# Module 1: Crash course in Al INF0901

Marija Slavkovik 2022

### **Supervised learning**

- Given a training set of N example input-output pairs  $(x_1,y_1), (x_2,y_2), \dots, (x_N,y_N)$ where each y<sub>i</sub> was generated by an unknown function y=f(x), discover a function h that approximates the true function f.
- Classification the output is label, one from a fixed, finite set of labels
- Example: is a single man in possession of a good fortune, in want of a wife? Possible labels {yes, no}
- Regression the output is a value (real number/floating point) that needs to be predicted
- Example: how much money will this house be sold for today?

#### Your first ML





- You will be split into breakout sessions
- Choose 5 features phrased as yes/no questions and enter the yes/no values in the table (5 minutes)

| feature1 | feature2 | feature3 | feature4 | feature5 | What is it? |
|----------|----------|----------|----------|----------|-------------|
|          |          |          |          |          | plum        |
|          |          |          |          |          | plum        |
|          |          |          |          |          | apple       |





- You will be split into breakout sessions
- Choose 5 features phrased as yes/no questions and enter the yes/no values in the table (5 minutes)

| feature1 | feature2 | feature3 | feature4 | feature5 | What is it? |
|----------|----------|----------|----------|----------|-------------|
|          |          |          |          |          | plum        |
|          |          |          |          |          | plum        |
|          |          |          |          |          | apple       |
|          |          |          |          |          |             |

- Fill in the feature values for the new fruit.
- If the new fruit has most yes/no in common with an apple, label it an apple.
- If the new fruit has most yes/no with a plum, label it a plum.

#### Your first ML



| feature1 | feature2 | feature3 | feature4 | feature5 | What is it? |
|----------|----------|----------|----------|----------|-------------|
|          |          |          |          |          | plum        |
|          |          |          |          |          | plum        |
|          |          |          |          |          | apple       |
|          |          |          |          |          |             |
|          |          |          |          |          |             |

- Fill in the feature values for the new fruit.
- apple. Label it plum if it has most answers in common with plum.

• Count how many yes/no it has in common with an existing fruit. Label it apple if it has most answers in common with an





### Finding a good hypothesis

- one that **performs well**.
- we know the correct **target values** (labels)

Supervised learning is a search through the space of possible hypothesis to find

• We measure how well a hypotheses performs in terms of **accuracy**. To do this we "give it" a **test set** of examples that are distinct from the training set, but for which

Accuracy - the fraction of examples for which the correct output was assigned



### **Overfitting - underfitting**

- Supervised learning is a search through the space of possible hypothesis to find one that **performs well**... but not perfect
- The hypothesis needs to handle not only examples of input that have been used in training ("seen") but also other ("unseen") examples.
- Overfitting the hypothesis has very high accuracy for training data (and performs poorly on test data)
- Underfitting -the hypothesis has very low accuracy for test data



- Su one
- The trai
- Ov рос
- Un





### **Different supervised learning methods**

- kNN k nearest neighbours you just did that with the fruits
- Naive Bayes clarifiers
- Linear models
- Decision trees
- Kernelized Support Vector Machines (SVM)
- Neural networks

Which method is best depends on the data you have and if you need classification or regression.

It should depend on which problem you apply the learnt correlation.. but math can't make you.

