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Abstract
The use of artificial intelligence for decision making raises concerns
about the societal impact of such systems. Traditionally, the product
of a human decision-maker are governed by laws and human values.
Decision-making is now being guided - or in some cases, replaced
by machine learning classification which may reinforce and introduce
bias. Algorithmic bias mitigation is explored as an approach to avoid
this, however it does come at a cost: efficiency and accuracy. We
conduct an empirical analysis of two off-the-shelf bias mitigation
techniques from the AIF360 toolkit on a binary classification task. Our
preliminary results indicate that bias mitigation is a feasible approach
to ensuring group fairness.

1 Introduction
Ethical and social implications of artificial intelligence (AI) have been hotly
debated in recent years [4, 5, 10]. The European Union has adopted an “ethics
by design” approach, incorporating ethical principles at the very start of the
design of AI solutions [18]. In China, the recently proposed Beijing AI principles
[2] aim to conform to human values, ethics, and autonomy for governance, use
and healthy development of AI [13]. In 2020, the U.S. government outlined 10
principles [23] to regulate and promote trustworthy AI in the private sector, for
the purpose of making it more fair, transparent, and safe [9]. In a newly released
national strategy for AI, Norway has adopted the seven principles for ethical and
responsible AI proposed by the EU. The national strategy applies to both the
public and private sectors and call for the development of fair, transparent, safe,
accountable, and ethical AI [21]. These interventions to regulate and facilitate
safe and trustworthy AI is a sign of how disruptive AI tools can be without the
right oversight.

AI is increasingly used to automate decision-making in many domains, such
as job recruitment, health care, and even student evaluation1. A particular
concern arises when supervised machine learning is used for this task, where
correlations are found, for example, between high performance of the student
(favourable label) and features that describe that student. Certain features,
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such as race, gender, and parent’s affluence, should not be used to make
a decision about a student’s grades. However since these features correlate
within non-protected features and due to the lack of transparency in some
supervised machine learning methods, automated decision-making can lead to
unfair decisions.

Fairness in machine learning concerns the proportion of favourable labels
allocated to members of a privileged group compared to favorable labels
allocated to members of an unprivileged group [8]. A favourable label is a
label whose value is proffered: getting high grade, being offered a job etc. [3].
An unfair label assignment occurs when there’s a disproportional amount of
desirable labels distributed among the unprivileged and privileged groups. To
ensure that an automated decision is fair, bias mitigation has been explored for
numerous supervised machine learning approaches [3].

A bias mitigation algorithm is a procedure for reducing unwanted bias in
training data or machine learning models [3]. Bias mitigation methods comprise
of several data pre-, in-, and post-processing techniques that seek to ensure
fair labels. Since bias mitigation methods necessarily interact with prediction
modeling and model training, inevitably they impact the accuracy and efficiency
of supervised machine learning. If the “price” of fair automated decision-making
is “too high”, these methods are unlikely to be used. We consider a recent toolkit
of bias mitigation algorithms, AIF3602 and explore to which extend do (some of)
these algorithms interact with the classification accuracy.

Motivated by recent findings of algorithmic bias in hiring and recidivism
assessment [16, 6], we compare the efficacy of applying two bias mitigation
algorithms from AIF360 on a hiring prediction model which we trained on a
U.S. census dataset [14]. Specifically, first we measure the mean difference in
outcome (employed/unemployed) between all the groups in the U.S. census
dataset. Then, we apply two bias mitigation algorithms and conduct an empirical
comparison between the two. We thus compare the AIF360 bias mitigation
algorithms in terms of group fairness3 between men and women and whites and
non-whites with respect to employment status, and loss in classifier accuracy.

We focus on group fairness for pragmatic reasons. Individual fairness is
concerned with treating individuals with similar qualifications should be treated
similarly [5, 22]. The problem with individual fairness is the assumption of an
application specific similarity measure, which can be hard to define [5, 19, 20]. We
focus on group fairness, rather than individual fairness for three reasons. First,
we do not consider a specific application; our dataset is limited to demographic
data. Second, there is a lack of specificity in the dataset we used. In this dataset
it is difficult to treat people with similar qualifications alike or put differently - to
identify individuals that have similar qualifications. Lastly, statistical notions of
fairness are easily verifiable and does not require us to make any assumptions on
the data [5, 22].

