N[num],
namely the phrases which express that a number property holds for each
member of a group. For for example in the phrase ”seven cents a share”,
the noun ”cents” will be assigned the category (NP\NP)/N[num].

One of the implication introducer words introduce exactly one logic oper-
ator implication in the semantic representation of the sentence in which
it appears. The reason for this is that the λ-expression assigned to each
of the implication introducer word is:

λPλQ.∀x(P@x→ Q@x) (4.2)

The expression (P@x → Q@x) is said to fall under the scope of the uni-
versal quantifier, and the variably x is said to be universally bound.

As it was the case with negation, here also the universal quantifier can give
rise to scope ambiguity if it intersects with another quantifier or similar
expression. This example was considered at the end of Section 3.2.

In the remaining of this chapter, to denote the presence of one Implication
Introducer in a sentence, we will add the letter I to the name of the lexicon
which allows simple negation introducing words.

3. Special Negation Introducer

Special negation introducer is one of the lexical items: no, neither, nowhere.

One of the special negation introducer words introduces exactly one nega-
tion and one implication in the semantic representation of the sentence in
which it appears. The reason for this is that the λ-expression assigned to
each of the members of the special negation introducer group is:

λPλV λQλF.∀x(P@x→ (¬((V@Q)@F)@x) (4.3)

In the case of special negation introducer lexical items, the scope of the
negation falls under the scope of the universal quantification.

In the remaining of this chapter, to denote the presence of one Special
Negation Introducer in a sentence, we will add the letter NS to the name
of the lexicon which allows special negation introducing lexical item.

42

4. Superlatives

Superlatives are adjectives or adverbs which indicate that something has
a feature to a greater degree than anything it is being compared to in a
given context.

Each superlative introduces both implication and negation in the semantic
representation of the sentence it appears in. Because of the complexity of
the first-order formulas obtained from natural language sentences which
contain superlatives as well as the fact that no superlative appear in the
FAQ sheet for the library domain which we use for answer retrieval in our
IQA system, we will exempt the superlatives from all the lexicons we will
define and work with in this thesis.

Disjunction introducer

Lastly we are going to look into the introduction of the logic operator disjunction
in the semantic representations of natural language sentences.

Disjunction is a form of coordination in the sentence. Disjunction introducer
we will call the the lexical items: or, all the range constructions (e.g., ”10 to
20”).

The λ-expression assigned to each of the members of the disjunction intro-
ducer group is:

λPλQ.P ∨Q (4.4)

P and Q are in the scope of the disjunction. Disjunctions can also give rise
to scope ambiguities. Considered the example we gave in the case of simple
negation introduces.

In the remaining of this chapter, to denote the presence of arbitrarily many
Disjunction Introducer items in a sentence we will add the letter D to the name
of the lexicon which allows these items.

The logical operators groups of lexical items we have introduced will serve
us as a base to define the restrictions of the natural language which will guar-
antee us decidable semantic interpretations. We will establish the restrictions
by defining lexicons of allowed and forbidden lexical items (words/phrases) over
which we will build the comprising sentences of the possible answer or the ques-
tion. Because the semantic representation of a question differs from the semantic
representation of a declarative sentence, we are going to define lexicons sepa-
rately for the possible answers and the questions. We will begin by defining
the lexicons for the possible answers. It is enough to consider the Lexicons for
individual sentences, because a text of more then one sentence is semantically
represented as a conjunction of the semantic representations of the individual
sentences.

4.3 Lexicon Restrictions for Declarative Sentences

We will now look into lexicon restrictions for controlling the natural language of
the possible answers which can be retrieved by the IQA system over the library
domain.

43

We consider a possible answer to be a short text (up to five sentences) of
declarative sentences in English. Declarative we will call every sentence which
is not a question.

In this section we will start by defining a basic lexicon which contains none of
the words whose semantic representations introduce the logical operators nega-
tion, implication, disjunction and consequently the universal quantification. We
will show the properties of the representations of sentences built over this ba-
sic lexicon and we will then extend this lexicon to include a controlled number
of words/phrases previously defined as Negation Introducer, Implication Intro-
ducer and Special Negation Introducer, as well as Disjunction Introducer.

For each of the defined lexicons we will show the general schema of first-order
representations and their equv-satisfiable formulas obtained by Skolemization
1for a sentence built over the lexicon in question. We will show the decidable
first-order logic fragment to which the schema belongs to together with the
complexity results for deciding satisfiability for that fragment, as well as the.
For each lexicon, once we define all of them, we will also show how many of
the sentences from the answers of our FAQ sheet can be built using only words
allowed by the lexicon in question.

4.3.1 The EC Lexicon

The first lexicon we will define is the most basic one which will be contained in
all the subsequent lexicons defined in this chapter. This basic lexicon contains
all the words of natural language except the words (and phrases) previously
defined as Simple Negation Introducer, Implication Introducer, Special Nega-
tion Introducer, Disjunction Introducer and Superlatives. (Recall that boxer

does not represent plurals and tense.) The semantic representations of the sen-
tences build over this lexicon are built out of the following language: constants,
variables, unary and binary predicate symbols, existential quantifiers and con-
junctions. Because the only logic operators that appear in these representations
are the Existential quantifier and the Conjunction we will name this lexicon the
EC Lexicon.

Definition 4.3.1. EC Lexicon is the lexicon which contains all the words
of natural language except the words (and phrases) previously defined as Sim-
ple Negation Introducer, Implication Introducer, Special Negation Introducer,
Disjunction Introducer and Superlatives.

We will now derive the general schema which describes all the first-order
representations of sentences built from the EC lexicon.

The semantic representations built by boxer consist of predicate symbols
which can only be unary or binary. Also recall that boxer produced first-
order formulas do not contain constant symbols. Because we have removed
all the possible sources of universal quantification, implication, disjunction and
negation the semantic representation of all the words from the EC Lexicon will
be built from the following language:

unary predicates, binary predicates, variables, existential quan-
tifiers and conjunctions

1recall that we in Section 3.3 we stated that instead of with the direct representation of
possible answers A we will work with the eqiv-satisfiable formula AS

44

Consequently, all the first-order representations of sentences built from the
EC Lexicon will fit the schema presented in 4.5. With P we will denote the
unary predicates and with Q the binary predicates. The formula 4.5 will not
contain any free variables.

∃x1 · · · ∃xn

m∧

1

P (xi) ∧
s∧

1

Q(xj , xk) i, j, k ∈ {1, . . . n} (4.5)

Because the formula 4.5 contains only the logic symbols {∃,∧} which is
not a complete set of boolean operators, the formulas 4.5 can be reduced to
propositional logic and as such will always be satisfiable. This is stated in the
corollary 4.3.1.

Corollary 4.3.1. The first-order representations of sentences of the EC Lexicon
built by boxer are always satisfiable.

If the formula 4.5 is Skolemized as described in Section 3.3, we will obtain
the Formula 4.6. Note that 4.6 will have exactly one Herbrand Model.

m∧

1

P (ai) ∧
s∧

1

Q(aj , ak) i, j, k ∈ {1, . . . n} (4.6)

Consider the following example (Example 4.3.1) of a sentence built using
only words of the EC Lexicon and its corresponding first-order representation.

Example 4.3.1. The current opening hours of the University Library can be
found at the website.

The first-order representation:

∃x0 ∃x1 ∃ x2∃ x3 ∃x4 (university library(x0) ∧ opening(x1) ∧ current(x2)

∧ hour(x2) ∧ nn(x1, x2) ∧ of(x2, x0) ∧ website(x3)

∧ find(x4) ∧ patient(x4, x2) ∧ event(x4) ∧ at(x4, x3))

The Skolemized equ-satisfiable formula:

university library(a0) ∧ opening(a1) ∧ current(a2)

∧ hour(a2) ∧ nn(a1, a2) ∧ of(a2, a0) ∧ website(a3)

∧ find(a4) ∧ patient(a4, a2) ∧ event(a4) ∧ at(a4, a3)

We proceed by extending the EC Lexicon with Disjunction Introducer’s and
observe how this extension influences the first-order representations of natural
language sentences built by boxer.

45

4.3.2 The ECD Lexicon

Extending the EC lexicon with disjunction.

Apart from the words allowed in the EC lexicon we are going to addition-
ally allow for arbitrarily many lexical items (words/phrases) which we previously
described as Disjunction Introducer’s. Consequently, apart from the constants,
variables, unary and binary predicate symbols, existential quantifiers and con-
junctions, the semantic representations over the new lexicon will also contain
disjunctions. To denote that the new lexicon is obtained by extending the EC
Lexicon with Disjunction we will name it the ECD Lexicon.

Definition 4.3.2. ECD Lexicon is the lexicon which contains all the words
of natural language which are contained in the EC Lexicon and the lexical items
previously defined as Disjunction Introducer.

Compared to the EC Lexicon, which had no sources that introduce universal
quantification, implication, disjunction and negation in the semantic represen-
tation, here in the ECD Lexicon we have arbitrarily many sources of disjunction
(recall that we consider the lexicon of a single sentence). All the first-order rep-
resentations of sentences built from the ECD Lexicon fit, or can be reduced2 to,
the schema presented in 4.7 . Again, with P we will denote the unary predicates
and with Q the binary predicates. The formula 4.7 will not contain any free
variables.

∃x1 · · · ∃xn

m∧

1

(

r∨

1

P (xi) ∨
s∨

1

Q(xj , xk)) i, j, k ∈ {1, . . . n} (4.7)

The formula 4.7 contains only the logic symbols {∃,∧,∨} which is still not
a complete set of boolean operators. Consequently the formulas 4.7, as the
formulas 4.5, can be reduced to propositional logic and as such they will be
always satisfiable. This is stated in the Corollary 4.3.2.

Corollary 4.3.2. The first-order representations of sentences of the ECD Lex-
icon built by boxer are always satisfiable.

If the formula 4.7 is Skolemized as described in Section 3.3, we will obtain
the Formula 4.8.

r∨

1

P (ai) ∨
s∨

1

Q(aj , ak) i, j, k ∈ {1, . . . n} (4.8)

We will consider an example, a sentence built only with words from the ECD
Lexicon.

Example 4.3.2. A user can access the services of the University Library with
a Student Card or a Campus Card.

First-Order representation:

2The reduction in question is the standard reduction of an arbitrary logic formula to a
Conjunctive Normal Form (CNF)

46

∃x0 ∃x1 ∃x2 ∃x3 ∃x4 ∃x5 (university library(x0) ∧ service(x1) ∧ of(x1, x0)

∧ user(x2) ∧ access(x3) ∧ agent(x3, x2) ∧ patient(x3, x1)

∧ ((event(x3) ∧ campus card(x4) ∧ with(x3, x4))

∨(event(x3) ∧ student card(x5) ∧ with(x3, x5))))

The Skolemized equ-satisfiable formula:

university library(a0) ∧ service(a1) ∧ of(a1, a0) ∧ user(a2)

∧access(a3) ∧ agent(a3, a2) ∧ patient(a3, a1) ∧ ((event(a3)

∧campus card(a4)∧with(a3, a4))∨(event(a3)∧student card(a5)∧with(a3, a5)))

Next we will extend the EC Lexicon with one Simple Negation Introducer
or one Special Negation Introducer and observe how this extension influences
the first-order representations of natural language sentences built by boxer.

4.3.3 The ECN Lexicon and ECN
S Lexicon

Extending the EC lexicon with negation.

We will define extensions of the EC Lexicon by negation introducing lexical
items. We will start from the EC Lexicon and first extend it with only one mem-
ber (lexical item) of the Simple Negation Introducer group showing the general
schema and its properties for the representations of sentences constructed over
this lexicon. Next we will repeat the same for the Special Negation Introducer.

The ECN Lexicon.

We will extend the EC lexicon with only one member of choice (per sentence)
from the the Simple Negation Introducer group. This means that we will allow
for sentences which contain one Simple Negation Introducer, as it is the case in
the sentence John did not eat the cupcakes, but we will forbid more then one
Simple Negation Introducer in a sentence, as it is the case in the sentence John
did not eat cupcakes instead of the muffins.