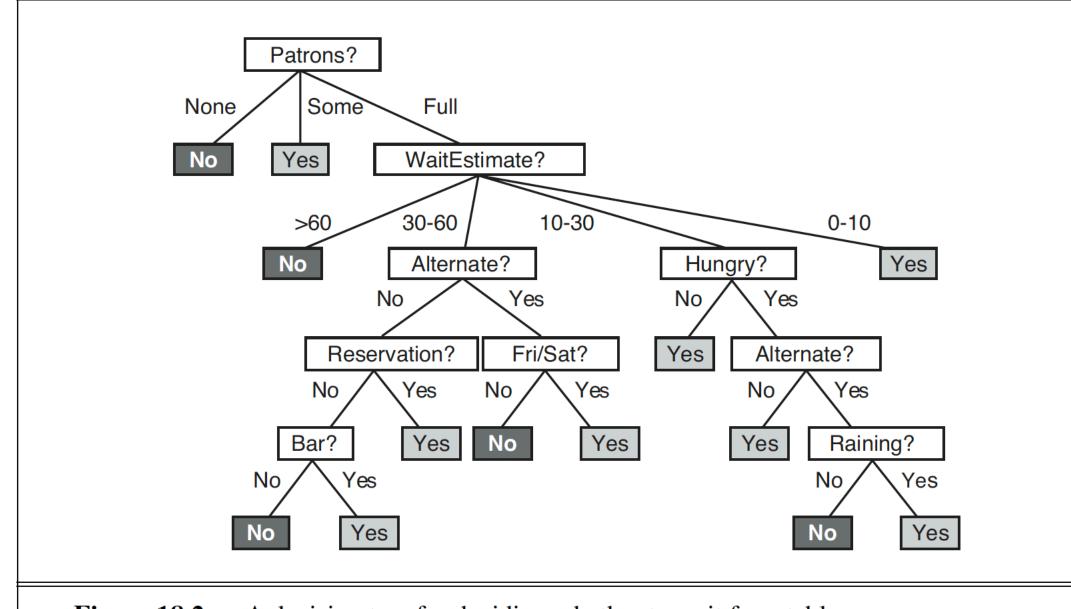
#### **Decision trees**

- Have existed as a method to guide decisions of people in critical situations.  $\bullet$
- 1, 1 (Mar. 1986), 81-106

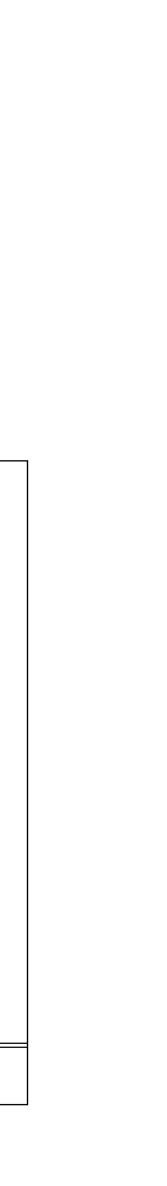
| Example               |                                                       | Input Attributes |     |     |      |        |      |     |         |       | Goal           |
|-----------------------|-------------------------------------------------------|------------------|-----|-----|------|--------|------|-----|---------|-------|----------------|
| Znampre               | Alt                                                   | Bar              | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait       |
| <b>x</b> <sub>1</sub> | Yes                                                   | No               | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0–10  | $y_1 = Yes$    |
| $\mathbf{x}_2$        | Yes                                                   | No               | No  | Yes | Full | \$     | No   | No  | Thai    | 30–60 | $y_2 = No$     |
| <b>X</b> 3            | No                                                    | Yes              | No  | No  | Some | \$     | No   | No  | Burger  | 0–10  | $y_3 = Yes$    |
| $\mathbf{x}_4$        | Yes                                                   | No               | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10–30 | $y_4 = Yes$    |
| $\mathbf{X}_{5}$      | Yes                                                   | No               | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | $y_5 = No$     |
| <b>X</b> 6            | No                                                    | Yes              | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$    |
| $\mathbf{X}_7$        | No                                                    | Yes              | No  | No  | None | \$     | Yes  | No  | Burger  | 0–10  | $y_7 = No$     |
| $\mathbf{X}_8$        | No                                                    | No               | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$    |
| $\mathbf{X}_9$        | No                                                    | Yes              | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | $y_9 = No$     |
| $\mathbf{x}_{10}$     | Yes                                                   | Yes              | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10–30 | $y_{10} = No$  |
| $\mathbf{x}_{11}$     | No                                                    | No               | No  | No  | None | \$     | No   | No  | Thai    | 0–10  | $y_{11} = No$  |
| $\mathbf{x}_{12}$     | Yes                                                   | Yes              | Yes | Yes | Full | \$     | No   | No  | Burger  | 30–60 | $y_{12} = Yes$ |
| Figure                | <b>Figure 18.3</b> Examples for the restaurant domain |                  |     |     |      |        |      |     |         |       |                |

Examples for the restaurant domain. Figure 18.3

• Decision trees in AI 1986: Quinlan, J. R. Induction of Decision Trees. Mach. Learn.



A decision tree for deciding whether to wait for a table. Figure 18.2



#### **Decision trees**

- tests)
- Pro: They can handle any type of data, does not matter if the features are correlated, any amount of data (do not need big data to work)
- Con: They overfit by design
- particular label has been assigned (not so easy with ensemble of trees).