Note that, while our results may indicate some disparity between the
compared groups, it is outside of the scope of this work to provide reasons for
why they are treated differently by the prediction models. We also do not attempt

2https://aif360.mybluemix.net/
3specifically, we compare disparate impact, statistical parity difference, average odds

difference, and equal opportunity
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to rationalize or justify such differences, should they appear. Such work would
fall under the domain of AI explainability.

Our contribution is a demonstration of the feasibility of off-the-shelf bias
mitigation tools. The major shortcoming of this work is that we only tested one
dataset and the performance of machine learning models is very much dataset
dependent. Thus this work cannot qualify as a systematic in-debt review of the
AIF360 toolkit. With this work, we primarily hope to motivate the practice of bias
mitigation in research and commercially used supervised machine learning.

The paper is structured as follows. In Section 2 we introduce terms and
definitions from the fairness domain. In Section 3 we describe our method and
experimental setup. In section 4 we present the results from applying the two
bias mitigation techniques. In Section 5 we discuss the results. In Section 6,
we review related work on bias mitigation and the use of fairness metrics in
machine learning. Lastly in Section 7 we summarise our results and outline
directions for future work. All our code is available at: https://github.com/

throwaway02062020/INFO381.

2 Definitions
For our definitions of bias we rely on Bellamy et al. [3].

A protected attribute is a feature that partitions a population into groups that
have parity in terms of benefit received . A favorable label is a label whose
value is considered the favorable outcome . Hereafter, we will refer to favorable
outcome and favorable label interchangeably. A privileged group is a group that
is systematically put at an advantage with respect to the beneficial outcome . A
unprivileged group is a group which is systematically put at an disadvantage
with respect to the beneficial outcome.

A fairness metric is a quantification of unwanted bias in training data or
models [3]. Statistical parity entails that individuals from the protected and
unprotected group should have the same probability of being assigned the
favorable label. A value of zero is ideal. A negative value indicates that the
unprivileged group is at an disadvantage [22].

Equal opportunity, also known as false negative error rate balance, is
a fairness metric that entails that individuals from both the privileged and
unprivileged groups have the same probability of being wrongly assigned the
unfavorable label. A value of zero is ideal. A negative value indicates that the
unprivileged group is at an disadvantage [22].

Average odds is satisfied when the true positive rate (TPR) and false-positive
rate (FPR) is equal for the privileged and unprivileged group. A value of
zero is ideal. A negative value indicates that the unprivileged group is at an
disadvantage [22].

Disparate impact, is an estimate of unintentional bias in a label assignment
task which occurs when a group is assigned widely different outcomes on the
basis of its membership to a protected class. It is an indication that the selection
process or the data underlying the process have become vitiated by latent bias,
resulting in discrimination. The ideal value is 1. A value below 1 indicates a
disadvantage for the unprivileged group [7].

https://github.com/throwaway02062020/INFO381
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3 Method
AIF360 is an open source toolkit for detecting and mitigating algorithmic bias
developed by IBM research. The toolkit is part of IBM’s Trusted AI initiative and
is the first system that combines bias metrics, bias mitigation algorithms, metric
explanations, and industrial usability [3]. It consists of over 71 bias detection
metrics and 9 bias mitigation algorithms; our study focuses on Reject Option
based Classification and Prejudice Remover for bias mitigation [3].

The performance of Reject Option based Classification (ROC) and Prejudice
Remover (PR)4 are evaluated using disparate impact, statistical parity difference,
average odds difference, and equal opportunity difference. Performance of
the classifier is evaluated using balanced accuracy and receiver operating
characteristic curves. Fairness and classifier performance are compared before
and after applying the bias mitigation techniques.