Apart from the constants, variables, unary and binary predicate symbols,
existential quantifiers and conjunctions, the semantic representations over this
new lexicon will also contain negations. To denote that the new lexicon is ob-
tained by extending the EC Lexicon with a negation derived from the semantic
representation of a Simple Negation Introducer we will name it the ECN Lexi-
con.

Definition 4.3.3. ECN Lexicon is the lexicon which contains all the words
of natural language which are contained in the EC Lexicon and one lexical item
previously defined as Simple Negation Introducer.

The presence of not more then one Simple Negation Introducer in the syntax
of the natural language sentence guarantees that there will be only one negation
in the semantic representation of that sentence. All the first-order representa-
tions of sentences built from the ECN Lexicon will fit the schema presented in

47

4.9. Again with P we will denote the unary predicates and with Q the binary
predicates and the formula 4.9 will not contain any free variables.

∃x∃y
m∧

1

P (x) ∧
s∧

1

Q(x,y) ∧ ¬(∃z
m′

∧

1

P ′(y) ∧
s′∧

1

Q(x,y, z)) (4.9)

If we unfold the conjunctions in 4.9, write the formula in prenex normal form
(push all the quantifiers in front of the formula) and push the negation to appear
only in front of atoms, the schema 4.9 will become the schema 4.10, where Pi
will denote a unary or a binary positive atom. (For simplicity we will omit
writing the variables within the predicates.) It is important to emphasize that
the scope of the universal quantifiers in 4.10 does not extend over any existential
quantifiers.

∃x∀y(P1 ∧ · · · ∧ Pn ∧ (¬Pn+1 ∨ · · · ∨ ¬Pn′)) (4.10)

It is evident that the formula 4.10 belongs to the Bernays-Schönfinkel-Ramsey
class. Consequently, the representations of sentences from the ECN Lexicon will
inherit all the properties of the Bernays-Schönfinkel-Ramsey class including the
decidability for satisfiability of this class.

Corollary 4.3.3. For the first-order representations of sentences of the ECN
Lexicon built by boxer, satisfiability is decidable in

∑p
2 time over the size of

the formula.

Note that a conjunction of closed formulas which belong to the BSR class
will also belong to the BSR class.

The Formula 4.11 represents the Formula 4.9 after Skolemization.

m∧

1

P (a) ∧
s∧

1

Q(a,b) ∧ (∀z¬(

m′

∧

1

P ′(b) ∧
s′∧

1

Q(a,b, z)) (4.11)

Note that Formula 4.11 will not contain function symbols because the ex-
istential quantifiers never are in the scope of the universal quantifiers. All the
variables of 4.11 will be universally quantified.

We will consider an example, a sentence built only with words from the ECN
Lexicon.

Example 4.3.3. The access to databases and electronic journals is not re-
stricted to computers within the library.

First-Order representation:

∃x0 ∃x1 ∃x2 ∃x3 (access(x0) ∧ database(x1) ∧ to(x0, x1)∧ electronic(x2)

∧ journal(x2) ∧ to(x0, x2) ∧ library(x3) ∧ ¬(∃x4 ∃x5 (restrict(x4)

∧ computer(x5) ∧ to(x4, x5) ∧ event(x4) ∧ within(x4, x3))

48

The Skolemized equ-satisfiable formula:

access(a0) ∧ database(a1) ∧ to(a0, a1) ∧ electronic(a2)

∧ journal(a2) ∧ to(a0, a2) ∧ library(a3) ∧ (∀x4 ∀x5 ¬(restrict(x4)

∧ computer(x5) ∧ to(x4, x5) ∧ event(x4) ∧ within(x4, a3)))

Next we will extend the EC Lexicon with one Special Negation Introducer
instead of extending it with the one Special Negation Introducer which we just
observed and show that in the case of extension with a Special Negation In-
troducer the first-order representations still belong to the Bernays-Schönfinkel-
Ramsey class of formulas.

The ECNS Lexicon.

We will extend the EC Lexicon with only one lexical item (per sentence)
from the Special Negation Introducer group. As it was the case with the ECN
Lexicon, here also we will allow for sentences which contain only one Special
Negation Introducer.

For example, the sentence John ate no cupcakes will be allowed but the
sentence Nowhere no cupcakes can be found will not be allowed.

Apart from the constants, variables, unary and binary predicate symbols,
existential quantifiers and conjunctions, the semantic representations over the
new lexicon will also contain negations. To denote that the new lexicon is
obtained by extending the EC Lexicon with a negation derived from the semantic
representation of a Special Negation Introducer we will name it the ECNS

Lexicon.

Definition 4.3.4. ECNS Lexicon is the lexicon which contains all the words
of natural language which are contained in the EC Lexicon and one word (or
phrase) previously defined as Special Negation Introducer.

In the most general case, all the first-order representations of sentences built
from the ECNS Lexicon will be a conjunction of arbitrarily many formulas of
shape as presented in 4.5 to which only one formula of shape ∀y (ϕ(x,y) →
¬∃z (φ(x,y, z))) is conjuncted (which derives from the semantic representation
of the unique special negation introducer).

More precisely, all the first-order representations of sentences built from the
ECNS Lexicon will fit the schema presented in 4.12. Here also with P we will
denote the unary predicates and with Q the binary predicates and the formula
4.9 will not contain any free variables.

∃x(

m∧

1

P (x)∧
s∧

1

Q(x)∧∀y(

m∧

1

P (y)∧
s∧

1

Q(x,y) → ¬(∃z
m′′

∧

1

P (z)∧
s′′∧

1

Q(x,y, z))))

(4.12)
When we unfold the conjunctions in 4.12 , write the formula in prenex normal

form and push the negation to appear only in front of atoms, the schema 4.12
will become the schema 4.13. The Pi again denote unary and binary positive
atoms. The scope of the universal quantifier in 4.13 does not extend over any
existential quantifiers.

49

∃x ∀y ∀z(P1 ∧ · · · ∧Pn ∧ ((Pn+1 ∧ · · · ∧¬Pn′) → (¬Pm′+1 ∨ · · · ∨¬Pn′′)) (4.13)

It is now clear that the formula 4.13 will belong to the Bernays-Schönfinkel-
Ramsey class.

As it was the case with the representations of sentences from the ECN Lex-
icon, the representations of sentences from the ECNS Lexicon will also be
decidable for satisfiability.

Corollary 4.3.4. For the first-order representations of sentences of the ECNS

Lexicon built by boxer, satisfiability is decidable in
∑p

2 time over the size of
the formula.

The Formula 4.14 represents the Formula 4.12 after Skolemization.

m∧

1

P (a) ∧
s∧

1

Q(a) ∧ ∀y(¬(

m∧

1

P (y) ∧
s∧

1

Q(a,y) → ∀z
m′′

∧

1

P (z) ∧
s′′∧

1

Q(a,y, z)))

(4.14)
The Formula 4.14 will not contain function symbols because the existential

quantifiers, again, are never in the scope of the universal quantifiers. All the
variables of 4.14 will be universally quantified.

We will consider an example, a sentence built only with words from the
ECNS Lexicon.

Example 4.3.4. John ate no cupcakes.

First-Order representation:

∃x0 (john(x0) ∧ ∀x1 (cucpake(x1) → ¬∃x2 (eat(x2)

∧ event(x2) ∧ agent(x2, x0) ∧ patient(x2, x0))))

The Skolemized equ-satisfiable formula:

john(a0) ∧ ∀x1 ∀x2(cucpake(x1) →

¬(eat(x2) ∧ event(x2) ∧ agent(x2, a0) ∧ patient(x2, x0)))

Next we will now go back to he EC Lexicon we started from and extend it
with one Implication Introducer.

4.3.4 The ECI Lexicon

We are now interested in extending the EC lexicon with an Implication Intro-
ducer. Similarly as we did with the Simple Negation Introducer and the Special
Negation Introducer, the new lexicon will allow for sentences which contain only
one Implication Introducer.

For example, the sentence Everyone eats cupcakes can be constructed from
the EC Lexicon extended with one Implication Introducer, but the sentence
Everyone eats cupcakes all the time. can not be constructed.

50

Now, apart from the constants, variables, unary and binary predicate sym-
bols, existential quantifiers and conjunctions, the semantic representations over
the new lexicon will contain implication and universal quantification but no
negation. To denote that the new lexicon is obtained by extending the EC
Lexicon with an implication derived from the semantic representation of an
Implication Introducer we will name it the ECI Lexicon.

Definition 4.3.5. ECI Lexicon is the lexicon which contains all the words
of natural language which are contained in the EC Lexicon and one word (or
phrase) previously defined as Implication Introducer.

As a result of the semantic interpretation of the Implication Introducer one
sub-formula of the form ∀y (ϕ(x,y) → ∃z (φ(x,y, z))) will appear in the first-
order interpretation of the sentences built from the ECI Lexicon. This sub-
formula will be the representation of the natural language phrase which falls
in the scope of the universal quantifier. The remaining of the representation
corresponding to the remaining of the sentence can only consist of existentially
quantified conjunctions of positive atoms because there are no sources of dis-
junctions and negations in the ECI Lexicon and no other sources of universal
quantifiers and implications.

The first-order representations of sentences built from the ECI Lexicon will
fit the schema presented in 4.15. P denotes the unary predicates and Q denotes
the binary predicates. The entire formula contains no free variables.

∃x(

m∧

0

P (x)∧
s∧

0

Q(x)∧∀y(

m′

∧

0

P (y)∧
s′∧

0

Q(x,y) → (∃z
m′′

∧

0

P (z)∧
s′′∧

0

Q(x,y, z))))

(4.15)
To make the formula 4.15 easier to read we will represent with φ, ϕ and η the
quantifier free conjunctions of positive unary and binary atoms. The result is
presented in the formula 4.16. The formula 4.16 is closed.

∃x (φ(x) ∧ ∀ y (ϕ(xi,y) → ∃ z(η(xj ,y, z)))), xi ⊆ x, xj ⊆ x (4.16)

The formula 4.16 resembles the formulas from the Loosely Guarded Frag-
ment. The condition that will not be satisfied by 4.16 is the condition free(ψ)
⊆ free(α) = {x,y} because the variables xi in ϕ are not necessarily the same
as, or a subset of, the variables xj in η.

We will, however, show that 4.16 is decidable for satisfiability in the same
complexity class as the formulas of the LGF because it can be transformed (in
polynomial time over its size) to an equi-satisfiable formula which belongs to
the LGF.

Theorem 4.3.1. The first-order representations of sentences of the ECI Lex-
icon built by boxer are decidable for satisfiability in exptime time over the
size of the formula.

Proof. Let us name free existential quantifiers those existential quantifiers in a
formula which do not fall under the scope of any of the universal quantifiers of
the formula.

We will transform the formula 4.16 in an equi-satisfiable formula 4.17. In
4.17, a denote constant symbols.

51

φ(a) ∧ ∀ y (ϕ(a,y) → ∃ z(η(a,y, z))) (4.17)

The formula 4.17 is obtained from 4.16 by replacing all the variables which
are bound by free existential quantifiers with fresh constant symbols (a) that do
not appear in the signature of 4.16. This transformation is called Skolemization
and it can be done in polynomial time over the size of 4.16. Proof of the sat-
preservation property of this Skolemization can be found for example as proof
of Lemma 2.2.2 in [43].

The formula 4.17 satisfies the conditions for membership in the LGF: free(η)
⊆ free(ϕ) = {y} and for every quantified variable yi there will be at least one
atom ϕj that contains yi. The latter is a direct consequence of the semantic
interpretation of the Implication Introducer.

As a member of the LGF, 4.17 is decidable for satisfiability in double expo-
nential time over its size. Because all the atoms in 4.17 will have arity of with an
upper bound two (because all the predicate symbols derived froms boxer are
at most binary in arity) the complexity of decidability will in fact be exptime,
a result which was proved in Gr99.