• The goal is to build as "short" a tree as possible (perform the smallest amount of

• In practice you do not really find just one tree you, you use an "ensemble of trees"

Pro: following the label "upwards" in the tree, you find our the reasons why that

#### Linear methods

- Have been known and used in statistics before Al
- Assume the hypothesis is a linear equation
- Can only work on continuous features (feature values are numbers)
- Poor results if the features are correlated

### Linear Regression

#### this formula is called a prediction model

 $y = w_0 * x_0 + w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + w_4 * x_4 + w_5 * x_5 + w_6 * x_6 + w_7 * x_7 + w_8 * x_8$ bedrooms bathrooms mainroad basement h.w.herat stories price area guest aircon room

|   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterheating | airconditioning |
|---|----------|------|----------|-----------|---------|----------|-----------|----------|-----------------|-----------------|
| 0 | 13300000 | 7420 | 4        | 2         | 3       | yes      | no        | no       | no              | yes             |
| 1 | 12250000 | 8960 | 4        | 4         | 4       | yes      | no        | no       | no              | yes             |
| 2 | 12250000 | 9960 | 3        | 2         | 2       | yes      | no        | yes      | no              | no              |
| 3 | 12215000 | 7500 | 4        | 2         | 2       | yes      | no        | yes      | no              | yes             |
| 4 | 11410000 | 7420 | 4        | 1         | 2       | yes      | yes       | yes      | no              | yes             |

- Learning = keep changing the weights until you get an error in price within acceptable bounds

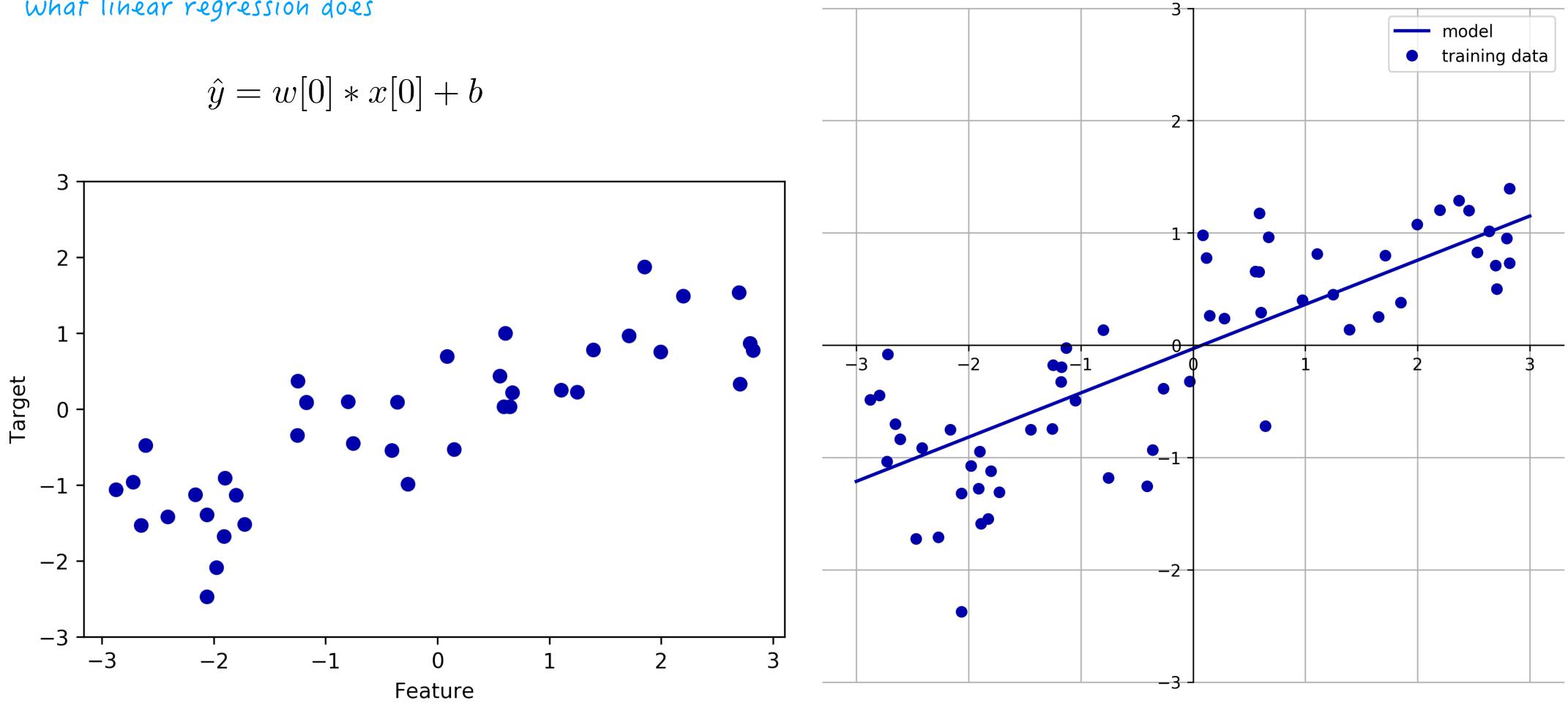
• The higher the weight in the model, the more relevant the feature for determining the target value y

