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Machine ethics
• What is it? 

• Machine ethics vs ethical computing 

• Machine ethics vs human ethics 

• Engineering machine ethics 

• General vs specific ME 

• Strong vs weak ME 

• Killer machines vs anarchist machines



TERMINOLOGY

• being like a human vs acting like a human (the Turing 
test and the Chinese Room argument)  

• http://phil415.pbworks.com/f/
TuringComputing.pdf 

• http://cogprints.org/7150/1/10.1.1.83.5248.pdf 

• general AI vs specific AI 

• AI methods - soft computing vs  symbolic AI 
Thinking computers and swimming submarines
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This course - part I

• Levels of autonomy 

• Moors ethical agents 

• Introduction to moral philosophy 

• consequentialist vs non-consequentialist theory 

• utilitarianism 

• Kantian ethics 

• prima fascia obligations



Can an artificial agent be a moral agent?

• Can it ever be autonomous? 

• Can it ever learn? 

• Incorporating Ethics into Artificial Intelligence 
Amitai Etzioni and Oren Etzioni2  

• Can we make sure that it behaves within 
desirable ethical-legal specification? 

• Some easy definitions of difficult concepts



Learning

• Learning is improvement of performance over time 

• Learning as the problem of constructing a function that 
predicts the output given a collection of input-output pairs 

• Forms of learning: unsupervised learning, reinforcement 
learning, supervised learning, semi-supervised learning 

• Data mining - discovering properties of data sets 

• Machine learning is one of the ways in which data mining can 
be accomplished, but not the only thing it is used for



To be autonomous

• controlled systems: where humans have full or partial control, 
such as an ordinary car 

•  supervised systems: which do what an operator has 
instructed, such as a programmed lathe or other industrial 
machinery 

• automatic systems: that carry out fixed functions without the 
intervention of an operator, such as an elevator 

• autonomous systems: that are adaptive, learn and can make 
‘decisions’, like Curiosity



Moor’s classes of ethical agents



Moor’s classes of ethical agents

• Ethical-impact agents



Moor’s classes of ethical agents

• Ethical-impact agents



Moor’s classes of ethical agents

• Ethical-impact agents



Moor’s classes of ethical agents

• Ethical-impact agents

• Explicit ethical agents



Moor’s classes of ethical agents

• Ethical-impact agents

• Explicit ethical agents



Moor’s classes of ethical agents

• Ethical-impact agents

• Explicit ethical agents

• Implicit ethical agents



Moor’s classes of ethical agents

• Ethical-impact agents

• Explicit ethical agents

• Implicit ethical agents

• Full ethical agents



Moor’s classes of ethical agents

• Ethical-impact agents

• Explicit ethical agents

• Implicit ethical agents

• Full ethical agents



Introduction to moral philosophy
• Philosophy - systematic use of critical reasoning to answer the most 

fundamental questions in life 

• Moral philosophy -  the question is “What is good/bad?” 

• Morality vs Ethics 

• Descriptive ethics - describe and explain how people behave and 
think when dealing with moral issues 

• Major divisions in ethics 
• Normative ethics - principles, rules or theories that guide us 
• Metaethics - meaning and logical structure of moral beliefs 
• Applied ethics - applying moral norms to specific moral issues or 

cases, values and obligations 
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Elements of ethics

• The backbone of moral reasoning is the logic argument 

• Universalizability - the idea that a moral statement that applies 
in one situation must apply in all other situations that are 
relevantly similar 

• Impartiality - from the moral point of view, all persons are 
considered equal and should be treated equally 

• Not all norms are moral norms



Moral theories

• A moral theory is an explanation of what makes an action 
right/wrong and what makes a person good/bad 

• Theories of values - concerned with the goodness of persons 
or things 

• Theories of obligation - concerned with the rightness or 
wrongness of actions; what makes an action right or wrong 

• Consequentionalist theories -  all is well that ends well 

• Non-consequentionalist (deontologist) theories - not only 
consequences but the nature of the action is what matters



Evaluating ethical theories

• Coherence 

• Criterion 1: Consistency with Considered Judgments 

• Criterion 2: Consistency with our Moral Experience 
• We sometimes make moral judgments 
• We often give reasons for particular moral beliefs 
• We are sometimes mistaken in our moral beliefs 
• We occasionally have moral disagreements 
• We occasionally commit wrongful acts  

• Criterion 3: Usefulness in Moral Problem Solving



Utilitarianism 



Utilitarianism 

• The right actions are the one that increase the utility in society 

• Jeremy Bentham (1748-1832) and John Stuart Mill (1806-1873) 

• Act-utilitarianism: morally right actions are those that directly 
produce the greatest overall good, everyone considered 

• Rule-utilitarianism: morally right action is the one covered by a 
rule that if generally followed would produce the most 
favourable balance between good and evil, everyone 
considered (rules must be followed constantly even if they are 
locally not good)
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Utilitarianism - what is wrong with it

• Whose utility should you maximise? 

• How will you define utility? 

• How can you be sure that you have taken into account 
everything that matters? 

• Direct consequences or a closure? 

• How much can we be certain in the consequences of actions in 
an uncertain world?
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Kantian Ethics
• Immanuel Kant (1724-1804): reason alone leads us to the right and to the good. 