The Formula 4.18 represents the Formula 4.15 after Skolemization.

m∧

0

P (a)∧
s∧

0

Q(a)∧∀y(

m′

∧

0

P (y)∧
s′∧

0

Q(a,y) → (

m′′

∧

0

P (f(y))∧
s′′∧

0

Q(a,y, f(y))))

(4.18)
The Formula 4.14 will contain function symbols. All the variables of 4.14

will be universally quantified.
We will consider an example, a sentence built only with words from the ECI

Lexicon.

Example 4.3.5. All users who possess a Student Card may use the Interlibrary
Loan service.

First-Order representation:

∃x0 ∃x1 (loan(x0) ∧ interlibrary(x1) ∧ service(x1) ∧ nn(x0, x1)

∧ ∀x2 (user(x2) → ∃x3 ∃x4 ∃x5 ∃x6 (student(x3) ∧ possess(x5) ∧ event(x5)

∧ card(x4) ∧ nn(x3, x4) ∧ agent(x5, x2) ∧ patient(x5, x4)

∧ use(x6) ∧ event(x6) ∧ agent(x6, x2) ∧ patient(x6, x1))))

52

The Skolemized equ-satisfiable formula:

loan(a0) ∧ interlibrary(a1) ∧ service(a1) ∧ nn(a0, a1)

∧ ∀x2 (user(x2) → (student(f1(x2)) ∧ possess(f2(x2)) ∧ event(f2(x2))

∧ card(f3(x2)) ∧ nn(f1(x2), f
3(x2)) ∧ agent(f2(x2), x2) ∧ patient(f2(x2), f

3(x2))

∧ use(f4(x2)) ∧ event(f4(x2)) ∧ agent(f4(x2), x2) ∧ patient(f4(x2), a1))))

We have shown the first-order representations for lexicons which contain one
Negation Introducer. We will show that the decidability property and the com-
plexity class will be the same for representations of a lexicon which additionally
is extended by Disjunction Introducer’s.

4.3.5 The ECND Lexicon and ECN
S
D Lexicon

Extending ECN Lexicon and ECNS Lexicon with disjunction

If we look again at the definition of the Bernays-Schönfinkel-Ramsey (BSR)
class 4.1.1 we will notice that the condition for membership to the BSR is that
no existential quantifiers should appear in the scope of the universal quantifiers
in the (prenex form) formula. If this ”order” of quantifiers is maintained the
remaining of the logic operators in the formula do no influence the membership
to the BSR class.

The number of universal quantifiers in the first-order representations over
the ECN Lexicon and ECNS Lexicon can only be changed if additional Simple
Negation Introducer, Special Negation Introducer, Implication Introducer or
Superlatives are added to the lexicon. The number of universal quantifiers will
not change if the ECN Lexicon or ECNS Lexicon are extended with Disjunction
Introducer’s because a Disjunction Introducer can not introduce a universal
quantification.

It is thus possible to extend the ECND Lexicon and the ECNS Lexicon with
arbitrarily many Disjunction Introducer’s.

Definition 4.3.6. ECND Lexicon is the lexicon which contains all the words
of natural language which are contained in the ECN Lexicon and arbitrarily
many words/phrases previously defined as Disjunction Introducer.

Definition 4.3.7. ECNSD Lexicon is the lexicon which contains all the words
of natural language which are contained in the ECNS Lexicon and arbitrarily
many words/phrases previously defined as Disjunction Introducer.

All the first-order representations of sentences built from the ECND Lexicon
(in prenex normal form and with all the negations appearing in front of atoms
only and in Conjunctive Normal Form (CNF)) will fit the schema presented in
4.19. All the first-order representations of sentences built from the ECNSD
Lexicon (also prenex normal in Negated Normal Form (NNF) and in CNF) will
also fit the schema presented in 4.19. The Pi denote unary and binary literals.
The scope of the universal quantifier in 4.13 does not extend over any existential
quantifiers.

∃x∀y(
∨

P1 ∧ · · · ∧
∨

Pn′′) (4.19)

The properties of 4.19 will be exactly the same as those of 4.10 and 4.13.

53

Corollary 4.3.5. For the first-order representations of sentences of the ECND
Lexicon and the ECNSD Lexicon built by boxer, satisfiability is decidable in
∑p

2 time over the size of the formula.

With this we complete the presentation of the restricted lexicons and their
properties. Before proceed by presenting the coverage power of these lexicons,
we will present the relationships which hold between each of these lexicons.

Relationships between the Lexicons for Answers

Each of the lexicons was defined on the level of a sentence, while our answers are
considered to be texts of more sentences, hence it can be expected that different
sentences in one answer belong to different lexicons. For this reason we want
to see what is the relationship between each of the lexicons. If the lexicons are
considered to be sets whose elements are the words/phrases of natural language
which they contain (allow) we can express the relations which hold between the
Lexicons in terms of set inclusion and set intersection.

Figure 4.1 shows the set relations between each of the Lexicons defined.
(The gray fields denote an empty intersection.) From the level of a text we can
consider that the text belongs to a given lexicon if all of its sentences belong
to that lexicon. Consequently a text which, for example, has one sentence in
the EC Lexicon another in the ECN lexicon and the third in the ECND lexicon
will be considered to belong to the ECND lexicon because the ECND lexicon
subsumes the EC and the ECN lexicon. A text which has one sentence in the
ECN lexicon and another in the ECI lexicon will be considered to not belong to
any of the lexicons because the sets ECN and ECI do not stand in a subsume
relation.

Lastly it should be noted that although the lexicons which contain the simple
negation and the special negation do not stand in a subsume relation, it will not
be a problem to allow mixing of sentences in one text between these lexicons
because their representations will belong to the same fragment of decidable
formulas.

Figure 4.1: Set relations between the Restricted Lexicons for declarative sen-
tences

54

4.3.6 Analysis of the Library FAQ Sheets

To get an estimate on which percentage of possible answers can be written using
the restricted Lexicons for declarative sentences we defined, we made an analysis
of the answers which can be found in the FAQ sheets of the university library of
the Free University of Bozen-Bolzano which is the domain of our IQA System.
The FAQ Sheet consists of 31 question and answer pairs written in natural
language (English) by the staff of the Library of the University of Bolzano. The
answers in total consist of 68 sentences.

The FAQ Sheets are small in size corpus however, the domain of our IQA
system is exactly the material presented in the FAQ Sheets. In addition, the
library staff was not given any instructions for writing the FAQ so the material
is unrestricted and unstructured to better fit our purposes.

The results of our analysis are summed up in Table 4.1. It is interesting to
see that 29% of the anwers belong solely in the EC Lexicon, which is rather
surprising condsidering it is the most simple of all lexicons. Remarkable 86% of
the sentences are expressed solely using the EC Lexicon. None of the answers or
senteces belonged to the Lexicons which contain Special Negation Introducers.
No Superlatives were found in the FAQ Sheets as well.

The one ”mixed” answer had one sentence in the ECI lexicon and another
in the ECD Lexicon. These kinds of problems can be reduced by making the
answers as short as possible, namely by reducing the count of sentences in them.

In this particular case however, the Disjunction Introducer is inadequately
used and it should be replaced with the coordinator and. The question answer
pair was:

Example 4.3.6.

Q: Is it possible to equally access the services at Bozen/Bolzano
and Brixen/Bressanone?

A: It is possible to equally access the services at Bozen/Bolzano
and Brixen/Bressanone. All services are integrated at both sites.
Therefore, it is possible to order material from one site or return
material to both sites, regardless of the borrowing location.

�

Out of the remaining five uncovered answers, three we were able to easily
rewrite to fit the Lexicons. We will show the cases in question.

Table 4.1: Lexicons coverage of the Bolzano library FAQ Sheet
Answers Sentences
Tot: 31 Tot: 68

EC Lexicon 9 43
ECD Lexicon 7 9
ECN Lexicon 3 4
ECND Lexicon 2 2
ECI Lexicon 4 5
Not Covered 6 5

55

Example 4.3.7.

Q: How can the services of the library be accessed ?
A: Every student, all teaching and administrative staff of the

Free University Bozen/Bolzano can access the services of the Uni-
versity Library with their Student or Campus Card. People who are
not affiliated with the Free University Bozen/Bolzano may use the
University Library as external users. In order to receive a Library
Card one has to present an identity card and pay the annual fee of
10,00 Euro.

The problematic first sentence can be split into two sentences which belong
to the ECI Lexicon:

S1: Every student of the Free University Bozen/Bolzano can
access the services of the University Library with their Student Card.

S2: All teaching and administrative staff of the Free University
Bozen/Bolzano can access the services of the University Library with
their Student or Campus Card.

The problem now is that the rewritten answer has sentences from the ECI
and ECN lexicon. The ECN sentence and the last sentence will be rewritten
by:

S1: External Users can access the services of the University Li-
brary with their Library Card.

S2: In order to receive a Library Card one has to present an
identity card and pay the annual fee of 10,00 Euro.

The definition of External Users can be moved to a new question and answer
pair. The new answer will belong to the ECN Lexicon.

�

The second case is the question answer pair in which the answer contains
both an Implication and a Disjunction Introducer.

Example 4.3.8.

Q: Who may use the Interlibrary Loan service ?
A: All users who possess a Student Card, Campus Card or Li-

brary Card may use the Interlibrary Loan service .

The answer can be rewritten into three sentences of the ECI Lexicon.

S1: All users who possess a Student Card may use the Interli-
brary Loan service.

S2: All users who possess a Campus Card may use the Interli-
brary Loan service.

S3: All users who possess a Library Card may use the Interli-
brary Loan service.

56

�

The last answer we were able to rewrite contains more then one Implication
Introducer in addition to a Disjunction Introducer.

Example 4.3.9.

Q: How long are reservations valid ?
A: The reservations are valid for 7 days with the exception of

textbooks from Bozen/Bolzano marked with the number 15. These
items have to be collected until 7 p.m. on the day of the reservation
if the reservation has been made before 2 p.m. or until 7 p.m. on
the following day if the reservation has been made after 2 p.m.

The second (and problematic) sentence of the answer can be rewritten in
two sentences which both belong to the ECI lexicon:

S1: The reservations have to be collected until 7 p.m. on the day
of the reservation if the reservation has been made before 2 p.m.

S2: The reservations have to be collected until 7 p.m. after the
day of the reservation if the reservation has been made after 2 p.m.

�

In general, the sentences which do not belong to the defined Lexicons be-
cause they contain several Implication Introducer’s are eligible for rewriting by
splinting into several individual sentences by repeating the same information in
each sentence for each quantified expression. The sentences which do not belong
to the defined Lexicons because they contain a combination of the Implication
Introducer and Disjunction Introducer have to be considered on individual bases.

The remaining two uncovered answers from the FAQ Sheets are sentences
which contain both a Negation Introducer and an Implication Introducer. We
will show one of them.

Example 4.3.10.

Q: How can the loan periods be extended ? A: In order to ex-
tend loan periods one has to access the personal library account via
the online catalogue. After entering the Library Number and the
personal library password , a list of all material borrowed appears
which also shows the respective loan periods. To the right of the loan
period there is an EXTEND button - if the loan period is extendable
and the item has not been reserved in the meantime by another user.

�

These kinds of answers express rules for negated concepts: If not A then B.
or If A then not B and in general can not be rewritten to fit the Lexicons.

The lexicons we have defined here are by no means the most broad lexicons
which yield decidable first-order representations. On the contrary, they are the
most basic lexicons which can be considered. Future work should be done on
further extending these basic lexicons, the most eminent of which would be to
discover extensions of the ECI Lexicon with Negation Introducer’s so that the
sentences of form If not A then B. or If A then not B can be expressed.