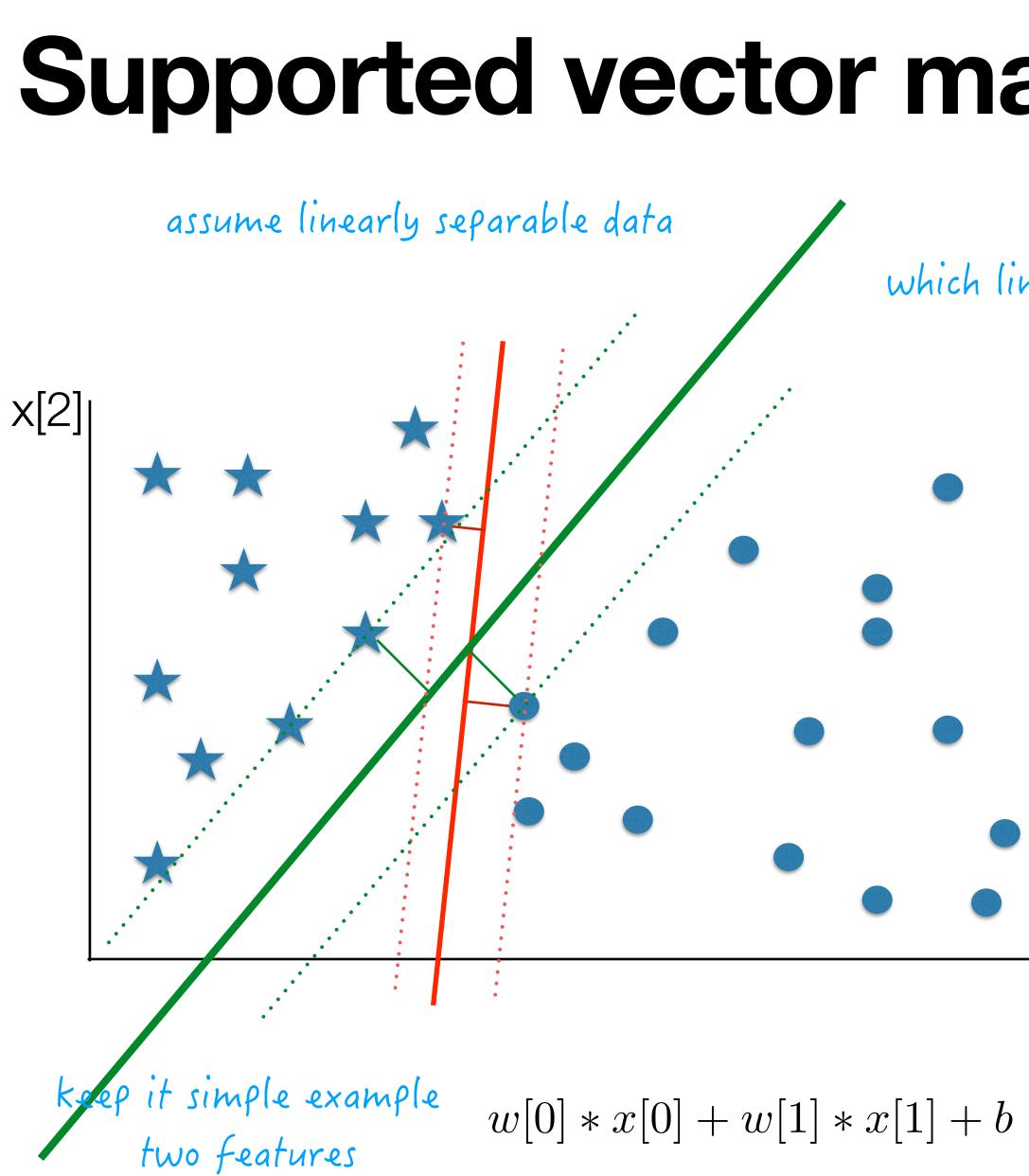
### How to improve on linear regression?