The dataset that we used is a sample of a U.S. census dataset from 20135.
The dataset [14] contains records of 131 302 individuals from a 2013 U.S.
census. A total of 14 features are recorded: PeopleInHousehold, Region,
State, MetroAreaCode, Age, Married, Gender, Education, Race, Hispanic,
CountryOfBirthCode, Citizenship, EmploymentStatus, and Industry. The
objective is to predict who are employed and unemployed excluding gender
and race as features in the prediction model training. The mean difference in
favorable label assignment we calculated for gender and race. Men (n = 31765)
were associated with 9.5% more favorable labels than women (n = 33180) and
whites (n = 52688) were associated with 9.7% more favorable labels than non-
whites (n = 12257). Therefore, we set the privileged groups to be men and whites
and the unprivileged groups to be women and non-whites. See Table 1 for an
overview of the experimental setup.

Dataset U.S. census data from 2013
Protected attributes Race, Gender

Privileged class White, Male
Unprivileged class Non-white, Female

Classifiers
Logistic Regression Classifier,

Regularized Logistic Regression
Classifier

Bias mitigation methods

Reject Option based
Classification [11] (post-processing) ,

Prejudice Remover [12]
(in-processing)

Table 1: Overview of experimental setup

Pre-processing
For the pre-proccesing stage, we replaced null values for Industry and Education
with the label ’missing’. All other instances with null values were removed. In

4Detailed explanation of ROC and PR can be found at: https://github.com/

throwaway02062020/INFO381/blob/master/Bias%20mitigation%20with%20AIF360:

%20A%20comparative%20study.pdf
5Dataset can be found at: https://www.kaggle.com/econdata/demographics-and-

employment-in-the-united-states/version/1
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total, we were left with 56 827 instances. The feature age, ranging from 0-80 was
transformed into discrete buckets (bins) of decades. Persons of age 14 or younger
were excluded, since they are below the legal working age [15]. Education,
Industry, and Marriage was encoded as categorical features. PeopleInHousehold
was discretized into categories of “living alone” (1 person), “couple” (2 person),
and “family”, (3 or more persons). The sensitive attribute “Hispanic” was
excluded since it can act as a proxy for race. The race attribute was grouped
into non-white and white.

For ROC, we split the dataset 70/30. 70% of the data was used for training and
the remaining 30% was split evenly for testing and validation. The validation
set was used to find the optimal classification threshold (θ) and ROC margin.
These parameters define the critical region at the decision boundary for which
predictions are made with the the highest uncertainty. For PR, the data is split
80/20, where 80% is for training and 20% is used for testing. In constrast to ROC,
PR can not optimize for a specific fairness metric. Kamishima et al. [12] suggests
testing PR with different η values. Due to the computational cost of learning the
regularized function, we limited η values from 0 through 30.

4 Results
The following section presents the results from our experiments. We compare the
results from before and after applying fairness constraints for each bias mitigation
technique.

Result of ROC
Gender: Table 2 shows the result of the experiment with gender as the protected
attribute. Balanced accuracy (80.14%, 78.02%). Statistical parity difference (-
0.2203, -0.0438). Disparate impact was (0.7219, 0.9419). Average odds difference
was (-0.1388, 0.0401). Equal opportunity difference was (-0.1803, -0.0091). The
area under curve score (AUC) score with fairness constraints was 0.8747.

Race: Table 3 shows the result of the experiment with race as the protected
attribute. Balanced accuracy (80.14%, 79.81%). Statistical parity difference (-
0.1184, -0.0334). Disparate impact was (0.8317, 0.9510). Average odds difference
was (-0.0622, 0.0207). Equal opportunity difference was (-0.0922, -0.0049). The
AUC score with fairness constraints was 0.8747.

Result of PR
Figure 1 and 2 shows the relationship between accuracy and fairness metrics in
response to changes in the penalty parameter η for Prejudice Remover. A drop in
accuracy can be observed in response to increases in η. We observe significant
improvements in fairness metrics at η = 10, without adverse impact on the
classifier accuracy for both gender and race.