57

4.4 Lexicon Restrictions for Natural Language

Questions

We are going to work with only with the most basic lexicon for questions. This
basic lexicon will be general enough to cover the majority of the questions we
expect from the users but it is still simple enough to produce first-order repre-
sentations which can be handled by our Logic Support Unit. The goal of the
lexicon restrictions for questions is to obtain representations simple enough to
guarantee that the entailment between them and the representations of sen-
tences (built over the defined lexicons for declarative sentences) is decidable.

In Section 3.2 we introduced the semantic representation of questions and
presented the general schema of first-order representation for questions 3.1. Here
we will define the most basic lexicon for questions and then we will show decid-
ability for entailment between representations of this lexicon and representations
of the lexicons: EC, ECD, ECN, ECNS , ECND, ECNSD and ECI. Lastly we
will present the analysis of several corpora of questions to show the coverage
abilities of the QECD lexicon.

4.4.1 The QECD Lexicon

The lexicon for questions we will define contains all the words of natural lan-
guage except the words (and phrases) previously defined as Simple Negation
Introducer, Implication Introducer, Special Negation Introducer and Superla-
tives. We presuppose that this lexicon holds on the level of one single question
which contains one single WH-phrase as a question word for the WH questions.
The lexicon QECD for questions is exactly the same (allows the same lexical
items) as the ECD Lexicon for declarative sentencec.

Definition 4.4.1. QECD Lexicon is the lexicon which contains all the words
of natural language except the words (and phrases) previously defined as Simple
Negation Introducer, Implication Introducer, Special Negation Introducer and
Superlatives.

Recall the general schema of representations of questions 3.1 derived by
boxer. By not allowing any of the negation or implication introduces in the
question, what we have achieved is that both ϕ and ψ from the representation
schema 3.1 will contain conjunctions and disjunctions only. The next formula
represents the general schema of a question over the QECD Lexicon (when ϕ
and ψ are in Disjunctive Normal Form). P denotes the unary predicates, and
Q denotes the binary predicates.

∃y (

m∧

1

(

r∨

1

P (y) ∨
s∨

1

Q(y)

︸ ︷︷ ︸

dnf(ϕ)

∧D(x) ∧ ∃z
n∧

1

(

l∨

1

P (x,y, z) ∨
k∨

1

Q(x,y, z)

︸ ︷︷ ︸

dnf(ψ)

)))

In order to get a better insight to the properties of the semantic represen-
tations of questions we will re-write this last formula in Disjunctive Normal
Form (DNF). After the expansion (with the laws of distribution (a ∧ (c ∨ d) =
(a ∧ c) ∨ (a ∧ d)))we get the representation schema 4.20.

58

Assume that dnf(ϕ) and dnf(ψ) are respectively (α and β are positive
atoms):

dnf(ϕ) = α1 ∨ α2 ∨ · · · ∨ αn dnf(ψ) = β1 ∨ β2 ∨ · · · ∨ βm

∃y∃z(α1(y) ∧D(x) ∧ β1(x,y, z)) ∨ · · · ∨ (αn(y) ∧D(x) ∧ βm(x,y, z)) (4.20)

The general schema which describes all the first-order representations of
Boolean Questions built from the QECD Lexicon (given in 4.21) is exactly as
schema 4.20 when the atom which represents the domain of the question is
omitted. The formula 4.21 is closed.

∃y∃z(α1(y) ∧ β1(y, z)) ∨ · · · ∨ (αn(y) ∧ βm(y, z)) (4.21)

4.4.2 Decidability of Entailment between questions and

answers representations

We will now show the decidability of entailment between representations of
questions expressed using the QECD Lexicon and representations of texts (sets
of formulas) expressed using each of the defined lexicons. The entailment prob-
lem we will represent as a satisfiability problem. Assume that the first-order
representation of the answer is A and that the first-order representation of the
question is Q. For the case of WH Questions, Q will be an open formula. If
we close the one free variable in Q with an existential quantifier, the following
equivalence holds:

A |= Q ≡ A ∪ ¬Q |= ⊥

In the remaining of this section with Q we will represent the existentially closed
first order representation of the question. We will also assume that all the
formulas which represent all the sentences in the answer are already conjuncted
to form the formula A.

Theorem 4.4.1. Let Q be a first-order representation (obtained by boxer)of
a question in natural language over the QECD Lexicon. Let A be a first-order
representation (obtained by boxer) of a text in natural language over the EC
Lexicon. The entailment A |= Q is decidable in

∑p
2 time over the size of A and

Q.

Proof. The formula of A will be an existentially closed conjunction of positive
atoms (here denoted with ϕ).

∃x(ϕ1(x) ∧ · · · ∧ ϕn(x))

If the question is WH Question its first order representation will be:

∃y∃z(α1(y) ∧D(xa) ∧ β1(x,y, z)) ∨ · · · ∨ (αn(y) ∧D(xa) ∧ βm(x,y, z))

To decide the entailment trough satisfiability we first need to existentially
close and negate Q. The result (written in NNF)is the following formula:

∀xa∀y∀z(¬α1(y)∨¬D(xa)∨¬β1(x
a,y, z))∧· · ·∧(¬αn(y)∨D(xa)∨¬βm(xa,y, z))

59

The entire formula A ∧ ¬Q will be:

∃x(ϕ1(x) ∧ · · · ∧ ϕn(x))∧

∀xa∀y∀z(¬α1(y) ∨ ¬D(xa) ∨ ¬β1(x
a,y, z))

∧ · · · ∧

(¬αn(y) ∨D(xa) ∨ ¬βm(xa,y, z))

In prenex form (there can be no variable sharing between the question and the
answer formulas) the above formula will have the prefix ∃x ∀xa ∀y ∀z, hence the
formula A∧¬Q will belong to the Bernays-Schönfinkel-Ramsey class of formulas
and as such will be decidable for satisfiability in

∑p
2 time over its size.

If the question is a Boolean Question its first order representation will be
the closed formula:

∃y∃z(α1(y) ∧ β1(y, z)) ∨ · · · ∨ (αn(y) ∧ βm(y, z))

Now the formula A ∧ ¬Q is much simpler and it still belongs to the Bernays-
Schönfinkel-Ramsey class:

∃x(ϕ1(x)∧· · ·∧ϕn(x))∧∀y∀z(¬α1(y)∨¬β1(y, z))∧· · ·∧ (¬αn(y)∨¬βm(y, z))

If instead of with A we work with AS (A when Skolemized) the entailment
AS |= Q will again be decidable in

∑p
2 time. Because AS does not contain any

quantifiers, the formula AS |= ¬Q will have the prefix ∀xa ∀y ∀z and will still
belong in the BSR class of formulas.

Corollary 4.4.1. Let Q be as defined in Theorem 4.4.1 and A is now the first-
order representation obtained by boxer of a text over the ECD Lexicon. The
rest of the assumptions for A from Theorem 4.4.1 hold. The entailment A |= Q
is decidable in

∑p
2 time over the size of A and Q.

The formula of A will now be the existentially closed conjunction of disjunc-
tions of positive atoms (assuming we have reduced it to its CNF):

∃x((ϕ′

1(x) ∨ · · · ∨ ϕ′

n(x)) ∧ · · · ∧ (ϕk1(x) ∨ · · · ∨ ϕk1(x)))

It is evident that the formula A ∧ ¬Q will remain in the Bernays-Schönfinkel-
Ramsey class both for Boolean and WH Question because its prefix will be the
same as the prefix of the final formula from Theorem 4.4.1.

Theorem 4.4.2. Let Q be as defined in Theorem 4.4.1 and let A be the first-
order representation obtained by boxer of a text over the ECN Lexicon. The
rest of the assumptions for A from Theorem 4.4.1 hold. The entailment A |= Q
is decidable in

∑p
2 time over the size of A and Q.

Proof. The formula of A will now be a formula of the Bernays-Schönfinkel-
Ramsey class(as shown in Formula 4.10). We will write it shortly as:

∃xi∀xi ϕ(x),xi ∪ xi = x

60

The formulas for a the Question Q will be the same as in Theorem 4.4.1 and
consequently ¬Q will be the same. For the WH-Questions we can shortly write
it as :

∀xa∀y∀zψ(xa,y, z)

The corresponding A ∧ ¬Q formula will be:

∃xi∀x
a∀xi∀y∀z ϕ(x) ∧ ψ(xa,y, z),xi ∪ xi = x

The corresponding A ∧ ¬Q formula when Q is a Boolean question will be
the same as above but without the variable xa:

∃xi∀xi∀y∀z ϕ(x) ∧ ψ′(y, z),xi ∪ xi = x

It is evident that both formulaA∧¬Q will remain in the Bernays-Schönfinkel-
Ramsey class.

The entailment AS |= ¬Q will also be decidable in
∑p

2 time over the size,
for the same reasons as in the case of the EC Lexicon. This will hold for the
following two lexicons as well (the ECN and ECNS Lexicon).

Corollary 4.4.2. Let Q be as defined in Theorem 4.4.1 and let A be the first-
order representation obtained by boxer of a text over the ECNS Lexicon. The
rest of the assumptions for A from Theorem 4.4.1 hold. The entailment A |= Q
is decidable in

∑p
2 time over the size of A and Q.

Exactly the same proof as presented for Theorem 4.4.2 can be applied here.
The case of the ECND Lexicon and the case of the ECNSD Lexicon will be

considered together, because the proof approach again is the same as the one
presented in Theorem 4.4.1.

Corollary 4.4.3. Let Q be as defined in Theorem 4.4.1 and let A be the first-
order representation obtained by boxer of a text over the ECND Lexicon or

over the ECNSD Lexicon. The rest of the assumptions for A from Theorem
4.4.1 hold. The entailment A |= Q is decidable in

∑p
2 time over the size of A

and Q.

Regardless if the A derives from the ECND Lexicon or from the ECNSD
Lexicon it will be a formula of the Bernays-Schönfinkel-Ramsey class, hence the
exact the same proof as presented for Theorem 4.4.2 can be applied here as well.

The case of entailment for the ECI Lexicon is more interesting.

Theorem 4.4.3. Let Q be as defined in Theorem 4.4.1 and let A be the first-
order representation obtained by boxer of a text over the ECI Lexicon. The
rest of the assumptions for A from Theorem 4.4.1 hold. The entailment A |= Q
is decidable in exptime time over the joint size of A and Q.

Proof. In Theorem 4.3.1 we showed that a representation from a sentence of
the ECI Lexicon can be reduced to an equi-satisfiable formula of the Loosely
Guarded Fragment (LGF). The same can be done for a conjunction of sentences
of the ECI Lexicon which is what A in fact is. Let us denote by AG the equi-sat
LGF formula obtain from A in polynomial time as described in the proof of
Theorem 4.3.1.

61

To show that the formula A |= Q is decidable in exptime time we need to
show that the formula AG∧¬Q belongs to the LGF (the bounded arity property
of the predicate symbols does not change). The LGF is closed under negation
and conjunction, so it is enough to show that the formula ¬Q belongs to the
LGF.

If the question is a WH Question its first-order representation will be:

∃xa∃y∃z(α1(y)∧D(xa)∧ β1(x,y, z))∨ · · · ∨ ∃y∃z(αn(y)∧D(xa)∧ βm(x,y, z))

This formula is in the LGF because it is a disjunction of LGF formulas. It
is evident from Definition 4.1.3 that the formula

∃xa∃y∃z(αi(y) ∧D(xa)
︸ ︷︷ ︸

ψ

∧βj(x,y, z)
︸ ︷︷ ︸

α

)

satisfies the conditions of the LGF. (The under-brace markings α and ψ
serve to denote the connection between the formula in Definition 4.1.3.)

To be more precise the formula Q will belong to the Guarded Fragment, but
every formula from the GF is also in the LGF, because the LGF is obtained by
relaxation of the conditions of the GF.

If the question is a Boolean Question its first-order representation will still
be a disjunction of LGF formulas as the representation of a WH Question:

∃y∃z(α1(y) ∧ β1(y, z)) ∨ · · · ∨ ∃y∃z(αn(y) ∧ βm(y, z))

In the case when A is a first order representation of the ECI Lexicon, the
formula AS will contain function symbols and we will not be able to reduce it
to the LGF to prove satisfiability properties for the entailment AS |= ¬Q in the
same way above. But because AS is equi-satisfiable with A the same complexity
result for AS |= ¬Q will be the same as for A |= ¬Q.

