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Abstract. In this paper we present an agent-based approach to for-
malising information diffusion using Markov models which attempts to
account for the internal informational state of the agent and investi-
gate the use of probabilistic model-checking for analysing these models.
We model information diffusion as both continuous and discrete time
Markov chains, using the latter to provide an agent-centred perspective.
We present a negative result - we conclude that current model-checking
technology is inadequate for analysing such systems in an interesting
way.
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1 Introduction

Interest in social networks research is increasing, following the rise of social net-
work services in the last decade. Various aspects of networks have been studied,
see e.g.,[13].

Social network analysis is concerned with the structures of social relations and
the graph they form, as well as how that structure influences, and is influenced
by, the spread of information in the networks e.g., [12,27]. Recently we see also
see work that brings together social network research and logic. Informational
and motivational states of the agents in the network are modelled, not just the
relations between agents, e.g., [11,4,21,28,25]. Network phenomena are also being
given formal models and specifications e.g.,[21,4,20].

Diffusion is the process of spreading information through a network of agents.
A social network is given as a graph of agents (vertices) and there exists an edge
between two agents if they communicate/share information with each other.
Depending upon a number of factors, an agent that has received information
might be socially influenced to adopt it as true (believe it) and share it further
in the network. There are several social influence models proposed in the lit-
erature, each describing different conditions under which the agent spreads the
received information. An example of a question typically studied in diffusion is:
will a point be reached where the information is adopted by all agents? Following
early work studying social networks as part of epidemiology, this is referred to as



full contagion. We are particularly interested in how the internal informational
state of the agent affects its decisions to spread information, and so have devel-
oped an agent-based model for information diffusion which explicitly uses this
information. We adopted a Markov chain formalisation for this model since we
were secondarily interested in using formal verification to analyse the network.

Formal verification involves proving or disproving that a system is compliant
with a formally specified property [10]. Arguably the most practical method of
formal verification is model-checking [7], in which all possible executions of a
system can be examined automatically based on a model of the system.

Diffusion has been extensively studied in the social network analysis liter-
ature, see for example [13,19] for an overview, in particular the impact of the
social network graph on the diffusion process has been studied. Social networks of
communication have physically changed.In particular aspects of these networks,
such as the distance between two nodes, and the speed of communication, have
changed drastically. This observation has revived interest in the study of infor-
mation diffusion, including work that represents the phenomena using Markov
chains (e.g., [3]) as we do here.

In our work we have built formal specifications of social networks and diffu-
sion properties using the input language of a probabilistic model-checker (PRISM).
Unfortunately even simple models that take account of both network structure
and an agent’s informational state proved largely intractable for model-checking
on networks of any significant size. This essentially gives us a negative result for
the use of probabilistic model-checking for information diffusion on social net-
works. However the formal Markov chain framework for studying the effect of
an agent’s informational state on information diffusion should also be amenable
to study using simulation based techniques which we leave for further work.

Contribution. We provide a framework for formalising information diffusion in
a way that takes account of an agent’s internal informational state as Markov
chains which focuses on the broadcasting of opinions as a key feature of study.

Model-checkers can be used as simulation systems, but their value is in their
ability to exhaustively explore all possible system states and produce highly
accurate results, exploring best and worst outcomes. Their weakness is that such
exploration is computationally expensive and necessarily limits the size of the
systems that can be examined. We determine experimentally that the PRISM
model-checker – arguably the state of the art in terms of probabilistic model-
checkers can not be used to analyse networks of any significant size – a negative
result and a challenge to the developers of such tools.

2 Information diffusion in social networks

Several models of information diffusion through influence have been proposed,
although the task of finding a good model remains challenging [6]. The social in-
fluence models used to define processes of diffusion can broadly be classified into
two classes: infection models and threshold models, with the possible exception



of the recent Simmelian model [25]. In an infection model, each node is assigned
a probability of being influenced [20]. In threshold models, an agent is influenced
when the number of her influenced neighbours passes a certain threshold [29].

The SIS model One of the classic infection models is the SIS model [1]. In this
infection model each of the nodes in the graph can be in one of two states:
infected or susceptible to infection. At time t, s(t) represents the susceptible
proportion of the total population N , i(t) represents the infected proportion, and
λ represents the daily contact rate, which means the proportion of the susceptible
users infected by infected users in the total population, where s(t) + i(t) = 1.
There will be λs(t) susceptible users infected at time t. At time t = 0 the
proportion of infected nodes is i0.