- (Kernelized) Supported Vector Machines
- Neural networks

#### Supported vector machines

what linear regression does





### Supported vector machines (SVM) - linear

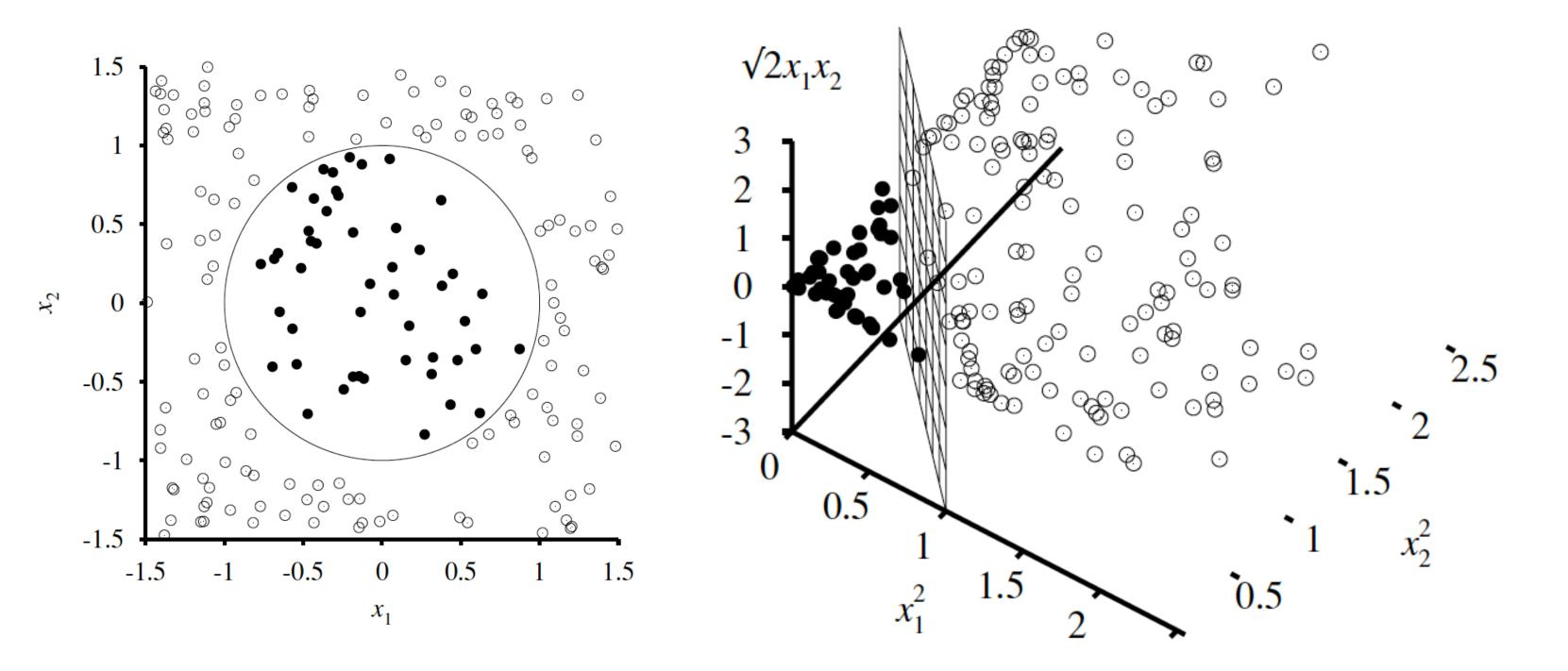
which line is better?

x[1]

- Margin the distance between the line and the closest data points from each category
- Best line the one that separates the classes with the line that has the largest margin.
- The margin is calculated as the perpendicular distance from the line to only the closest points.
- Only these points are relevant in defining the line and in the construction of the classifier. These points are called the **support vectors**. They support or define the hyperplane.