As a conclusion of the introspection of the properties of the QECD Lexicon
we present Table 4.2where the decidability for entailment results are summed
up. The table shows that the highest complexity bound for our questions and
answers is exptime. We do not present the results for the AS formulas because
they are the same as for the A formulas.

62

Table 4.2: Complexity of entailment between the questions and answers of the
defined lexicons

|= QECD
EC Lexicon

∑π
2

ECD Lexicon
∑π

2

ECN Lexicon
∑π

2

ECND Lexicon
∑π

2

ECNS Lexicon
∑π

2

ECNSD Lexicon
∑π

2

ECI Lexicon exptime

To complete the work of this chapter we will attempt to answer the question
of which and how many of the natural language questions can be expressed by
using only the QECD Lexicon.

4.4.3 Analysis of Questions asked by users

The question answering system for which we wish to build a Logic Support
Unit is interactive and generally speaking both the system and the user can ask
questions. While we can completely control the questions posed by the system
and impose lexicon restrictions on them, there is no way to directly control the
language of the questions posed by the user, which will be the source of most
of the questions.

In order to answer the question of how complex are the structures of natural
language questions and how frequent are the questions which can be posed by
using the QECD Lexicon only, we will here present the results of an analysis of
several corpora of questions presented in [10].

The corpora consisted of different domains and asked in different settings:

Clinical Questions: contains users’ questions on the clinical domain, mostly
asked by doctors to colleagues; 435 questions, vocabulary: 3495, total
tokens: 40489 (questions with introduction).

Answer.com: contains questions on different topics (e.g., art, sport, comput-
ers) asked by internet users; 444 questions3, vocabulary: 1639, total to-
kens: 5791 (without introduction)4.

TREC: the TREC 2004 corpus that contains 408 questions.

The result of the analysis is shown in Figure 4.2. The chart shows the frequency
of each class of terms in the three corpora. Frequency values refer to the nor-
malized relative frequency (number of tokens/total word count multiplied by
100). The details about the number of questions in which universal quantifiers
and negations occur (the questions not belonging to the QECD Lexicon) are
given in Table 4.3.

The results show that the number of questions which can not be covered
by the QECD fragment, namely those which contain negation and universal
quantification, is low in percentage – across the three corpora considered, a
total of 8.78% (86 out of 1287) do not belong to the QECD Fragment.

3http://clinques.nlm.nih.gov/
4http://wiki.answers.com/Q/WikiFAQs:Finding Questions to Answer

63

Figure 4.2: Summary of the analysis

Table 4.3: Number of questions
Clinical Questions Answer.com TREC

Tot: 435 Tot: 444 Tot: 408
universal 12 6 2
negation 52 13 1

64

Chapter 5

Reasoning for IQA using

Answer Set Programming

The second problem handled in this thesis is the development of the reasoning
module of the proposed Logic Support Unit for the IQA System.

The main goal of the LSU is to verify that a possible answer is an answer to
a question. It also has to be able to extract the specific answers from a verified
answer. We want the LSU to be able to extract all possible specific answers
when the question is a WH Question and to be able to give justification the the
”no” specific answer when the question is Boolean:

WH Question In the case of WH Questions it is possible that a verified pos-
sible answer A can contain more then one specific answer. It will be most
informative for the user to retrieve all these specific answers. In the case
when more then one of the possible answers A1, A2, · · · is verified to be
an answer for the WH Question we want to retrieve the union of all the
specific answers contained in all the confirmed answers A1, A2, · · ·

Boolean Question In the case of an answer ”no” to a Boolean Question, in
a addition to the specific answer ”no”, we want the Reasoning Module
to be able provide the information of exactly which part of the answer is
inconsistent with the question, namely, why the answer is ”no”. This is
important from the view point of Interactive question answering because
when a users question is answered with ”no”, knowing why this is so, can
assist the user to modify his query and retrieve successfully the information
he needs.

In order for the LSU to be able to perform all the reasoning tasks required
from it we have to develop a suitable formalism to represent these task in terms
of logic. We will briefly recapitulate why the other formalisms we considered
were not adequate for the purposes of the LSU.

The formalism stated in Definition 3.3.1 of Section 3.3 only allows us to verify
the answer, but does not offer the possibility to extract the specific answer.

In Definition 3.3.2 of Section 3.3 we defined what is an answer and a specific
answer to a question given its first-order representation Q in terms of logic
entailment. Although this formalism allows for both the answer verification

65

and specific answer extraction tasks to be accomplished, it is hard to practically
implement.

In order to verify that Q is answered by A it is enough to show that the
entailment A |= Q holds. This can be achieved by checking if the formula
A ∧ ¬∃x (Q) is unsatisfiable. Satisfiability for a formula can be checked by
using a first order theorem prover, however this approach will not satisfy the
remaining of our desiderata for the Reasoning Module. The theorem prover will
tells us only if the formula A ∧ ¬∃x(Q) is unsatisfiable, however we would need
to have the models of A as well in order to be able to extract the specific answer.
We would not be able to retrieve all the specific answers from the proof it will
derive because the specific answer x had to be existentially closed.

The reasoning module of the LSU has to to be able to build all the models
of A in order to extract the specific answer from the models of Q. In order for
the automatic derivation of all the possible models to be possible the formula
has have the finite model property and the tree model property [35], [18].
In Chapter 4 we specified lexicons for the question (QECD) and the possible
answers (EC, ECD, ECN, ECNS , ECND, ECNSD or ECI) which yield decid-
able first-order representations. The first-order representations of the possible
answers which are built over the lexicons EC, ECD, ECN, ECNS , ECND and
ECNSD have the finite model property and the tree model property but even
when A is a formula over these lexicons it is difficult to automatically derive all
the models of A.

We have chosen to represent the problem of verifying a possible answer
and extracting a specific answer in the setting of Disjunctive Logic Programs
under answer set semantics (in the remaining of this chapter simply Answer Set
Programming (ASP)). We chose to use the following approach.

In Section 3.3 we present that the formula AS which is obtained from the
representation of the answer A is more suitable for the extraction of specific
answer. We represent how to translate this formula to a logically equivalent
(possibly infinite) logic program PA comprised of disjunctive logic program
rules. The translation procedure we present is suited for the representations
of possible answers built from the lexicons EC, ECD, ECN, ECNS , ECND,
ECNSD and ECI.

The question Q (built over the QECD Lexicon) is represented with a finite
set of logically equivalent logic program rules PL.

The problem of verification of a possible answer is represented trough the
task of finding answer sets to the program PA ∪ PL. The task of extracting all
the specific answers from all the verified answers, as well as the task of retrieving
a justification for a ”no” specific answer is represented as a problem of analysis
of the obtained answer sets.

For possible answers built over the Lexicons EC, ECD, ECN, ECNS ,ECND
and ECNS , the program PA will be finite and the answer sets of the program
PA ∪ PL can be obtained using the DLV System [44]. For possible answers
built over the ECI Lexicon, the program PA will be infinite but finitary, and
answer sets of the program PA ∪ PL can be calculated using an extension of
the DLV System [19].

As already introduced in Section 2, the reasoning for Question Answering
requires more knowledge about the world then what is expressed in the possible
answer. The need for a knowledge base that contains supporting information
needed for deciding on an answer is eminent. At the end of this chapter we will

66

only briefly describe what are the minimum required continence of supporting
knowledge base for our LSU. The development of a supporting knowledge base
for an IQA system even over the small limited domain of the university library
is no small task and requiters far more attention then what we can provide in
the scope of this theses.

Before showing how Disjunctive Logic Programming under answer set se-
mantics can be used as a setting for our Reasoning Module the most basic
notions of ASP will be introduced.

5.1 Basics of Syntax and Semantics of ASP

We begin by presenting the syntax of the disjunctive logic rules. As in the Prolog
convention, strings starting with uppercase letters denote variables, while those
starting with lower case letters denote constants.

A disjunctive rule (rule, for short) r is a formula of the shape H :−B that
stands for “if B deduce H” where H (head of the rule) and B (body of the rule)
are as following:

a1 ∨ · · · ∨ am :− b1, · · · , bk, not bk+1, · · · , not bn.

a1, · · · , an, b1, · · · , bm are classical literals, and n ≥ 0, m ≥ k ≥ 0. By
classical literals we mean atoms or strongly negated atoms. not is negation as
failure or default negation. We will also refer to it as weak negation.

The rule is called a

fact if n = 0 and m ≥ 1.

(strong)constraint if m = 0 and n ≥ 1.

basic if n = k and m ≥ 1.

non-disjunctive if m = 1.

normal if it is non-disjunctive and a1, · · · , an, b1, · · · , bm are positive atoms.

ground if all the literals grounded.

A logic program P is a set of rules ri. A program is disjunctive, basic,
non-disjunctive, normal or ground if all of the rules in it are disjunctive, basic,
non-disjunctive, normal or ground.

Before proceeding with the semantic the following notions need to be intro-
duces as well.

Herbrand Universe UP of any logic program P is the set of all the terms
which can be built over the constant symbols and function symbols which
appear in P

Herbrand Base BP of any logic program P is the set of all ground (classical)
literals constructible from the predicate symbols appearing in P and the
terms of UP

Herbrand Interpretation I of any logic program P is a subset of BP .

67

The answer set semantics, or answer set programming, relies on algorithms
that compute stable models. The underlying semantics is the stable models se-
mantics as introduced by Gelfond and Lifschitz [30]. The stable model seman-
tics defines a family of models (”answers”) of a logic program and the minimal
of these models according to the knowledge of information ordering is returned.

We will describe here only the answer set semantics of programs which are
normal and basic. The answer set semantics of all other programs consists of
first reducing the rules of the program to normal basic rules and then treating
the program as a regular normal basic program. The procedure of reducing
disjunctive programs to normal basic programs can be found in [44].

The work of [30] includes programs which contain function symbols, however
in [44], which is based on semantics of stable model introduced in [30], the
logic programs considered do not contain function symbols.

As we mentioned a (normal) logic program P , is a set of rules r:

a :− b1, · · · , bk,¬c1, · · · ,¬cn.

where a, b1, · · · , bm and c1, · · · , cn are positive atoms.
Let us denote by BP the Herbrand Base of P and by I (I ⊆ BP) an

(Herbrand) interpretation for P . By ground(P) we will denote the set of all
ground(variable free) rules of P . We define a transformation pos(P,I) to be a
a transformation which, given a logic program P and a Herbrand Interpretation
I for P returns a positive logic program P ′ by applying the following procedure:

P’:= ∅ ;

for each r = a :− b1, · · · , bk,¬c1, · · · ,¬cn. ∈ ground(P) do

if ci ∈ I, i = 1, . . . n then

P’:= P’ ∪ {a :− b1, · · · , bk.}

Note that the program P ′ will be infinite in general if it has function symbols
because it will be grounded over an infinite Herbrand Base.

Definition 5.1.1. A Herbrand Interpretation I of P is a stable model for P if:

I = T∞

pos(P,I)(∅),

i.e. I is the least fixed point of the positive logic program defined by pos(P,I).

Answer Sets of a disjunctive logic program P are its minimal stable models,
with respect to set inclusion.

A disjunctive logic program may have one answer set, more then one answer
set or no answer sets at all. Whether or not there will be one or more answer
sets is directly determined by the presence of disjunctions in the rules. The
complexity in which an answer set will be derived (apart from the efficiency of
a particular solver used) directly depends on the number of disjunctions and
weak negations in the rules.

An answer set of a program P is the set of all the facts which are entailed
by P (the consequences of P).

68

5.2 Representing Questions and Answer with Dis-

junctive Logic Program Rules

In this section we will show how to transform the formula AS deriving from
a possible answer and the first-order representation of the question Q with
disjunctive logic program rules. We assume that Q corresponds to a question
built over the QECD Lexicon.