The SIS model assumes that µ represents the daily rates of the “cured” nodes
(a mode can now become uninfected). The SIS model can be described by

di
dt = λi(1− i)− µi
i(0) = i0.

Threshold influence models. Threshold influence models define the choice of
whether a node will become infected or not as a function of the degree (or set of
neighbours) of the node in question. Given an agent (node) x, let n(x) be the set
of agents that are directly connected to x in the social graph. Threshold models
define a threshold q. The agent x will become infected if |n(x)| ≥ q.

Other influence models. In the Simmelian model [25] of influence x gets infected
if x is in a clique in which all other nodes are infected.

We will use the SIS model and threshold influence model as our starting
point for introducing an agent’s information state into models of information
diffusion.

3 PRISM Background and Theory

PRISM [17] is a probabilistic symbolic model-checker in continuous development
since 1999, primarily at the Universities of Birmingham and Oxford. Typically a
model of a system is supplied to PRISM in the form of a probabilistic automata.
This can then be exhaustively checked against a property written in PRISM’s
own probabilistic property specification language, which subsumes several well-
known probabilistic logics including PCTL, probabilistic LTL, CTL, and PCTL*.
PRISM has been used to formally verify a variety of systems in which reliability
and uncertainty play a role, including communication protocols and biological
systems [9,18].

In our models we use discrete-time and continuous-time Markov Chains as
our probabilistic automata.

Definition 1. [16] (Discrete-time Markov chain (DTMC)). A discrete-time
Markov chain (DTMC) is a tuple D = (S, si, P, L), where is S a finite set of



states, si ∈ S is a distinguished initial state, P : S × S → [0, 1] is a transition
probability matrix such that

∑
s′ ∈ S. P (s, s′) = 1 for all s ∈ S, and L(s) ⊆ AP

is labelling with atomic propositions.

A discrete-time Markov Chain describes a set of execution paths through the
state space S where P gives the probability of one state moving to the next and
L describes propositions that are true in any given state. PRISM explores the
state space and can calculate the probability that various logical properties are
always true, sometimes true, or true at some time t and so on in the model.

Definition 2. [16] (Continuous-time Markov chain (CTMC)). A continuous-
time Markov chain (CTMC) is C = (S, si, R, L) where:

– S, si and L are defined as for DTMCs
– R : (S × S)→ R≥0 is the rates matrix.

Intuitively a CTMC describes a set of states and the rate at which one state
moves to another. It is possible that for any state s there are several states s′

such that R(s, s′) > 0 and whichever state it transitions to first will determine
the resulting behaviour of the system. Given a set of rates, R(s, s′) for some
state s it is possible to infer the probability with which it will transition to each
s′ for any given time step t. PRISM can then explore this state space.

As well as calculating probabilities, PRISM is able to calculate the expected
reward in some system. We can specify a rewards function, ρ : S → R which
assigns some reward value to the states in S. Among other things, this allows
us to investigate the expected reward at some time step, t, in the system. This
proves a particularly powerful tool in the study of information diffusion since we
can model the number of agents adopting some idea as a reward.

4 Model-Checking Infection Models

4.1 Classic SIS Model

We choose as a first example the classic SIS infection model. This model takes
neither the network structure nor the informational state of the agents into ac-
count, beyond the infection and recovery rates. We model this as a continuous
time Markov Chain (CTMC). Our main aim in presenting this model is to illus-
trate the kinds of questions that can be asked and answered using a probabilistic
model-checker.

Model 1 We consider a network with ma agents. This network contains ma+1
states, si, 0 ≤ i ≤ ma. There are ma + 1 propositional variables pi, 0 ≤ i ≤ ma

where pi means that i agents in the model are infected. The labelling function is
L(si) = pi (i.e., i agents are infected in state si). The initial state is s1 (1 agent
is infected at the start).

λ and µ are the infection and recovery rates from the SIS infection model
and these give us the following rate matrix:



R(si, si+1) = λ(ma − i) if 0 < i < ma (1)

R(si, si−1) = µ(i) if 0 < i (2)

We use PRISM to explore the behaviour of this model for different values of
λ, µ, ma and so on. For instance, Figure 1 shows the probability of full contagion
for all values of µ given λ = 0.5 and ma = 20. We can see that where µ < λ
there is a high probability that all agents will adopt some information while as
soon as µ ≥ λ this probability drops.