• Right actions have moral value only if they are done with “good will” 

• Hypothetical imperative - what we should do if we have certain desires 

• Categorical imperative - a common we should follow regardless of our wants or 
needs, universal and unconditional 

• Kant’s categorical imperative: act only on that maxim through which you can at 
the same time will that it becomes a universal law. 

• An action is permissible if:  
• its maxim can be universalised 
• you would be willing to let that happen 

•  Perfect duties vs imperfect duties
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Prima-facie principles
• All theories so far struggle with absolutism 

• Duties instead of absolute principles 

• How do duties relate to each other? 

• Prima-facie principles -  principles that apply unless an exception is 
given (W. D. Ross first to consider them) 

• 7 Ross p.f.p.: fidelity, reparation, gratitude, justice, beneficence, 
self-improvement, non-maleficence 

• Recently: autonomy, justice, beneficence, non-maleficence 

• qualification problem and ramification problem



What when prima-facie obligations 
conflict?

• Deontic logic reasoning about what you ought to do  

• Axiomatisation of Standard Deontic Logic 

• A1. All tautologous wffs of the language (TAUT) 
• A2. O(p → q) → (Op → Oq) (OB-K) 
• A3. Op → ¬O¬p (OB-D) 
• R1. If ⊢ p and ⊢ p → q then ⊢ q (MP) 
• R2. If ⊢ p then ⊢ Op (OB-NEC)



Contrary-to-duty

•  Contrary-to-Duty (or Chisholm's) Paradox: 

• (1) It ought to be that Jones goes (to the assistance of his 
neighbors). 

• (2) It ought to be that if Jones goes, then he tells them he is 
coming. 

• (3) If Jones doesn't go, then he ought not tell them he is 
coming. 

• (4) Jones doesn't go.
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Machine moral theory
• http://moralmachine.mit.edu/

• Should we use human moral theory or should we build a separate 
one for machines

• How to build a moral theory for robots?

• “Sacrifice one for the good of the many? People apply different 
moral norms to human and robot agents” Malle, Scheutz, Arnold, 
Voiklis, and Cusimano

• “The social dilemma of autonomous vehicles” Bonnefon,1 Shariff, 
and Rahwan3

http://moralmachine.mit.edu/


This course - part II

• Top-down and bottom-up approaches to ethics 

• B-U: Supervised learning and prima facie duties 

• B-U: Reinforcement learning and utilitarianism 

• B-U: Unsupervised learning and Kantian ethics? 

• T-D: Constraining the actions of an agent



How to build ethical robots?

• Solving an problem in engineering: top-down vs bottom-up 
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Top-down and bottom-up ethical robots?

• Top-down strategies involve implementing the selected ethical 
theory as to insure that the agent acts in accordance with the 
principles underlying that theory

• Bottom-up strategies - ethical mental models emerge via the 
activity of individuals rather than articulated explicitly in terms 
of normative theories of ethics.
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• The function h we call a hypothesis

• The accuracy of the hypothesis is measured with a test set of inputs to 
which we know the right output

• A hypothesis generalises well if it correctly predicts the outputs in the 
set set

• When the output y is from a finite set of values, then the learning 
problem is called classification.



Supervised learning ctd.

• A consistent hypothesis is one that fits with all the data. 
More than one consistent hypothesis can be constructed.  

• Tradeoff between a complex hypothesis that fits the 
training data well and simpler hypothesis that generalises 
better 

• Hypothesis space is the set of all possible hypothesis that 
can be constructed for given data
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Semi-supervised learning

• We are given a small set  of labeled examples and must 
make what we can of a large collection of unlabelled 
examples. 



Unsupervised  learning

• The agent learns patterns in the input even though no 
explicit feedback is supplied. 

• Example: clustering 

• Input is a list of values for a selected parameters 

• How to describe with parameters?



Prospects for a Kantian machine

• Learn imperatives by testing and clustering maxims into 
forbidden, permissible, obligatory 

• Approaches:   

• Apply universalisation and symmetry to individual 
maxims and then cluster 

• Use non-monotonic reasoning 

• Use “believe” revision to update the imperatives 



Reinforcement learning and 
utilitarianism

• Reinforcement learning is learning from a series of 
rewards and punishments 

• Abel, MacGlashan and Littman (2016) model the ethical 
learning and decision making as a POMDP 

• Armstrong (2016) models the ethical decision making and 
learning as Bayesian learning problem
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Other works

• Logic programming for modelling morality - Saptawijaya, 
and Pereira 

• Towards Moral Autonomous Systems - an overview of 
issues 

• “The Hybrid Ethical Reasoning Agent IMMANUEL” - 
Lindner and Bentzen  

(assess the moral permissibility of actions according to the 
principle of double effect, utilitarianism, and the do-no-harm 
principle) 



Challenges of top-down

• Jack is looking at Anne, but Anne is looking at George. 
Jack is married, but George is not. 

•  Is a married person looking at an unmarried person?



Challenges of bottom-up

• 1+4=5 

• 2+5 =12 

• 3+6=21 

• 8+11=?



How do you know the machine is 
ethical?

• Formal verification - only for top-down logic based 
approaches 

• Justifiability 

• Ethical Turing test 

• Ethical black box 

• Legal norms + society norms + individual morality and 
resulting issues
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Self protection

https://au.news.yahoo.com/a/36619546/china-kills-ai-chatbots-after-they-start-
criticising-communism/?cmp=st#page1