Translating the Answer

We will transform the formula AS (written in Conjunctive Normal Form) into
a logically equivalent a disjunctive logic program PCA by using the following
algorithm:

• PCA := ∅

• for each conjunct Kj in the formula AS do:

if Kj contains only ground atoms then PCA := PCA ∪ {Kj .}
else

1. if Kj = α1 ∨ · · · ∨ αk (all positive atoms)
then

PCA= PCA ∪ {α1 ∨ · · · ∨ αk.}

2. if Kj = −α1 ∨ · · · ∨ ¬αk (all negative atoms) then

PCA = PCA ∪ {−α1 ∨ · · · ∨ ¬αk :−.}

3. if Kj = α1 ∨ · · · ∨ αk ∨ ¬β1 ∨ · · · ∨ ¬βm
then

PCA = PCA ∪ {α1 ∨ · · · ∨ αk :−β1, · · · , βm.}

The logic programs under answer set semantics are treated separately and
do not allow for variable sharing among rules. This means that a variable X
in a rule r1 and a variable X in a rule r2 in the same program will be treated
independently as two different variables.

The algorithm we described builds one rule for each conjunct Kj of the
formula A. Because it can happen that in A a variable is shared between
conjuncts we need to add constraints to the program PCA to ensure logical
equivalence with A.

For each two literals α1 and α2 in A which share a variable x we add the to
PCA the constraint:

:-α1(X1),α2(X2),X1!=X2.

We denote with PA the resulting program to which all of the above con-
straints were added.

Translating the Question

Recall that the question Q is represented as the query q(x) where the x sought
by the query is the specific answer to the question. In the query q(x), αi and
βj are conjunctions of positive atoms: αi = a1

i ∧ · · · ∧ ari and βj = b1j ∧ · · · ∧ bsj

69

q(x) = {x|∃y∃z(α1(y) ∧ D(x) ∧ β1(x,y, z)) ∨ · · · ∨ ∃y∃z(αn(y) ∧ D(x) ∧ βm(x,y, z)| {z }
ψ

)}

Semantically the query q(x) is a union of the individual queries q1(x), · · · , q1(x):

q1(x) = {x|∃y∃z(α1(y) ∧D(x) ∧ β1(x,y, z)
︸ ︷︷ ︸

ψ1

)}

· · ·

qm(x) = {x|∃y∃z(αn(y) ∧D(x) ∧ βm(x,y, z)
︸ ︷︷ ︸

ψm

)}

This semantic connection allows us to represent each qi(x) as an individual
logic program P iQ and build the final PQ as a union of all the P iQ.

We will now show an algorithm which takes the query q(x) as an input and
returns a set of logic rules PQ (depending on the type of the question).

given q(x) test if D(x) exists in ψ:
if yes do

PQ := ∅

• for each disjunct ψj in ψ of q(x) do:
PQ := PQ ∪ {query answer(Y):-D(Y), a1

j, . . . arj, b1

j, . . ., bsj.}
else

if no do

• for each disjunct qj in q(x) do:

PQ := PQ ∪ {query answer(y):- a1
j, . . . arj, b1j, . . ., bsj.}

PQ := PQ ∪ {query answer(n 1):- ¬a1
j.}

...

PQ := PQ ∪ {query answer(n r):- ¬arj.}
...

PQ := PQ ∪ {query answer(n r+1):- ¬b1j.}
...

PQ := c ∪ {query answer(n r+s):-¬bsj.}

We will state the properties of PQ.
The logic program PQ will not contain function symbols. Because it is

derived from a first-order formula which does not contain constant symbols, the
only constant symbols in PQ are the y and n 1, . . . n r+s appearing in the head
of the rules created for Boolean Questions. The bodies of all the rules in PQ do
not contain constant symbols.

In the query q(x) all the variables in ψ are existentially closed which means
∃y∃zψ will be satisfied if there is at least one interpretation for y and z which
satisfies ψ. This is consistent with the semantic of the logic rules, namely a
rule in PQ will fire if there is at least one interpretation for the variables in the
bodies of the rules. The bodies of the rules in PQ are a translation of ψ.

70

With this we complete the translation to logic program rules of the candidate
answer. Because the translation algorithm is built over a CNF of a first-order
formula without relying on any of the properties of the formulas which would
be derived from the Lexicons defined in Chapter 4, this same algorithm can be
used without modifications on any possible extensions on the Lexicons defined
in the future.

We can now proceed to show how the problem of verifying an answer for
a question and extracting a specific answer can be solved by analysis of the
program PQ ∪ PA.

5.3 Question Answering in Terms of Analysis of

Answer Sets

Given a possible answer represented with the logic program PA and a question
represented with a logic program Q we will show how to retrieve a verification
for an answer to a question, a specific answer as well as a justification for the
specific boolean answers. The underlining idea of this approach is the same as
in [7].

The problem of deciding if a possible answer represented with PA is certainly
an answer to a question represented with PQ is stated in Definition 5.3.1.

Definition 5.3.1. Let PA be a logic program which represents a possible answer
ATL and let PQ be a logic program which represents a question QTL. ATL is an
answer for QTL if and only if at least one of the answer sets of PA∪PQ contains
the (grounded) fact query answer.

We will elaborate the intuition behind this definition. The answer sets of the
program PA are the minimal Herbrand Models of PA. When a formula ϕ admits
a minimal model M in order to verify that ϕ |= ψ (ψ being also a formula) it
is enough to verify that M |= ψ. Because PA is logically equivalent to AS , the
minimal Herbrand model of PA is a minimal Herbrand model of A so AS |= Q
if the minimal Herbrand model of PA is a model for Q.

Because PQ and Q are logically equivalent, the answer set of PA will be a
model for Q if and only if at least one of the rules in PQ is executed (”fires”).
If a rule is executed the (grounded) fact query answer will be present in the
answer set (assume for now there is only one answer set) of PA ∪ PQ.

However, the program PA ∪ PQ can have more then one answer set. This
will happen when there is at least one disjunctive rule in PA ∪ PQ. In this case
we would find it sufficient proof of AS |= Q if the (grounded) fact query answer

appears in at least one of the answer sets derived.
To answer to the query q(x) is in fact to find a possible grounding to the

atom query answer. By considering all the answer sets of PA∪PQ we are in fact
retrieving the union of the possible grounding to the atom query answer. This
approach to the retrieval of a query answer is also known as brave reasoning.
Opposite to brave reasoning is the cautious reasoning which is what we are doing
if we only consider a possible grounding c as an answer if query answer(c)

appears in all the answer sets of PA ∪ PQ.
We chose to work under brave reasoning because we want to consider all pos-

sible answers even when they are partial and hold only under certain conditions.
To illustrate this we will use an example.

71

Assume that the question asked is ”Can I borrow a DVD?” and the possible
answer is ”A user can borrow a DVD on Monday or a book on Tuesday.” In
this case, due to the disjunction, the program PA ∪ PQ will have two answer
sets. In one of them the fact query answer(y) will appear and in the other
no query answer atom will be derived at all. Evidently we want to inform the
user that a DVD can be borrowed, because even when this is only possible on
a Monday it is still possible.

With this we have reduced the decision of whether an answer certainly an-
swers a question to tho a decision of whether a given fact is present in the
answer set of the union of the corresponding programs. We will now direct our
attention to the task of extracting the specific answer to a question by using the
answer sets of PA ∪ PQ.

We have defined the specific answer to a question in Definition 3.3.2; that
would be the variable x from q(x). As we mentioned, to answer the query q(x)
is in fact to find a possible grounding to the atom query answer. Hence, all the
specific answers to a question will be the union of all the possible grounding to
the atom query answer found in all the answer sets of PA ∪ PQ. This is fairly
easy to achieve, but it is not sufficiently informative.

In accordance of the discussion in Section 3.3, the individual x we are search-
ing for, named by the retrieved constant which grounds query answer, is fully
identified by the properties which hold for that individual. This means that, in
order to fully identify x we do not only need its name c but also all the atoms
from the answer sets of PA ∪ PQ in whose grounding c appears.

If we look at the rules of the program PQ we can see that query answer can
be grounded by three kinds of constant symbols:

1. In the case of an answer to a WH Question, query answer will be grounded
to the same constants which grounds the atom of the domain D.

2. In the case of an yes answer to a Boolean Question, query answer will
be grounded by the constant y.

3. In the case of an no answer to a Boolean Question, query answer will be
grounded by at least one of the constants n 1,. . .,n r + s.

For one answer set we will describe how to retrieve the specific answer(s) for
each of the cases (1)-(3).

In the case (1), the specific answer to the answered question will be rep-
resented by the set Sa of all the predicates the answer set which contains
query answer(c) which have c in their grounding. If c appears in the binary
predicate P (c, d) we also need to retrieve and add to Sa all the unary pred-
icates which are grounded by the constant d to complete the information. If
there is more then one query answer atom, namely query answer(c 1), . . .,
query answer(c n) in the answer set, we repeat the above described actions
for each c i producing as many sets Sa as there are specific answers.

In the case (2), the specific answer to the answered question will be yes. The
justification for this answer will be the set Sj of the grounded atoms from the an-
swer set which appear in the body of the rule in PQ which has query answer(y)

as its head. There can be only one such rule in PQ. If in one answer set there is
more then one query answer(y) atom we retrieve the sets Sj with justifications
for each of them.

72

In the case (3), the specific answer to the answered question will be no.
According to the number i of the grounding constant n i, the justification for
this answer will be the set Sij of the grounded atoms from the answer set which
appear in the body of the rule in PQ which has query answer(n i) as its head.
For each i there can be only one such rule in PQ. If there is more then one
different i, the justification will be the union Sj of all the individual Sij generated.

It should be noted that the program PA will not have an answer set if the
rules in it are inconsistent. This corresponds to the situation when the answer
from which PA derives from contains contradictory information. We will assume
that all the answers we are dealing with are consistent, consequently PA will
always have at least one answer set. We will assume also that the representations
of the answers are always satisfiable (the answers convey a true information)
hence AS will have at least one model. If AS had no models and Q has models
then AS |= Q will trivially hold.

PA can also have the empty set as an answer set. This will happen when
the rules in PA are consistent but no facts can be derived from them. For an
example, the following program will have the empty set as an answer set.
material(X):-book(X).

thing(X):-material(X).

If this happens then the minimal model of AS is the empty set and the AS |= Q
will trivially never hold.

The programs PA which are obtained as a translation the AS of the lexicons
EC, ECD, ECN, ECNS ,ECND and ECNS will be finite (because the AS for-
mula does not contain function symbols) and the answers sets for PA ∪ PQ can
be evaluated using any ASP solver which handles disjunctive logic programs.
When the program PA is obtained as a translation of the AS which derives from
the ECI Lexicon, PA will be infinite because AS will contain function symbols
in its signature. We will look more into this case.

The case of Programs with function symbols

So far we have spoken of disjunctive logic programs under answer set seman-
tics without making a difference whether they contain function symbols or not.
Recall that in the case when our answer is a text over the ECI lexicon, the for-
mula AS will contain function symbols. Because of the presence of the function
symbols, the Herbrand Base will be infinite, and the program, in the general
case will have infinitely many rules. The logic programs which contain function
symbols are usually referred to as infinite programs. However, for certain pro-
grams which have infinite Herbrand Bases answer sets can be evaluated. The
specifics of such programs are treated in [12].

We will derive infinite programs PA from the answers which belong to the
ECI Lexicon. Generally speaking determining if there is an answer set for an
infinite program is indecisive, so there is a need to separately consider the case
of PA corresponding to an ECI Lexicon answer. We will show that in order to
derive an answer set for PA it is not necessary to consider the entire infinite
program.