Fig. 1. Probability that all agents are infected in model 1 where λ = 0.5 and ma = 20

This result doesn’t hold for all network sizes. As the network grows the
probability of full infection increases. Figure 2 shows that even when µ = 1 the
probability of full infection occurring at some point is over 0.9 once there are
more than 30 agents.

Figure 3 shows the probability that all agents will be infected before time t
(for t < 100, 000) given various values of µ when ma = 20. From this we can see
that when µ = 0 (i.e., when there is no possibility of recovery) or µ = 0.2 the
model rapidly reaches a point where the probability that all agents are infected
is close to 1. However with µ = 0.4 it takes in the region of 65,000 time steps
for the probability of full infection to converge (to a value of 0.92). For higher
values of µ the probability of full infection remains very low.

However as the network size increases (to numbers where we know the overall
probability of full infection at some point is high for all µ) then this difference
disappears. It becomes a more interesting question to ask how many people do we
expect to be infected at any point in time. Figure 4 shows the expected number
of infected agents at time T for various values of µ in a network of 200 agents.
As can be seen this value stabilizes quite rapidly and then remains steady, but



Fig. 2. Probability that all agents are infected in model 1 for λ = 0.5

as the value of µ increases the expected number of infected agents decreases (as
the rate at which agents are recovering from infection has increased).

Fig. 3. Probability that all agents are infected by time T in model 1 for λ = 0.5 and
ma = 20

4.2 Taking the Agent View: Informational State and Opinion
Broadcast

As has been noted in the literature [4,5] the transmission of information around
a social networks may depend both on the features of the specific agents in the
network and on the structure of the social network itself. We are interested in the
possibility of using model-checking to explore traditional social analysis aspects
of how network structure affects the spread of ideas. Further we want to see how



Fig. 4. The expected number of infected agents at time T in model 1 for λ = 0.5 and
ma = 200

agent properties contribute to the global effect (and ultimately in how actions
by a mediating platform in a network service may contribute).

As an example of an agent feature that might influence contagion we consider
how one idea may be associated with an “anti-idea” which might either cause
an idea to be abandoned (analogous to recovering from infection in traditional
model) or might cause other behaviour (e.g., greater adherence to the original
idea, modifications to network structure and so on). Taking this example, which
to the best of our knowledge has not been considered in social network analysis,
is motivated by the insight from psychology that “once formed impressions are
remarkably perseverant” [22]. In this case we use the current informational state
of the agent to inform both how likely it is to adopt an opinion. Once adopted
it will broadcast the opinion to its network.

It is natural, in such a case, to consider the transition system of our model
in terms of the transitions of the individual agents. PRISM provides support for
constructing a DTMC from a specification of a transition relation on individual
modules within a system were the state s of the system is the product of the
states, smi , of each module, s = (sm1 , . . . , smn). This support uses a labelling on
transitions within modules which synchronizes across all modules. Each module
specifies the probability that the module will transition to some new state when a
particular labelled transition, say l, occurs within the system. From this PRISM
can calculate the probability distribution for the next state of the whole system
given transition l. PRISM then assigns an equal probability that any transition
that can occur will occur to derive the transition probability matrix over all
possible transitions3.

In order to take an agent view of a social network, we will model each agent

as a PRISM module and use the notation sai
l−→ p1 : sai1 ∧ . . . ∧ pn : sain to

indicate that agent, ai in state, sai transitions to state saij with probability pj
where

∑n
i=1 pi = 1 when the transition labelled l occurs.

3 This is detailed in http://www.prismmodelchecker.org/doc/semantics.pdf.

http://www.prismmodelchecker.org/doc/semantics.pdf


Model 2 We will use a DTMC to model a network of agents. Each agent, ai,
in the network is a PRISM module and can be in one of three states. Either
the agent agrees with some idea φ (written as state saiφ ) or it disagrees with the
idea (sai¬φ) or it is indifferent to φ (written as sai⊥ )). If there are n agents in the
network, there are 3n states in S.

An agent will broadcast a message in favour of φ (respectively ¬φ) to all of
its connections if it agrees with φ. We treat this as a transition labelled ai saysφ.
On receiving a message in favour of φ (respectively ¬φ) there is a probability of
λ that the agent will adopt the idea φ (abandoning the idea ¬φ if necessary).