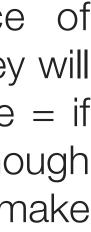


#### **Kernelized SVM** what if the data is not linearly separable?



 $f_2 = x_2^2$  $f_1 = x_1^2$  $f_3 = \sqrt{2x_1x_2}$ the function that transforms the feature value (ish) is called a kernel. • Relation between feature values and classification outcome, no longer clear

data are mapped into a space of • If sufficiently high dimension, then they will almost always be linearly separable = if you look at a set of points from enough directions, you'll find a way to make them line up.

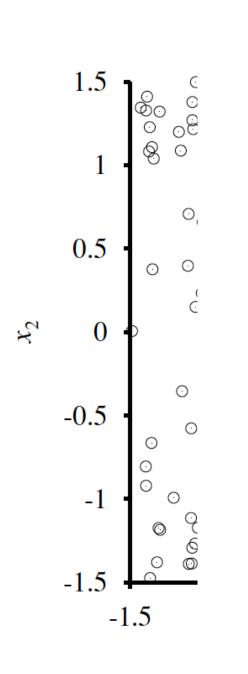




$$\underset{\alpha}{\operatorname{argmax}} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{j} \beta_{j}$$

$$\hat{y} = \operatorname{sign}\left(\sum_{j} \alpha_{j} y_{j} K(\mathbf{x})\right)$$

- The kernel is a similarity function, often but not always a distance function
- Mercer's theorem: any positive-definite kernel function
- Kernel trick: For all x and x' in the input feature space X, certain functions can be expressed as an inner product in another feature space  $\mathcal{V}_{\bullet}$  = replacing K( $x_i, x_k$ ) in the equation



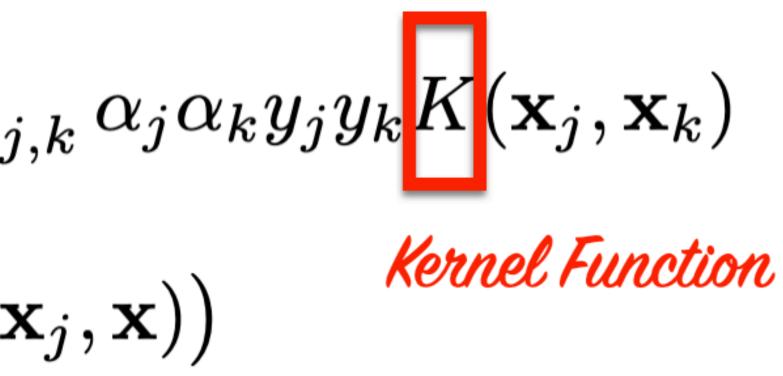
f

th.

• F

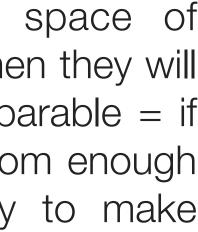
K

wh



nen they will parable = ifrom enough ay to make

## corresponds to some feature space (which can be very large)



### **Properties of SVM (kernelized)**

- Requirement: all features to vary on a similar scale
- For SVM to work, data may need to be preprocessed
- •Common preprocessing approach all features are normalised to values between 0 and 1
- SVM models work regardless of how many features there are (dimensionality of feature space does not matter)
- SVM do not scale very well with the number of samples (Why?)
- SVM models are hard to inspect and difficult to explain why they make a particular prediction