Let α be the first-order representation of an answer from the ECI lexicon.
In accordance to the analysis in Section 4.3.4, ϕ will be of form:

73

∃x (φ(x) ∧ ∀ y (ϕ(xi,y) → ∃ z(η(xj ,y, z)))), xi ⊆ x, xj ⊆ x (5.1)

When we Skolemize it α will become ((c) is a tuple of constants, y is a tuple
of variables and f is set of functions):

φ(c) ∧ ∀ y (ϕ(c,y) → η(c,y, f(y))) (5.2)

The Herbrand Base of the Formula 5.2 will be the following set:

{φ(c), ϕ(c, c), η(c, c, f(c)), ϕ(c, f(c), η(c, f(c), f(f(c))), . . .}

The possible Herbrand Models of the Formula 5.2 are:

{φ(c), ϕ(c, c), η(c, c, f(c))}

{φ(c), ϕ(c, f(c), η(c, f(c), f(f(c)))}

· · ·

All of these models are in fact equivalent to each other. We will argue
this claim for the first two in the sequence but the same argument can be
extended to the rest of the possible Herbrand Models. We consider the sets
{φ(c), ϕ(c, c), η(c, c, f(c))} and {φ(c), ϕ(c, f(c), η(c, f(c), f(f(c)))}.

The grounded function terms within the predicates of one set are assignments
for the variables which were arguments of the predicates. As we discussed
in Section 3.3, the variables are assigned to individuals from the domain of
the model. The individuals are represented with a ”symbolic name”, which is
not a rigid designator. The grounded function terms and the constants c are
representations for the individuals from the domain of the model. They are a
different name for the same individual. The ”symbolic name” bares no relevance
on the meaning of the model – two models over one formula are different if they
contain different grounded predicates (if different predicates are evaluated to
true), but they will be the same if they assign different ”symbolic names” to
assign to the same variable and if they have the same grounded predicates
(the same predicates are evaluated to true). In our case, the two models offer
different assignments for the same variables (in the first model y is assigned the
”symbolic name” c and in the second y is assigned the ”symbolic name” f(c)),
but they have the same grounded predicates and hence they are the same.

The Herbrand Models of a program PA (built by translating the Formula
5.2 to logic rules) and the Herbrand Models of the Formula Formula 5.2 are the
same. Consequently, in order to determine the answer set to PA there is no
need to ground the PA with the entire Herbrand Universe of PA. Grounding it
with terms up to depth 1 is sufficient. (We consider f(x) a term with depth 1,
f(f(x)) a term with depth 2 and so on.)

This means that answer sets can be derived for our infinite program PA
derived from an answer of the ECI Lexicon. The entire (infinite) set of logic
rules will not be considered to calculate the answer sets. The infinite set will
be split to a finite part and an infinite part. In our case it is enough to put
rules which contain grounded terms up to depth 1 in the finite part. The answer
sets of the finite part will also be answer sets of the entire program. The idea

74

of splinting the program in the context of answer set semantics is discussed in
[46].

The class of infinite normal logic programs for which answer sets can be
efficiently computed are called finitary programs [12]. The logic programs we
obtain for the formulas of the ECI lexicon as we showed allow for efficient
computing of answer sets. They also are normal (not contain disjunction in the
head of the rule).

The first-order formulas of sentences from the ECI lexicon do not contain
negation and disjunction explicitly. They are of form conjunction of positive
atoms implies a conjunction of positive atoms. For example consider the simple
formula of two conjuncts on each side of the implication(α and β are positive
literals on the left and γ and δ are the positive literals on the right):

α ∧ β → γ ∧ δ

This will be translated to the following set of normal logic rules:

γ : −¬α. γ : −¬β. δ : −¬α. δ : −¬β.

Next we briefly present the ASP solver which we chose to derive the answer
sets to our program PA ∪ PQ.

The DLV-System

There are several efficient ASP solvers available today as off-the-shelf the shelf
tools, among which The DLV System [44] and Smodels [51] are the today
state-of-the-art. Both are built to handle disjunctive logic programs without
function symbols. We chose to use the DLV System because there has been an
expected release of an extension to the DLV System [19] which is able to handle
programs with both disjunctive and finitray rules1.

The syntax and the underlying semantics of the programs of the DLV System
is the same as those described described for the ASP earlier in this section.
In addition to constant symbols and variables, the DLV System also supports
integer constants and arbitrary string constants. The DLV System also offers
several built in comparison and arithmetic predicates. The details of the full
syntax, as well as semantics of the DLV System can be found in [44].

We can use the DLV System on our programs PA ∪PQ directly as we obtain
them from the translation algorithms with one modification.

The DLV system enforces a safety rule for its programs which refers to
the head of the rules, the weakly negated atoms not b and for the comparison
predicates. Out of those, to our programs only the safety rule for the head of
the rules applies because there will be no comparison predicates and weakly
negated atoms in our PA ∪PQ. The safety rule for the heads of the rules states
that if a variable X appears in the head of the rule, X must also appear in the
body of that rule.

The rules in the program PQ will always be safe. To ensure that the rule
safety rule is obeyed in PA we will extend the translating algorithm which creates
PA by adding the following procedure to the end of it.

1The prototype of the DLV-VI we obtained directly from the developers of the University
of Calabria

75

for each unary literal α in PA do PA ∪ {dom(X):- α(X).}
for each unsafe rule r in PA
for each unsafe variable X in the head of r

add dom(X) to the body of r.

5.4 Generating Background Knowledge

The work we have done so far considered if a question is answered only based
on the representation of the possible answer. However, reasoning in question
answering is not at all possible without background knowledge (lexicl knowledge,
ontological knowledge, world knowledge, situation knowledge). Even the most
trivial example of a question-answer pair such as:
Who dances? represented with:
∃y(person(x) ∧ event(y) ∧ dance(y) ∧ agent(y, x))
Marija dances. represented with:
∃x∃y(marija(x) ∧ event(y) ∧ dance(y) ∧ agent(y, x))
we would not be able to make a confirmation without including the background
knowledge that if x is a marija is is also a person.

The problem of generating background knowledge for a question answering
system is very difficult task and it exceeds the scope of this thesis. We will
show only what we found to be the minimum requirements for a background
knowledge for our university domain and indications on how to satisfy these
requirements.

The first comment is that it is most advisable for the background knowledge
to be written directly in the language of the system which does the automated
reasoning for the question answering entailment. In our case our background
knowledge should be written directly in DLV news.

In Section 3.2, we discussed that the predicate special predicate eq will
denote the verb is. The knowledge base should be extended with additional
rules so that the semantic of the predicate eq to be preserved. For each unary
predicate P (x) and binary predicate Q(x, y) we will add the rules:

p(X):- p(Y),eq(X,Y).
q(X,):-q(Y,),eq(X,Y).
q(,X):-q(,Y),eq(X,Y).
eq(X,Y):-eq(Y,X).

Because we know before hand the continence of the answers that can be
retrieved by the IQA system, we can build a small ontology for those answers to
represent the membership to the domain of the questions for the concepts that
can be found in the answers. Namely, to declare which concepts are persons,
time units, locations and so on. To the best of our knowledge there is no
automated way to do this concept domain knowledge extraction and it has
to be done by hand. While this job is fairly easy for the domains such as
person and location, it is more difficult to establish membership to the domain
reason(corresponding to the question ”why”) and the membership to the domain
manner would be harder to establish because it will extend over more then one
concept.

This ”is-a” ontology should also be extended to contain the domain specific
knowledge about the is-a relations which hold among the individual concepts.

76

For example, in the FAQ Sheets in the library domain we have considered, we
can often find rules talking about the material which we as humans can eas-
ily conclude that in this setting refers to the library material and it refers to
books, DVD and so on. For the purpose of automated reasoning, the back-
ground knowledge should contain the information on exactly which concepts
are ”children” of the concept material in the library domain.

The natural language is rich and there are many words or phrases to express
one and the same thing. If we want to be able to do question answering for
questions and answers which contain the same information expressed in various
linguistic ways we need basic lexical background knowledge. The relations in the
lexical database WordNet [28] are widely used for the purpose of background
knowledge in reasoning over natural language. WordNet is a very big database
and we would not need to use all the concepts in it for our background knowledge
for a restricted domain. For indications on how to extract only the information
we need from WordNet we can use the the work presented in [15]. For using
WordNet to extract ASP rulers over a given domain we can use the experience
presented in [7].

These are only a few indications on what the background knowledge for the
reasoning purpose for IQA over the university library domain should unavoid-
ably contain. They are presented only to serve as a starting point to any future
work on completing the Logic Support Unit for the IQA System.

77

Chapter 6

Conclusions and Future

Work

In this thesis we have studied the problem of supporting probabilistic Interactive
Question Answering, over a restricted domain, with logic reasoning. We con-
centrated on finding theoretic and applicable solutions to two particular prob-
lems: confirming (or refuting) that a probabilistically retrieved answer answers
a given question and extracting the specific answer from a verified question.
The solution to these two problems comprised of three tasks: finding a way to
automatically and efficiently build wide-coverage semantic representations for
natural language, ensuring that those representations allow for efficient logic
reasoning to be performed on them and developing a formalism to represent the
answer verification and specific answer extraction problem as a automated logic
reasoning task. We state here how we handled these tasks and compare our
approach to related work. We find that there are many fruitful research paths
that remain unclosed by this thesis. At the end of this chapter we will outline
some of the possibilities for future work in the course of the work of this thesis.

6.1 Overview of Results

The first task in this thesis was to choose a suitable semantic representation
for the questions and answers. We decided to use first-order semantic repre-
sentations. We obtain these representations by using a tool which efficiently
builds wide-coverage semantic representations (boxer) from derivations of a
wide-coverage statistical parser (CCG Parser). The benefit of using a proba-
bilistic approach to parsing is that the resolution of possible ambiguities (lexical
and structural) in the parsed natural language sentence is solved – the parser
is trained to provide only one, the most likely, derivation. The wide-coverage
feature of the tools allows for semantic representations to be obtained from a
wide range (versatile in context and expression level) of natural language.

The second task in this thesis was to ensure efficient reasoning over the
semantic representations. To this end we defined lexicon restrictions for the
natural language sentences comprising the answers and the language of the
question which yield decidable (for satisfiability and entailment) first-order rep-
resentations. Corpora analysis showed that the restricted lexicons have high

78

coverage. The joint answer lexicons cover 91% of the general answers over the
library. The question lexicon cover also 91% of questions from large question
corpora.

Establishing decidable fragments of natural language by means of lexicon
restrictions can be seen in [49]. Unlike the restrictions proposed in [49], which
restrict entire categories of words (ditransitive verbs, numbers, relative pronouns
etc.), the lexicon restrictions we propose are easier to use because we restrict
the usage of a short list of specific words on the level of a sentence, and no
linguistic knowledge is needed to use the restricted language (one does not need
to know what are ditransitive verbs, what are reflexive pronouns etc.).

The third task was to choose a logic formalism which is suitable to rep-
resent as an automated reasoning problem the problem of answer verification
and specific answer extraction (IQA problems). We proposed a formalism of
representing the IQA problems as a task of reasoning over answer sets. The
basic idea behind our reasoning solution is the same as the ASP formalism for
retrieving an answer to a question presented in [7].

In [7] the logic programs, which represent the natural language possible
answer and question, are being built by an algorithm. This algorithm constructs
the logic rules from derivations of the Link Grammar Parser (used to parse the
answer and question). Our approach is to obtain the logic rules by translation of
the first-order representations of the answer and question. By doing so, we are
able to take advantages of the ambiguity resolution feature of the CCG Parser,
as well as the wide-coverage feature of both boxer and the CCG Parser.

We show how to translate into disjunctive logic rules the formulas of answers
and questions built using the restricted lexicons we have earlier defined. We
show how to verify an answer and extract the specific answer(s) by analyzing
the answer sets of the obtained logic program. The answer sets of our logic
programs can be calculate using the DLV System.

The logic program we build to represent the answer and question is small
in size because we represent a possible answer and not a large knowledge base
(which would correspond to a long text). For this reason, the calculation of the
answer sets will be efficient in spite of the fact that the problem of calculating
an answer set to a disjunctive logic program is Σ2

π hard [44].