Figure 5 shows the transition system for agent ai where cn(i, j) means i is

saiφ
ai saysφ−−−−−−→ 1 : saiφ (3)

saiφ
aj saysφ−−−−−−→ 1 : saiφ if cn(i, j) (4)

saiφ
aj says¬φ−−−−−−−→ λ : sai¬φ ∧ (1− λ) : saiφ if cn(i, j) (5)

sai¬φ
ai says¬φ−−−−−−−→ 1 : sai¬φ (6)

sai¬φ
aj says¬φ−−−−−−−→ 1 : sai¬φ if cn(i, j) (7)

sai¬φ
aj saysφ−−−−−−→ λ : saiφ ∧ (1− λ) : sai¬φ if cn(i, j) (8)

sai⊥
aj saysφ−−−−−−→ λ : saiφ ∧ (1− λ) : sai⊥ if cn(i, j) (9)

sai⊥
aj says¬φ−−−−−−−→ λ : sai¬φ ∧ (1− λ) : sai⊥ if cn(i, j) (10)

Fig. 5. Transition System for agent ai in model 2

connected to j in the network. Where a transition isn’t specified (i.e., for all the
agents i is not connected to) then PRISM assumes ai’s state is unchanged by
that transition (after all ai is unaware of what aj is saying). Where a transition
is specified for only some of ai’s states (e.g., ai saysφ is specified only for state
saiφ ) then that transition can only occur when ai is in one of those states (ai can
not broadcast φ unless it agrees with φ).

To start with we considered a fully connected network (FCN) of 10 agents.
We seeded the network with one agent believing φ and one agent believing
¬φ and set the probability of infection, λ to 0.5. We created a reward function
ρ(s) =

∑n
i=0 : sai = saiφ (i.e., the reward for a state s is the number of agents who

believe φ in that state). Figure 6 shows that this network as quickly converges
to a state where the expectation is that half the agents believe φ – the expected
reward is 5.

We are not very interested in FCNs. Research in the information diffusion
under the SIS model from early on has shown that the structure of the network
has a big influence on the effectiveness of the contagion [26]. Mathematical anal-



Fig. 6. Expected number of infected agents per message sent for model 2 on a FCN

ysis shows that the diffusion likelihood increases with the number of connections
[19].

We want to have a “higher detail” insight into the impact a particular graph
has on the spread of information. We generated a random network that satisfies
the criteria for modelling a social network as a random graph as outlined in
[23]: the maximal degree of separation is low, the probability of an edge between
two agents is higher if they have mutual neighbours, and the network has a
skewed degree distribution. This network contained 10 agent nodes, some with
a minimum of 2 connections within the network and one with 8 connections.
We initially studied the spread of ideas within this network with an λ of 0.5
and φ and ¬φ inserted in poorly connected agents (i.e., agents with only two
connections within the network), well-connected agents (i.e., agents with six
connections) and when the agent with idea φ had 8 connections while the agent
with idea ¬φ had only 2 connections. The results are shown in Figure 7.

As it can be seen in the case where the initial agents have similar numbers
of connections, the expected number of infected agents converges to 5 (converg-
ing more rapidly in the case where the initial agents have more connections).
However in the case where the agent initially wishing to disseminate φ has more
connections than the agent wishing to disseminate ¬φ then the number of agents
believing φ converges to just under 6 – showing that the initial advantage had
a long term effect. This result came as a surprise to us and, as far as we are
aware, is not one that has been studied in the context of diffusion in the liter-
ature. We generated a further 9 networks (for a total of 10) and observed the
same effect in all of them. However we were unable to investigate whether the
same effect held for larger network sizes using PRISM.

We also investigated the probability that all agents in the network would
become infected with the idea φ – i.e., that its opposite idea was completely
eradicated from the network. In the case of the unbalanced starting position the



Fig. 7. Expected number of infected agents per message sent for model 2 on a randomly
generated network

probability was 0.58 while in the balanced starting conditions the probability
was 0.5.

5 Model-Checking Threshold Influence Models

We now consider threshold influence models. In these models it is not the receipt
of a message bearing the idea φ that causes an agent to adopt the idea, but the
perception that most of the agent’s connections agree with φ.

We start with a FCN, as before.