Gender: Table 2 shows the result of the experiment with gender as the protected
attribute. We compare the fairness metrics before and after applying fairness



constraints. Balanced accuracy (77.77%, 73.61%). Statistical parity difference (-
0.0727, -0.0190). Disparate impact was (0.9144, 0.9779). Average odds difference
was (0.0083, 0.0729). Equal opportunity difference was (-0.0490, -0.0184). The
AUC score with fairness constraints was 0.8664.

Race: Table 3 shows the result of the experiment with race as the protected
attribute. We compare the fairness metrics before and after applying fairness
constraints. Balanced accuracy (77.79%, 76.45%). Statistical parity difference (-
0.1052, -0.0510). Disparate impact was (0.8736, 0.9387). Average odds difference
was (-0.0594, 0.0092). Equal opportunity difference was (-0.0517, -0.0232). The
AUC score with fairness constraints was 0.8719.

Figure 1: Shows the relationship between accuracy and fairness metrics as the
penalty parameter η (eta) increases. With gender as the protected attribute.

Figure 2: Shows the relationship between accuracy and fairness metrics as the
penalty parameter η (eta) increases. With race as the protected attribute.



Comparison between ROC and PR
With regards to average odds difference, ROC overshoots for both gender and
race - yielding an advantage for the unprivileged groups as opposed to a
disadvantage prior to applying fairness constraints. However, the impact is less
severe with fairness constraints - 13.88% in favor of men to 4.01% in favor of
women and 6.22% in favor of whites to 2.07% in favor of non-whites. With PR,
there is an improvement in average odds difference for race - 5.94% in favor of
white to 0.92% in favor of non-white. However, in the case of gender, average
odds worsened and turned in favor of women by 7.29% (from 0.83%).

The fairness metrics that did not overshoot was statistical parity and equal
opportunity. Both of these metrics remains in favor of the privileged groups after
applying fairness constraints. With regard to ROC and protected attribute gender,
we see that statistical parity improves from 22.03% in favor of men to 4.38% in
favor of men. For equal opportunity, the change is from 18.03% in favor of men
to 0.91% in favor of men. With protected attribute race, statistical parity changed
from 11.84% in favor of whites to 3.34% in favor of whites. Equal opportunity
improved from 9.22% in favor of whites to 0.49% in favor of whites.

With regards to PR, statistical parity improves from 7.27% in favor of men to
1.9% in favor of men. For equal opportunity, the change is from 4.9% in favor of
men to 1.84% in favor of men. With regards to race statistical parity improved
from 10.52% in favor of white to 5.1% in favor of white. For equal opportunity,
the improvement is from 5.17% in favor of white to 2.32% in favor of white.

For ROC with protected attribute gender, disparate impact was improved
by 22% (from 72.19% to 94.19%). With race, we observed an improvement of
11.93% (from 83.17% to 95.10%). For PR, disparate impact for gender improved
by 6.35% (from 91.44% to 97.79%), and race was improved by 6.51% (from 87.36%
to 93.87%).

5 Discussion
In all cases, classifier accuracy was in the range of 73.61% to 80.14% with ROC
outperforming PR under all conditions. With race as the protected attribute, ROC
beat PR on all fairness metrics except for average odds difference. With gender
as the protected attribute, the results were mixed. ROC was better in terms of
average odds difference and equal opportunity, and PR was better on statistical
parity and disparate impact.

We suspect that the accuracy of PR suffers because of the overfitting
regularization, which ROC does not use. Thus, even though we set the penalty
parameter (η) to 0, meaning, no fairness constraints are imposed, the accuracy
will still be affected by the overfitting regularizer. With PR, we found that fairness
metrics improve at the expense of accuracy as η increases. This observation is
expected since PR is designed to remove prejudice at the expense of classifier
accuracy [12].