#### Neural networks vs linear models

| 200 | No.  | OWNS  |
|-----|------|-------|
| age | cars | house |

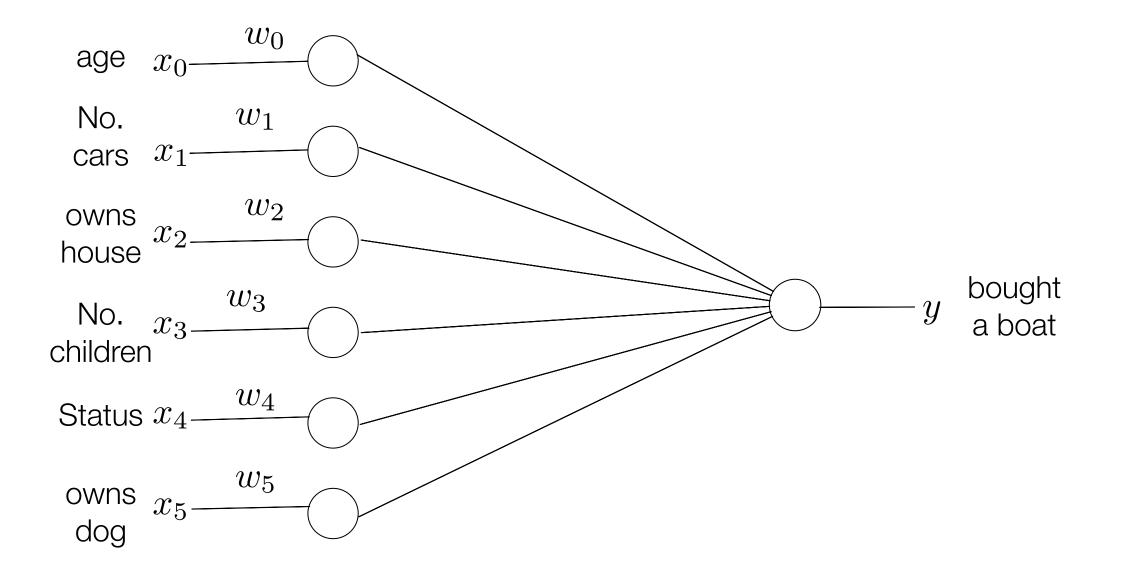
| Age |   |     | Number<br>of<br>children |          |     | •   |
|-----|---|-----|--------------------------|----------|-----|-----|
| 66  | 1 | yes | 2                        | widowed  | no  | yes |
| 52  | 2 | yes | 3                        | married  | no  | yes |
| 22  | 0 | no  | 0                        | married  | yes | no  |
| 25  | 1 | no  | 1                        | single   | no  | no  |
| 44  | 0 | no  | 2                        | divorced | yes | no  |
| 39  | 1 | yes | 2                        | married  | yes | no  |
| 26  | 1 | no  | 2                        | single   | no  | no  |
| 40  | 3 | yes | 1                        | married  | yes | no  |
| 53  | 2 | yes | 2                        | divorced | no  | yes |
|     |   |     |                          |          |     |     |

 $+ w_3 * x_3 + w_4 * x_4 + w_5 * x_5 = y$ 

| No.      | Status | owns | bought |
|----------|--------|------|--------|
| children | Status | dog  | a boat |