Model 3 We assume that an agent, ai, can be in one of two states, saiφ (the
agent publicly supports φ) or sai⊥ (the agent does not publicly support φ). All
agents that publicly support φ broadcast the fact to all their neighbours, but we
don’t represent this as a transition in the network. Instead we have a joint tran-
sition, think, on all agents where they update a decision on whether or not they
believe (or at least publicly support) φ themselves. Here the probability that they
will adopt φ is proportional to the number of their connections who publicly sup-
port φ. nci is the number of connections ai has in the network and nciφ is the
number of their connections who are broadcasting messages in support of φ so

the chance of an agent deciding to espouse φ is λ.
n
ci
φ

nci for some λ.

This gives us the following transition system for agent ai:



sai⊥
think−−−→ λ.

ncφ
nc

: saiφ ∧ (1− λ.
ncφ
nc

) : sai⊥ (11)

saiφ
think−−−→ 1 : saiφ (12)

Figure 8 shows the expected number of agents who support φ, in a fully
connected network of 10 agents, after T think transitions, given an influence
probability of λ = 0.5. As can be seen this network converges to a state where
we expect all 10 agents to support φ after 17 transitions.

Fig. 8. Expected number of agents expressing φ after T transitions in model 3 on a
FCN

Figure 9 shows the spread of φ on our more realistic network in the case
where φ is first adopted by an agent with only 2 connections and in the case
when φ is first is first adopted by an agent with 8 connections.

As in infection models, we can also add ¬φ into our influence model – with
the chance that an agent expresses the opinion φ or ¬φ depending upon their
perception of how many of their connections believe φ or ¬φ.

Model 4 We extend our transition system from model 3 with an agent state,
sai¬φ (the agent is expressing support for ¬φ) and the variable nci¬φ (the number
of ai’s connections expressing support for ¬φ). Therefore an agent’s transitions
become:



Fig. 9. Expected number of agents expressing φ after T transitions in model 3 on a
randomly generated network

sai⊥
think−−−→ λ.

nciφ
nci

: saiφ ∧ λ.
nci¬φ
nci

: s¬φai∧

(1− λ.
nciφ + nci¬φ

nci
) : sai⊥

(13)

saiφ
think−−−→ λ.

nci¬φ
nci

: sai¬φ ∧ (1− λ.
nci¬φ
nci

) : saiφ (14)

sai¬φ
think−−−→ λ.

nciφ
nci

: saiφ ∧ (1− λ.
nciφ
nci

) : sai¬φ (15)

As before we start with a fully connected model the results of which are shown
in Figure 10. Here, instead of all agent eventually expressing φ, we expected
to reach a state where half the agents express φ (and by extension half are
expressing ¬φ).

Now we turn to our randomly generated model and examine the effect on
the expected spread of φ, given the connectivity of the initial agents expressing
φ and ¬φ. The results are shown in Figure 11. In the infection models (Figure 7)
the models converged to a state where half the agents adopted φ when both φ
and ¬φ had similar starting states while it converged to a state where roughly
60% of the agents adopted φ when φ had an advantage over ¬φ at the start.
In the case of influence models we see that the advantage conveyed by a better
initial state is larger than it is in infection models, with the network converging
to a state where we expect over 8 agents to be expressing φ.



Fig. 10. Expected number of agents expressing φ after T transitions for model 4 on a
FCN

Fig. 11. Expected number of agents expressing φ after T transitions for model 4 on a
randomly generated network



6 Analysing Larger Networks

Clearly networks of 10 agents are inadequate models of behaviour over large so-
cial networks. Unfortunately PRISM proved incapable of analysing larger mod-
els. In some cases PRISM couldn’t even construct a larger model rendering even
its simulation capabilities out of reach. Figure 12 shows the time taken to build
a model of a FCN and to use PRISM model-checking to find the probability that
the entire network would be fully infected with φ after 10 time steps for both
model 2 and model 4.
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Fig. 12. Times taken to build a model and perform model checking for fully connected
networks

The reasons for these problems are unclear4. While we did not expect to
be able to model networks containing hundreds of agents in PRISM we had
expected to model networks of more than ten. We have been invited to submit
the social network models as challenge problems.

This does mean, however, that for the time being the use of model-checking
as a tool for analysing information diffusion in social networks is limited although
the same formalism can be used for simulation based analysis.