With PR, there seems to be a steady decline in accuracy up to a certain
threshold value of η. Past this point, the classifier loses its power to distinguish
between employed and unemployed instances - resulting in a sudden loss
of accuracy. We suspect that PR forces statistical independence of the non-
sensitive attributes from the sensitive attribute as theta increases, i.e. sensitive



ROC
(no

fairness
constraints)

ROC
(with

fairness
constraints)

PR
(no

fairness
constraints)

PR
(with

fairness
constraints)

Accuracy 80.14% 78.02% 77.77% 73.61%
Statistical

parity
difference

-0.2203 -0.0438 -0.0727 -0.0190

Disparate
impact 0.7219 0.9419 0.9144 0.9779

Average
odds

difference
-0.1388 0.0401 0.0083 0.0729

Equal
opportunity
difference

-0.1803 -0.0091 -0.0490 -0.0184

Table 2: Results for protected attribute Gender with optimization for statistical parity. ROC
(without fairness constraint) was run with an optimal classification threshold (θ) of 0.7326.
With fairness constraints, the optimal classification threshold (θ) was 0.6930 with a ROC margin
of 0.1253. PR (without fairness constraint) was run with penalty parameter (η) of 1.0. With
fairness constraints the penalty parameter (η) was 10.0.

ROC
(no

fairness
constraints)

ROC
(with

fairness
constraints)

PR
(no

fairness
constraints)

PR
(with

fairness
constraints)

Accuracy 80.14% 79.81% 77.79% 76.45%
Statistical

parity
difference

-0.1184 -0.0334 -0.1052 -0.0510

Disparate
impact 0.8317 0.9510 0.8736 0.9387

Average
odds

difference
-0.0622 0.0207 -0.0594 0.0092

Equal
opportunity
difference

-0.0922 -0.0049 -0.0517 -0.0232

Table 3: Results for protected attribute Race with optimization for statistical parity. ROC
(without fairness constraint) was run with an optimal classification threshold (θ) of 0.7326.
With fairness constraints, the optimal classification threshold (θ) was 0.6831 with a ROC margin
of 0.0776. PR (without fairness constraint) was run with penalty parameter (η) of 1.0. With
fairness constraints the penalty parameter (η) was 10.0.



attributes are weighted less than before. Specifically, the classifier has less
distinct instances to distinguish between employed and unemployed instances.
This occurs because PR transforms the classification parameters of each instance
to compensate for prejudice, making them less distinct. Thereafter, accuracy
remains constant and fairness metrics become less sensitive to changes in η. See
Figure 1 at η= 20 and Figure 2 at η= 21. We believe that the enforcement of
statistical independence leads to a decrease in the AUC score, which explains
the loss in accuracy. To substantiate our hypothesis, we plotted the AUC scores
for η values 15 through 21 which shows a decrease in the AUC score. The
sudden decrease in AUC score and classifier accuracy occur at the same value
of θ. This phenomenon is unique for in-processing methods like PR, since they
are modifying the classifier. Since ROC is a post-processing algorithm, it does not
change the learned model of the classifier. Therefore, the diagnostic ability (AUC)
of the classifier remains unchanged.

ROC calculates an optimal classification threshold (θ), which in turn means
that it can always perform at a high level out of the box. With PR, the η value has
to be chosen by the developer. Finding the correct η value for a dataset is both
time consuming and computational expensive as the only way to find the right
value is to run the classifier with different η values. Then, the developer has to
decide which fairness metric(s) to optimize for. Even though it is computationally
expensive, it allows for a more flexible implementation compared to ROC, since
the model parameters of PR can be manually changed. Compared to PR, ROC
has the advantage of not requiring modification of the classifier since it is a post-
processing algorithm. As such, ROC can be applied to any existing decision-
making system without changing the underlying classifier, unlike PR, which is
implemented with a regularized logistic regression classifier.

One thing to be aware of, is that the results we got from PR and ROC was done
using only one dataset. If we had applied the algorithms on other datasets, the
results could vary because the performance is highly dependent on the dataset.

6 Related work
Previous studies [11, 17] show that ROC applied to logistic regression classifiers
is good at mitigating bias while retaining classifier accuracy. On an adult income
dataset, Kamiran, Karim and Zhang [11] managed to reduce statistical parity
difference from 18% to < 0.5%, while losing less than 2% accuracy. A subsequent
test on a crime dataset reduced statistical parity difference from 40% to < 0.5%
with an 8% decrease in accuracy (83% to 75%).