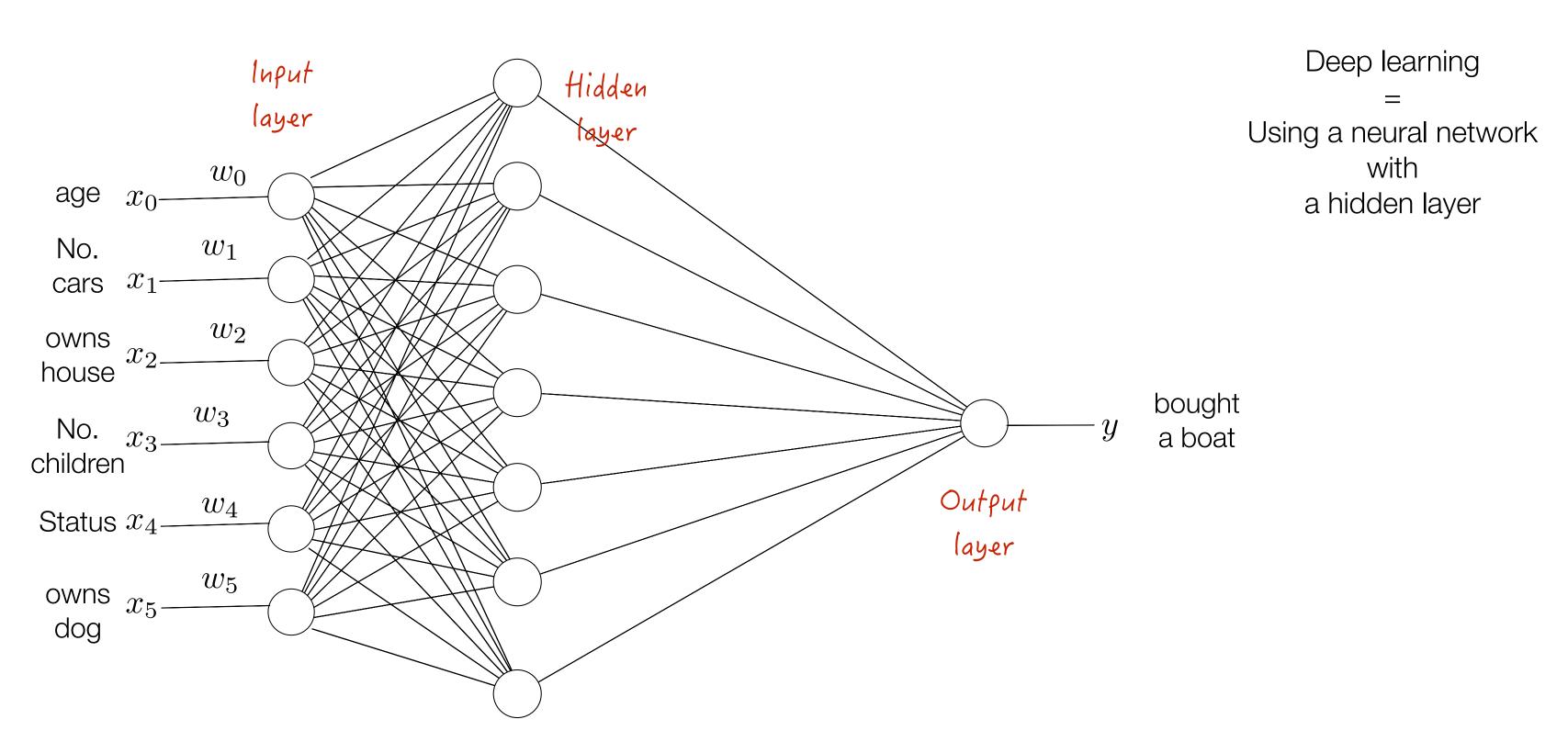
#### Neural networks vs linear models

 $w_0 * x_0 + w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + w_4 * x_4 + w_5 * x_5 = y$ 



#### Neural networks vs linear models

 $w_0 * x_0 + \dots + w_{54} * x_{54} = y$ 



### **Neural networks**

- 1943: McCulloch & Pitts: proposed the first neural model, the Binary-Threshold Neuron.
- Perceptron
- 1982: Hopfield: developed a neural network capable of behaving as an associative memory.
- 1982: Kohonen: developed a competitive learning model to create Self-Organizing Maps.

- medicine, agriculture science, social science, etc.) as a general learning methodology to fit data sets.
- many layers. Deep learning begins.

| 1956-1974                                                                                   | 1974-1980                                         | 1980-1987                                                                                       | 1987-1993                                                                                                                                     | 1993-2006                                                                                                                                        | 2006-         |
|---------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Golden years                                                                                | First Al winter                                   | Expert Systems                                                                                  | Second Al winter                                                                                                                              | Deep Blue                                                                                                                                        | Deep learning |
| John McCarthy coins the<br>term Artificial Intelligence<br>in 1956<br>ELIZA, Dendral, Mycin | Critics and lack of financing. Brittle approaches | investment fuelled by<br>the first IBM PC, with<br>the PC DOS operating<br>system 5gen Computer | Failure in interest and<br>finance. The field<br>continued to make<br>progress<br>Decision trees<br>Reinforcement learning<br>Backpropagation | Al has solved difficult<br>problems and the solutions.<br>Algorithms developed by Al<br>researchers start to appear<br>as part of larger systems |               |

• 1957: Rosenblatt: exploiting the results by Hebb in 1949, proposes a new model of neuron able to learn from examples, the

• 1969: Minsky & Papert: showed strong limitations of the perceptron: the interest on neural networks disappeared for many years

• 1983: Barto, Sutton & Anderson: proposed a neural network capable of learning without supervision (Reinforcement Learning). • 1986: Rumelhart, Hinton & Williams: formalized the process of learning by examples, defining the **Backpropagation algorithm.** • 1986-2006: On the one hand, BP became very popular in many applications fields (engineering, physics, economy, chemistry,

• 2006-2012: LeCun, Bengio, Hinton: found solutions to overcome the difficulties in extending Backpropagation to networks with