7 Related work

The influence of network structure on diffusion has been extensively studied in
economics, see e.g.,[19] for an extensive literature list and [14] for a more general
overview of the impact of social network structure on behaviour.

The methodology used to study network structure impact on diffusion through-
out the literature is numerical analysis, simulation and experiments. Both micro
and macro aspects of the network structure have been considered, but in both
cases these aspects refer to statistical properties of the network. For example, a
macro network aspect example is the degree distribution in the network, while a
micro network aspect example is the average distance between two agents in the

4 Ernst Moritz Hahn, private communication.



network and network component diameters. In nearly all diffusion models, the
likelihood of adopting new information or behaviour increases with the increase
of adjacent agents who have adopted it and a higher agent degree leads to higher
contagion [19]. We also observe this here.

Bolzern et al’s [3] approach is most similar to our own, using Markov chain
models to capture network structure and to show how opinions among the agents
in the network may vary among a fixed set of opinions (a generalisation of the
idea of an idea, an ”anti-idea”, and indifference that we use here). However in
their model the chance an agent will change its opinion does not depend upon
its existing opinion, only upon the opinions of its neighbours. They use both
formal analysis to generate results about the behaviour of the general system
and monte-carlo simulation to analyse a specific system consisting of a fully
connected network and two possible opinions.

Model-checking information in social networks has been studied from a theo-
retical perspective in [24] and [8]. Pardo and Schneider [24] consider the problem
of verifying knowledge properties over social network models (SNM’s) and shows
that the model checking problem for epistemic properties over SNMs is decidable.
Dennis et al [8] introduce a formal specification for SNM’s and privacy properties
that can be established to hold using model-checking using PRISM. Belardinelli
and Grossi [2] present a model-checking algorithm and property specification
logic for studying contagion-type models in open dynamic networks. This takes
an agent view but does not explicitly consider the informational states of the
agents. The proposed model-checking algorithm has not been implemented. Kou-
varos and Lomuscio [15] use parameterised model-checking in the MCMAS system
to study opinion formation protocols for swarm robotics. These protocols are sim-
ilar to threshold models and involve agents in a swarm switching their opinion to
the majority opinion of their neighbours. The interest in this work was primarily
on answering whether the protocol guaranteed convergence to an opinion, not on
analysing the behaviour of information diffusion itself and probabilistic aspects
were not studied. Lastly, Zonghao et al [30] use PRISM to evaluate the efficacy of
methods for controlling harmful network propagation using different protection
strategies for individual nodes. Although Zonghao et al [30] are interested in
security an protecting networks from e-viruses, the approach and methodology
can be seen as related to ours in the case of information diffusion.

8 Discussion

While we have successfully made steps to account for internal informational
states of agents in models of information diffusion. We have not successfully
managed to use formal verification to analyse these models.

Clearly, there is no free lunch and, at least for now, there are technical limita-
tions to the number of agents we can model. While we did not expect to model
networks containing thousands of agents we had hoped that model-checking
would provide a useful tool for exploration of networks of sufficiently large size



to allow reasonable variation in network structure to be studied. This has not
proved to be the case.

There are two approaches to overcoming this problem both of which we intend
to pursue. We intend to continue using Markov chain models to study informa-
tion diffusion in social networks – in particular we wish to study networks where
an agent’s informational state, its decision to broadcast a particular opinion and
the decision of the network itself to propagate a broadcast to particular other
agents all interact. While we could not use PRISM to simulate on our models
we hope to either adopt or build a suitable alternative tool that can be used in
this way.

Secondly, it is common in model-checking to develop abstractions of the prob-
lem which allow systems of realistic size to be studied. Work on parameterised
model checking in swarm scenarios is also a promising avenue of research and,
indeed, this is the approach taken in [15].

9 Summary

We have developed an initial framework for modelling information diffusion in
social networks which takes an agent-centred view that includes an account of
the agent’s informational state when considering changes in the network. This
framework uses Markov chain models to represent the agents within the network
and their relationships to each other. Unfortunately even comparatively simple
models proved intractable for analysing models of interesting size in PRISM, a
current state-of-the-art tool for probabilistic model-checking.

Open Data

The PRISMmodels, network graphs, output and timing data reported in this
paper can all be found in the University of Liverpool Data Catalogue DOI:
https://doi.org/10.17638/datacat.liverpool.ac.uk/909.
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