In another study, Lohia et al. [17] found that ROC had better results compared
to other methods when measuring disparate impact. ROC was compared against
three other bias mitigation methods on different datasets. ROC performed better
at disparate impact compared to the other mitigation methods, but often at the
expense of increasing individual bias [17].

Besides being efficient in reducing biases, ROC offers good control over
discrimination and works with all probabilistic classifiers [11]. It is also
deterministic, which means that it exhibits no randomness and will always
produce the same output given the same input [1].

Lohia et. al. [17] compared both group fairness and individual fairness of
three post-processing algorithms - reject option classification (ROC), equalized



odds (EOP) and individual + group debiasing (IGD). The first two are from
AIF360 and the last one is a custom debiasing technique. All the algorithms used
logistic regression as the classifier. Three datasets were used, an adult income
dataset from 1994, a german credit dataset, and the COMPAS recidivism dataset
[17]. The adult income dataset is based on a U.S. census from 1994 and is similar
to the one in our study. Sex and race were used as protected attributes for the
adult income and COMPAS datasets, while sex and age were used for the German
Credit dataset [17]. The dataset was split 60/20/20 for training, validation, and
testing. IGD works in a similar way to ROC by altering the outcome of predicted
labels. However, rather than sampling instances whose outcome is uncertain,
IGD seeks to capture samples with individual fairness issues. An individual
bias detector was trained on the validation set and used to identify instances
in the unprivileged group with individual fairness issues. These instances were
reassigned with the outcome that they would have if they were in the privileged
group. All the other instances remained unaltered, including instances from the
privileged group [17].

Since each dataset was tested with two protected attributes, the total test cases
were 2 ∗ 3 = 6. Each case was tested in terms of disparate impact, individual
bias, and balanced classification accuracy with each of the three algorithms, IGD,
EOP, and ROC [17]. With regard to disparate impact, IGD performed consistently
across all datasets. However, IGD was outperformed by ROC in 5 out of 6 cases,
but often at the expense of increasing individual bias. In contrast, IGD was best
in terms of the preservation of balanced accuracy and individual bias. Lohia et.
al. [17] concludes that IGD can be appropriate when the aim is to improve both
individual and group fairness.

7 Conclusion
A way to make algorithmic decision-making fairer is to use bias mitigation
methods. Bias mitigation methods are used for optimizing certain fairness
metrics such as equal opportunity. Contemporary approaches to bias mitigation
in machine learning focus on intervention at the pre-processing, in-processing,
and post-processing stages. The earlier you apply bias mitigation techniques,
the more flexibility and potential you have of correcting bias. In this study,
we have compared the performance of two bias mitigation techniques that
intervene at different stages - an in-processing (reject option classification)
and post-processing (Prejudice Remover). The performance was evaluated
using group fairness metrics and classifier accuracy. Specifically, we compared
disparate impact, statistical parity difference, average odds difference, and equal
opportunity between men and women and whites and non-whites with respect to
employment status. We found that, apart from one exception, both algorithms led
to a fairer outcome. Additionally, both algorithms performed well with respect
to loss in classifier accuracy and fairness metrics. Despite being a post-processing
technique, ROC showed comparable results to PR with minimal loss in accuracy.
However, PR is arguably more versatile in the sense that you can remove more
bias at the expense of accuracy by increasing the penalty parameter. In the worst
case, accuracy fell by 4% with PR and protected attribute gender. With protected
attribute race, a fairer outcome was obtained and accuracy loss was negligible
(< 1.5%).



Note that, the results that we obtained are dependent on the dataset.
Therefore, the effectiveness of each algorithm is likely to differ between datasets.
For future work, we intend to experiment with more datasets and run the
experiments with random training samples to include standard deviation. We
are specifically interested in analysing datasets from Norway that can be used to
train prediction models for the Norwegian Labour and Welfare Administration.
It would be interesting to explore how each of the algorithms respond to datasets
with less or more bias.
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