6.2 Future Work

Discovering ways to improve the precision of statistical Question Answering by
using KR and Reasoning techniques is a new field which is rapidly developing.
The work of this master thesis aims not to offer final solutions for using KR&R
techniques in the field of IQA, but to show that the possibility of combining the
NLP methods with KR&R methods in the field IQA exists and deserves to be
assigned further research attention. Consequently, many issues remain open for
future work. We will outline the ones we consider to be the most promising.

Future Work in Fragments of Natural Language

Although the coverage of the Restricted Lexicons we define is high there are
sentences (answers) and questions which are not covered.

79

The answers from the analyzed corpora which could not be covered by the
Restricted Lexicons are those which contain both a negation and implication
introducing lexical item. We have observed that in the case when the scope of
the implication introducer and the negation introducer do not overlap in the
sentence, the semantic representation of that sentence will be decidable. This
claim remains to be formally proved. For these additional semantic represen-
tations, the algorithm for translating the first-order representations for answers
can be used without modifications.

We observed that a question which contains one negation introducer and no
disjunction introducer also yields decidable entailment with the existing answer
lexicons. This claim also remains to be formally proved. The first-order for-
mula of a question with one negation introducer can be represented with logic
programing rules without modifications to the procedure.

Future Work in Reasoning for IQA

boxer normalizes cardinal and date expressions and represents them with special
predicate symbols. It will be useful to represent integer cardinal expressions that
appear in a possible answer as numbers over which arithmetic operations can
be performed. Answers as for example ”A user can borrow at most 40 books”
can only be verified for a questions as ”Can I borrow 15 books?” if there is a
way to reason that 40 is greater then 15.

The DLV System (which we employ as an ASP solver) allows for the use of
integers and basic arithmetic operations over integers. This possibility should
be further researched and incorporated in the current answer verification and
specific answer extraction ASP formalism by re-representing the normalized
integer cardinal expressions with DLV integers.

Casting the problem of answer verification and specific answer extraction
in terms of Answer Set Programing offers more reasoning possibilities then we
use. In the work presented in this thesis we use the ASP to automatize deduc-
tive reasoning (classical reasoning). One of the features of the ASP framework,
as framework for Declarative Problem Solving, is that it allows for simple im-
plementation of non-monotonic reasoning, in particular default reasoning. We
consider that this opportunity should be taken advantage of.

Non-monotonic reasoning is considered to be closer to human reasoning then
classical reasoning [3], and as such useful for the purposes of NLP [17], [27],
[48]. We give a few pointer on how non-monotonic reasoning can be used in our
framework.

Default reasoning. We can often find information that typically holds in
the answers from the library domain. For example the answer ”The loan pe-
riod normally lasts 30 days with the exception of textbooks from Bozen/Bolzano
marked with the number 15, journals and DVD which have a loan period of 14
days.” . The syntax of ASP includes weak negation(negation as failure to derive
a proof). We can make use of the weak negation to represent rules of the form
”A normally holds with the exception B” as default rules of form ”A if not

B” where not is a weak negation. The problem which has to be solved before
being able to use the default reasoning is how to automatically obtain semantic
representations for sentences which contain default information.

Abductive reasoning. It is fairly simple to extend the Background knowl-
edge with information about membership to the domains corresponding to the

80

questions where, who, when, and what by simply declaring which noun phrases
are persons, locations, time units or things. What falls in the domain of the
questions how and why is much harder to be determined because in this case
the domain is not a single noun phrase, but consists of an entire phrase. In this
case, reasoning over one possible answer may not longer be sufficient.

It has been argued that abductive reasoning is what needs to be employed
for answering ”why” questions [17]. Abductive reasoning can be represented in
many different ways, however the most simple one is by using Abductive Logic
Programming (ALP). ALP as a framework of Declarative Problem Solving is
being rapidly developed to extend logic programs to perform abductive reason-
ing [38]. We believe that this framework should be explored for the needs of
Question Answering.

81

Bibliography

[1] K. Ajdukiewicz. Die syntaktische Konnexitaet. Oxford University Press,
1935.

[2] Hajnal Andreka, Istvan Nemeti, and Johan van Benthem. Modal languages
and bounded fragments of predicate logic. Journal of Philosophical Logic,
27(3):217–274, 1999.

[3] Grigoris Antoniou. Nonmonotonic Reasoning. The MIT Press, 1997.

[4] Kathryn L. Baker, Alexander M. Franz, and Pamela W. Jordan. Coping
with ambiguity in knowledge-based natural language analysis. In In Pro-
ceedings of the 15th International Conference on Computational Linguistics
COLING-94, 1994.

[5] Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Lan-
guage 29, 1953.

[6] Chitta Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[7] Chitta Baral and Luis Tari. Using ansprolog with link grammar and word-
net for qa with deep reasoning. ICIT, pages 125–128, 2006.

[8] H.P. Barendregt. The Lambda Calculus (Studies in Logic and the Founda-
tions of Mathematics), volume 103. North Holland, 1984.

[9] Farah Benamara. Language and reasoning for question answering:state
of the art and future directions. In Proceedings of the workshop
KRAQ06:Knowledge and Reasoning for Language Processing, Trento,Italy,
2006.

[10] Raffaella Bernardi, Francesca Bonin, Diego Calvanese, Domenico Carbotta,
and Camilo Thorne. English querying over ontologies: E-quonto. In The
10th Congress of the Italian Association for Artificial Intelligence (AIIA
2007), Roma, Italy.

[11] Patrick Blackburn and Johan Bos. Working With Discourse Representation
Theory. http://www.cogsci.ed.ac.uk/∼jbos/comsem/book2.html, 2006.

[12] Piero A. Bonatti. Reasoning with infinite stable models. Artificial Intelli-
gence, 156(1):75–111, 2004.

82

[13] Egon Borger, Erich Gradel, and Yuri Gurevich. The Classical Decision
Problem. Springer, 1996.

[14] Johan Bos. Implementing the binding and accommodation theory for
anaphora resolution and presupposition projection. Computational Lin-
guistic, 29(2):179–210, 2003.

[15] Johan Bos. Towards wide-coverage semantic interpretation. In In Proceed-
ings of Sixth International Workshop on Computational Semantics IWCS-
06, pages 42–53, 2005.

[16] Johan Bos and Malte Gabsdil. First-order inference and the interpretation
of questions and answers. 1999.

[17] D. Burhans and S. Shapiro. Abduction and question answering. In In
Proceedings of the IJCAI-01 Workshop on Abductive Reasoning, AAAI,
Seattle,WA, 2001.

[18] Ricardo Caferra, Alexander Leitsch, and Nicolas Peltier. Automated Model
Building. Springer, 2004.

[19] Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni. External
sources of knowledge and value invention in logic programming. Annals of
Mathematics and Artificial Intelligence, 50(3-4):333–361, 2007.

[20] Diego Calvanese, Giuseppe Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The dl-lite family. Journal of Automated
Reasoning, 39(3):385–429, 2007.

[21] E. Charniak. A maximum-entropy-inspired parser. In In Proceedings of
the FirstMeeting of the North American Chapter of the Association for
Computational Linguistics, pages 132–139, Seattle, WA., 2000.

[22] Stephen Clark and James R. Curran. Wide-coverage efficient statistical
parsing with ccg and log-linear models. Computational Linguistics, 33(4),
2007.

[23] M. Collins. Head-Driven Statistical Models for Natural Language Parsing.
PhD thesis, Computer and Information Science, University of Pennsylva-
nia, 1999.

[24] James R. Curran, Stephen Clark, and Johan Bos. Linguistically motivated
large-scale NLP with C&C and Boxer. In Proc. of the Demonstrations
Session of the 45th Annual Meeting of the Association for Computational
Linguistics (ACL 2007), Prague, Czech Republic, 2007.

[25] H. B. Curry and R. Feys. Combinatory Logic,, volume I. North-Holland,
Amsterdam, 1958.

[26] Rob A. Van der Sandt. Presupposition projection as anaphora resolution.
J Semantics, 9(4):333–377, 1992.

83

[27] Harry C. Bunt (editor) and William J. Black (Editor). Abduction, Be-
lief and Context in Dialogue: Studies in Computational Pragmatics. John
Benjamins Publishing Co, 2000.

[28] Christiane Fellbaum. Towards a representation of idioms in WordNet. In
Sanda Harabagiu, editor, Use of WordNet in Natural Language Process-
ing Systems: Proceedings of the Conference, pages 52–57. Association for
Computational Linguistics, Somerset, New Jersey, 1998.

[29] Norbert E. Fuchs and Uta Schwertel. Reasoning in attempto controlled
english. Principles and Practice of Semantic Web Reasoning, 2901:174–
188, 2003.

[30] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth Bowen, editors,
Proceedings of the Fifth International Conference on Logic Programming,
pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press.

[31] Erich Grädel. On the restraining power of guards. Journal of Symbolic
Logic, 64(4):1719–1742, 1999.

[32] Jeroen Groenendijk. The logic of interrogation: Classical version. In In Pro-
ceedings of the Ninth Semantics and Linguistics Theory Conference (SALT
IX), Ithaca, NY, 1999.

[33] Julia Hockenmaier. Data and models for statistical parsing with Combina-
tory Categorial Grammar. PhD thesis, School of Informatics, The Univer-
sity of Edinburgh, 2003.

[34] Julia Hockenmeir and Mark Steedman. Generative models for statistical
parsing with combinatory categorial grammar. In In Proceedings of the
40th Meeting of the ACL, pages 335–342, Philadelphia,PA, 2002.

[35] Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.

[36] Ian Hodkinson. Loosely guarded fragment of first-order logic has the finite
model property. Manuscript.

[37] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
sroiq. In KR, pages 57–67. AAAI Press, 2006.

[38] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive
logic programming. Journal of Logic and Computation, 2(6):719–770, 1992.

[39] H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Model-
theoretic Semantics, Logic and Discourse Representation Theory. Kluwer
Academic Publishers, 1993.

[40] Manuel Kirschner. The bob iqa system: a domain experts perspective. In In
Proc. of the 11th Workshop on the Semantics and Pragmatics of Dialogue
(SemDial07), Rovereto, Italy. to be published.

[41] Manuel Kirschner. Building a multi-lingual interactive questionanswering
system for the library domain. In In Proc. of the 10th Workshop on the
Semantics and Pragmatics of Dialogue (SemDial06), Potsdam, Germany.

84

[42] Tobias Kuhn. Acerules: Executing rules in controlled natural language. In
Proceedings of the First International Conference on Web Reasoning and
Rule Systems (RR2007). Springer, 2007.

[43] Alexander Leitsch. The Resolution Calculus. Springer, 1998.

[44] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The DLV system for knowledge
representation and reasoning. ACM Trans. Comput. Logic, 7(3):499–562,
2006.

[45] David Lewis. Papers in Philosophical Logic: Relevant Implication. Cam-
bridge University Press, 1998.

[46] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In In-
ternational Conference on Logic Programming, pages 23–37, 1994.

[47] K. F. McCoy and J. Cheng. Focus of attention: Constraining what can be
said next. In Natural Language Generation in Artificial Intelligence and
Computational Linguistics, pages 103–124, Boston, 1991. Kluwer.

[48] F. Nouioua and P. Nicolas. Using answer set programming in an inference-
based approach to natural language semantics. ArXiv Computer Science
e-prints, 2006.

[49] Ian Pratt-Hartmann and Allan Third. More fragments of language: the
case of ditransitive verbs’. Notre Dame Journal of Formal Logic, 47(2),
pages 151–177, 2006.

[50] Mark Steedman and Jason Baldridge. Combinatory categorial grammar.
Non-Transformational Syntax, 2007.

[51] Tommi Syrjänen and Ilkka Niemelä. The smodels system. Logic Program-
ming and Nonmonotonic Reasoning: Proceedings of the 6th International
Conference, LPNMR 2001.

85

